JPS63238986A - Manufacture of composite material with deformed cross section - Google Patents

Manufacture of composite material with deformed cross section

Info

Publication number
JPS63238986A
JPS63238986A JP7522887A JP7522887A JPS63238986A JP S63238986 A JPS63238986 A JP S63238986A JP 7522887 A JP7522887 A JP 7522887A JP 7522887 A JP7522887 A JP 7522887A JP S63238986 A JPS63238986 A JP S63238986A
Authority
JP
Japan
Prior art keywords
section
composite material
outer layer
cross
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7522887A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nakasuji
中筋 和行
Koichi Kuroda
浩一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7522887A priority Critical patent/JPS63238986A/en
Publication of JPS63238986A publication Critical patent/JPS63238986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To form composite material with a deformed cross section by inserting a core material into outer material and drawing these to form fitting material and hot-rolling it by an inclined rolling mill to form the composite material with the circular cross section and cooling the composite material. CONSTITUTION:The core material 2 is inserted into the outer material 3 and cold-drawn by a drawing machine and the core material 2 is stuck fast to the outer material 3 without a gap to form the cylindrical fitting material 4. The fitting material 4 is heated with a heating furnace. The fitting material 4 of the heated material is rolled by the rolling mill 10 and made to the composite material 5 with the circular cross section having the prescribed outside diameter dimensions. At the time of rolling the composite material 5 by the inclined rolling mill 10 after cooling it, in order to remove scales of the external surface, the material 5 is cut by a centerless grinder, etc., and then, rolled by a square roll rolling mill, for instance, and its cross-sectional shape is formed to a rectangle and the composite material 1 with the rectangular cross section is formed. Accordingly, the composite material with the deformed cross section with the satisfactory quality can be manufactured with the high productive efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば電解槽における給電棒として使用され
るステンレスクラッド銅棒又はチタンクランド銅棒等、
芯材の外側に外層材を被嵌してなろ異形断面複合材の製
造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to stainless steel clad copper rods, titanium clad copper rods, etc. used as power supply rods in electrolytic cells, for example.
The present invention relates to a method of manufacturing a composite material with a narrow irregular cross section by fitting an outer layer material on the outside of a core material.

〔従来技術) 食塩を含む電解槽において使用される給電棒は、車重導
性が要求される一方、アルカリに対する耐食性が要求さ
れるため、車重導性材料である銅を単体で使用すること
ができず、芯材たる銅棒の外側に、耐食性に優れたステ
ンレス又はチタンの外層材を被嵌してなるステンレスク
ラッド銅棒又はチタンクラフト銅棒等の複合材が使用さ
れている。
[Prior art] Power supply rods used in electrolytic cells containing salt are required to have vehicle weight conductivity and corrosion resistance against alkali, so copper, which is a vehicle weight conductive material, must be used alone. Composite materials such as stainless steel clad copper rods or titanium craft copper rods are used, which are made by fitting an outer layer material of stainless steel or titanium with excellent corrosion resistance onto the outside of a core copper rod.

このような複合材の製造方法として、熱間静水圧押出し
による方法(特公昭54−8188号、特開昭61−4
2416号)がある、これは、円柱状の芯材の外側に円
筒状の外層材を嵌合せしめて嵌合材を形成し、該嵌合材
の軸長方向両端部にこれを覆うべく蓋板を設け、芯材と
外層材との間の相対移動を拘束した後、静水圧押出し法
により該嵌合材を延伸させ、芯材と外層材とを接合せし
めて複合材を形成する方法である。
As a method for producing such composite materials, methods using hot isostatic extrusion (Japanese Patent Publication No. 54-8188, Japanese Patent Application Laid-Open No. 61-4
No. 2416), in which a cylindrical outer layer material is fitted on the outside of a cylindrical core material to form a fitting material, and lid plates are provided at both ends in the axial direction of the fitting material to cover this. This is a method of forming a composite material by providing a composite material and restraining the relative movement between the core material and the outer layer material, and then stretching the fitting material using a hydrostatic extrusion method to join the core material and the outer layer material. .

ところがこの方法は、例えば前記ステンレスクラフト銅
棒の如く、芯材と外層材との変形抵抗が大きく異なる場
合、押出し成形が不可能となるから、芯材及び外層材の
選択範囲が狭いという難点がある上、前記嵌合材を形成
するに先立ち、芯材の外周面及び外層材の内周面を高精
度にて加工する必要があり、更には、押出し終了後に、
複合材の外面付着した潤滑剤を除去する必要がある等、
前処理及び後処理に多大の時間を要し、生産性が低いと
いう難点があった。
However, this method has the disadvantage that if the deformation resistance of the core material and the outer layer material are significantly different, such as the above-mentioned stainless steel craft copper rod, extrusion molding becomes impossible, and the selection range of the core material and outer layer material is narrow. Moreover, before forming the fitting material, it is necessary to process the outer circumferential surface of the core material and the inner circumferential surface of the outer layer material with high precision, and furthermore, after the extrusion is completed,
It is necessary to remove lubricant adhering to the outer surface of the composite material, etc.
There were disadvantages in that pre-treatment and post-treatment required a large amount of time and productivity was low.

そこで、本発明者らは、複合材の製造に傾斜ロール圧延
機を用い、前述の難点を解消する複合材の製造方法を提
案した(特願昭61−272580号及び特願昭61−
181635号)。
Therefore, the present inventors have proposed a method for manufacturing composite materials that solves the above-mentioned difficulties by using an inclined roll rolling mill for manufacturing composite materials (Japanese Patent Application No. 61-272580 and Japanese Patent Application No. 61-1989
No. 181635).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

さて、代表的複合材である前記ステンレスクラフト銅棒
又はチタンクラッド銅棒の用途である前記給電棒は、こ
れを複数本組合せて電解槽における平板状の電掘を構成
せしめるべく使用される。
Now, the power supply rod, which is a typical composite material such as the stainless steel craft copper rod or the titanium clad copper rod, is used by combining a plurality of these to form a flat electric excavation in an electrolytic cell.

この電極は、円形断面を有する前記給電棒を一平面上に
並列に並べ、溶液と接触するこれらの片端に、外層剤と
同材質の部材を溶接してこれらを平板状に一体化させる
ことによって構成されるが、給電棒が円形断面を有し、
前記連結部材との間が線接触となるため、十分な強度を
有する電極が構成し難いという難点があり、これを解消
すべく、矩形断面を有する給電棒が切望されている。
This electrode is made by arranging the power supply rods having a circular cross section in parallel on one plane, and welding a member made of the same material as the outer layer agent to one end of these in contact with the solution to integrate them into a flat plate. However, the power supply rod has a circular cross section,
Since there is a line contact with the connecting member, there is a problem that it is difficult to construct an electrode having sufficient strength, and in order to solve this problem, a power supply rod having a rectangular cross section is desperately needed.

ところが、前述の特願昭61−272580号及び特開
昭61−181635号の方法は、円形断面を有する複
合材は、高能率にて製造可能であるものの、矩形断面を
有する複合材の製造には通用することができない一方、
前述の熱間静水圧押出し法は、矩形のダイス孔を備えた
成形用ダイスを用いることにより矩形−面を有する複合
材の製造に適用可能であるが、この方法には前述の難点
がありステンレスクラフト銅棒の製造に通用できない上
、押出し終了後、矩形に成形された複合材の外周面に付
着したスケールを除去する場合に、これを機械切削によ
り行うことが困難であり、手作業に頼らざるを得ず、な
お一層の生産性の低下を招来するという難点があった。
However, although the above-mentioned methods of Japanese Patent Application No. 61-272580 and Japanese Patent Application Laid-open No. 61-181635 can produce composite materials with a circular cross section with high efficiency, they are difficult to manufacture composite materials with a rectangular cross section. cannot be accepted, while
The hot isostatic extrusion method described above can be applied to the production of composite materials with a rectangular surface by using a forming die with a rectangular die hole, but this method has the above-mentioned drawbacks and can be applied to the production of composite materials with a rectangular surface. It cannot be used to manufacture craft copper rods, and it is difficult to remove scale attached to the outer circumferential surface of the rectangular composite material after extrusion, as it is difficult to do this by mechanical cutting and requires manual labor. This inevitably led to a further decline in productivity.

本発明は斯かる事情に鑑みてなされたものであり、矩形
断面を有する複合材は勿論、異形断面、つまり円形以外
の断面形状を有する複合材の製造に通用でき、これを高
生産能率にて製造することを可能とする異形断面複合材
の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and can be applied not only to the production of composite materials having a rectangular cross section, but also to composite materials having an irregular cross section, that is, a cross sectional shape other than a circle, and can be manufactured with high production efficiency. An object of the present invention is to provide a method for manufacturing a composite material with a modified cross section.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る異形断面複合材の製造方法は、異形断面を
なす棒状の芯材の外側に外層材を被嵌してなる異形断面
複合材の製造方法において、円柱状の芯材の外表面及び
これより変形抵抗が大きい円筒状の外層材の内表面を夫
々脱脂、清浄化した後、該芯材を該外層材の内部に挿入
し、これらを冷間抽伸により密着させて円柱状の嵌合材
を得る第1工程と、該嵌合材を、前記芯材、外層材及び
これらの間に生じる金属間化合物の夫々の融点より低い
所定の温度にまで加熱した後、3個以上のコーン型ロー
ルを備えた傾斜圧延機にて圧延して円形断面複合材を得
る第2工程と、該複合材を冷却した後、異形断面に成形
して異形断面複合材を得る第3工程とからなることを特
徴とする。
A method for manufacturing a composite material with an irregular cross section according to the present invention is a method for manufacturing a composite material with an irregular cross section in which an outer layer material is fitted on the outside of a rod-shaped core material having an irregular cross section. After degreasing and cleaning the inner surface of the cylindrical outer layer material, which has a higher deformation resistance, the core material is inserted into the outer layer material, and they are brought into close contact by cold drawing to form a cylindrical fit. After heating the fitting material to a predetermined temperature lower than the respective melting points of the core material, the outer layer material, and the intermetallic compound formed between them, three or more cone shapes are formed. Consisting of a second step of rolling with an inclined rolling mill equipped with rolls to obtain a circular cross-section composite material, and a third step of cooling the composite material and then forming it into a modified cross-section to obtain a modified cross-section composite material. It is characterized by

〔作用〕[Effect]

本発明においては、芯材を外層材の内部に挿入せしめた
後、これを抽伸して嵌合材を構成し、これを傾斜圧延機
によって熱間圧延して円形断面複合材を形成し、この時
点においてその外周面のスケールの除去を行い、この円
形断面複合材を冷間にて異形断面に成形して異形断面複
合材を得る。
In the present invention, after the core material is inserted into the outer layer material, this is drawn to form a fitting material, which is hot rolled using an inclined rolling mill to form a circular cross-section composite material. At this point, the scale on the outer peripheral surface is removed, and the circular cross-section composite material is cold-formed into a modified cross-section to obtain a modified cross-section composite material.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は、矩形の断面形状を有する複合材の製造に、
本発明に係る異形断面複合材の製造方法(以下本発明方
法という)を通用した場合の工程図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. Figure 1 shows how to manufacture a composite material with a rectangular cross-sectional shape.
It is a process diagram when the manufacturing method of the irregular cross-section composite material based on this invention (hereinafter referred to as the method of this invention) is used.

例えば、ステンレスクランド銅棒を製造する場合、表面
スケールを除去すべく、例えは機械切削によってその外
周面を加工してあり、円柱状をなす銅製の芯材2と、そ
の内周面を酸洗してあり、ステンレス鋼管を用いてなる
外層材3とを用い、まず前記芯材2の外周面、及び前記
外層材3の内周面を夫々アセトン等によって脱脂、清浄
化した後、外層材3の内部に芯材2を挿入せしめ(第1
図(C)参照)、次いで図示しない抽伸機にて冷間抽伸
を行って、芯材2と外層材3とを隙間なく密着せしめ、
円柱状の嵌合材4 (第1図(dl参照)を形成して第
1工程を終了する。この第1工程において、芯材2を外
層材3に挿入する場合、これらの合わせ面を夫々加工し
ておく必要があるが、両者は、前記冷間抽伸による外層
材3の変形によって密着せしめられるから、前記加工は
厳密な公差を要求されるものではない。また、前記冷間
抽伸によって、芯材2と外層材3とが隙間なく密着せし
められて嵌合材4が形成されており、該嵌合材4を後述
する第2工程において加熱する際、芯材2と外層材3と
の接合強度を低下させる酸化物が、両者の界面に生じる
ことがない。
For example, when manufacturing a stainless steel clamped copper rod, the outer circumferential surface is machined, for example, to remove surface scale, and the cylindrical copper core material 2 and its inner circumferential surface are pickled. First, the outer circumferential surface of the core material 2 and the inner circumferential surface of the outer layer material 3 are degreased and cleaned with acetone or the like, respectively, and then the outer layer material 3 is made of a stainless steel pipe. Insert the core material 2 into the inside of the (first
(see Figure (C)), then cold drawing is performed using a drawing machine (not shown) to bring the core material 2 and the outer layer material 3 into close contact with each other without any gaps,
The first step is completed by forming a cylindrical fitting material 4 (see Fig. 1 (dl)). In this first step, when inserting the core material 2 into the outer layer material 3, Although it is necessary to process, since both are brought into close contact by deformation of the outer layer material 3 by the cold drawing, the process does not require strict tolerances.Also, by the cold drawing, The core material 2 and the outer layer material 3 are brought into close contact with each other without any gaps to form the fitting material 4. When the fitting material 4 is heated in a second step to be described later, the core material 2 and the outer layer material 3 are heated. Oxides that reduce bonding strength are not generated at the interface between the two.

前記第1工程にて形成された嵌合材4は、次いで、図示
しない加熱炉において加熱される。この加熱は、前記芯
材2と外層材3との間に拡散層を生ぜしめ、両者を接合
すべく行うが、この加熱により、芯材2.外層材3及び
両者間に生じる金属間化合物のいずれかが溶融すると、
これが凝固する際に凝固部分に割れを生じ、接合強度が
低下するため、この加熱温度は、芯材2.外層材3及び
前記金属間化合物の夫々の融点のいずれよりも低い温度
に限定する。例えば、ステンレスクラッド銅棒の製造に
おいては、外層材3として用いるステンレス鋼が低温に
おける加工性に劣ることを考慮して、芯材2として用い
る最も低融点の銅の溶融が始まる1030℃〜1040
℃の可及的近傍の1020℃程度の温度にまで加熱する
のが望ましい。
The fitting material 4 formed in the first step is then heated in a heating furnace (not shown). This heating is performed to create a diffusion layer between the core material 2 and the outer layer material 3 and to bond them together. When either the outer layer material 3 or the intermetallic compound generated between the two melts,
When this core material 2. The temperature is limited to a temperature lower than the respective melting points of the outer layer material 3 and the intermetallic compound. For example, in the production of stainless steel clad copper rods, taking into consideration that the stainless steel used as the outer layer material 3 has poor workability at low temperatures, the melting temperature of the copper with the lowest melting point used as the core material 2 starts from 1030°C to 1040°C.
It is desirable to heat to a temperature as close to 1020°C as possible.

加熱済の嵌合材4は、次いで、例えば、3個のコーン型
ロールを備えた後述する傾斜圧延機1oに送給され、該
圧延機lOにおいて圧延されて所定の外径寸法を有する
円形断面複合材5となり(第1図(el参照)、第2工
程を終了する。この圧延において、コーン型ロールを有
する傾斜圧延機を用いる理由、及び該圧延機におけるロ
ール数を3個以上に限定する理由は、本発明者らの提案
による特願昭61−272580号に詳細に説明されて
いるように、接合強度が高く且つ接合性に優れた複合材
を製造するためである。またステンレスクラブト銅棒の
、製造においては、加熱炉における加熱によって、ステ
ンレス鋼の外層材3に拡散した芯材またる銅により、傾
斜圧延機10による圧延の際、外層材3に割れが発生す
る虞があるから、前記特願昭61−272580号に示
す如く、前記第1工程において、芯材2を外層材3の内
部に挿入する際、銅及びステンレスの両者に対して良好
な拡散性を有するニッケルの層を芯材2と外層材3との
間に介在せしめるべく、芯材2の外周面に40μ−程度
の厚さを有するニッケル箔を巻回するか、又は芯材2の
外周面若しくは外層材3の内周面にニッケルメッキを施
し、銅がステンレスにまで拡散しないようにする。
The heated fitting material 4 is then fed to a later-described inclined rolling mill 1o equipped with, for example, three cone-shaped rolls, and rolled in the rolling mill 10 into a circular cross section having a predetermined outer diameter. The composite material 5 is obtained (see Fig. 1 (el)), and the second step is completed. In this rolling, the reason for using an inclined rolling mill with cone-shaped rolls and the limitation of the number of rolls in the rolling mill to 3 or more. The reason is to manufacture a composite material with high bonding strength and excellent bondability, as detailed in Japanese Patent Application No. 61-272580 proposed by the present inventors. In the production of copper rods, there is a risk that cracks may occur in the outer layer material 3 during rolling by the inclined rolling mill 10 due to the copper that diffuses into the stainless steel outer layer material 3 due to the heating in the heating furnace. Therefore, as shown in the above-mentioned Japanese Patent Application No. 61-272580, when inserting the core material 2 into the outer layer material 3 in the first step, nickel, which has good diffusibility into both copper and stainless steel, is used. In order to interpose the layer between the core material 2 and the outer layer material 3, a nickel foil having a thickness of about 40μ is wound around the outer peripheral surface of the core material 2, or the outer peripheral surface of the core material 2 or the outer layer material Nickel plating is applied to the inner peripheral surface of 3 to prevent copper from diffusing into the stainless steel.

前記第2工程において形成された円形断面複合材5は、
冷却された後、傾斜圧延機10による圧延の際、その外
表面に生じたスケールを除去すべ(、センターレスグラ
インダ又は旋盤によりiff又は切削され、次いで、例
えば後述の4万ロ一ル圧延機20により圧延され、断面
形状を矩形に成形されて矩形断面複合材lとなり(第1
図(「)参照)、第3工程を終了する0円形断面複合材
5を矩形断面複合材1に成形する方法は、前記4万ロ一
ル圧延機20による圧延に限るものでな(、矩形のダイ
ス孔を有するダイス若しくはローラダイスを用いる抽伸
、又は2方ロ一ル圧延機を複数台使用しての圧延等の方
法によってもよい。また、スケールを除去する場合、冷
却後の円形断面複合材5を酸洗するか又はショット加工
することによってスケールの除去を行ってもよい。
The circular cross-section composite material 5 formed in the second step is
After cooling, the scale generated on the outer surface during rolling by the inclined rolling mill 10 is removed (it is cut or cut by a centerless grinder or lathe, and then, for example, the 40,000 roll rolling mill 20 described below is applied. is rolled and formed into a rectangular cross-sectional shape to form a rectangular cross-sectional composite material (first
The method of forming the zero-circular cross-section composite material 5 into the rectangular cross-section composite material 1 at the end of the third step is not limited to rolling with the 40,000-roll rolling mill 20 (see figure ``)''). Drawing using a die or roller die having die holes of The scale may be removed by pickling or shot processing the material 5.

第2図は、前記・第2工程において嵌合材4を圧延すべ
く使用される傾斜圧延機10の嵌合材4の移動方向上流
側からの略示正面図、第3図は、第2図の■−■線によ
る側断面図、第4図は、傾斜圧延機10の傾斜角βの説
明のための第2図のrV−IV線による矢視図である。
FIG. 2 is a schematic front view from the upstream side in the moving direction of the fitting material 4 of the inclined rolling mill 10 used to roll the fitting material 4 in the second step, and FIG. FIG. 4 is a side sectional view taken along the line ■-■ in the figure, and FIG. 4 is a view taken along the line rV-IV in FIG. 2 for explaining the inclination angle β of the inclined rolling mill 10.

傾斜圧延機10は、ゴージ部11aの両側に、端部に至
るに従って縮径されてなる円錐台状の入口部11b及び
端部に至るに従ってわずかに拡径されてなる短寸円錐台
状の出口部lieを夫々備え、全体としてコーン型をな
す3個の傾斜ロール11.11.11を有する30一ル
圧延機であり、各傾斜ロール11゜11.11は、その
入口面11bを圧延材たる前記嵌合材4の移動方向上流
側(以下前側という)に向けた状態にて、その回転軸1
2の中心線Y−Yとゴージ部11aを含む平面との交点
0(ロール設定中心)を、圧延材たる前記嵌合材4のパ
スラインX−X上に中心を有しこれに直交する同一円周
上に等配に位置せしめて配設しである。前記中心線Y−
Yは、第3図に示す如く、パスラインX−Xに対して前
部を下として所定の交叉角γだけ傾斜させであると共に
、第2図及び第4図に示す如く、その前部を嵌合材4の
周方向に所定の(lJt斜角βだけ傾斜させてあり、各
傾斜ロール11,11.11は、このように傾斜する夫
々の回転軸12.12.12の前記中心線Y−Y廻りに
、図示しない駆動源からの駆動力により、第2図に矢符
にて示す如く、互いに同方向且つ同期的に回転駆動され
るようになっている。
The inclined rolling mill 10 has an inlet part 11b on both sides of a gorge part 11a, which is shaped like a truncated cone and whose diameter decreases as it reaches the end, and an outlet part which has a short truncated cone shape and whose diameter slightly increases as it reaches the end. This is a 30-mill rolling mill having three inclined rolls 11.11.11 having a cone shape as a whole and each having a cone-shaped section, each inclined roll 11.11.11 having an entrance surface 11b for rolling material. With the fitting member 4 facing upstream in the moving direction (hereinafter referred to as the front side), the rotating shaft 1 is
The intersection point 0 (roll setting center) between the center line Y-Y of 2 and the plane including the gorge portion 11a is the same point whose center is on the pass line XX of the fitting material 4, which is the rolled material, and perpendicular thereto. They are arranged at equal intervals on the circumference. Said center line Y-
As shown in FIG. 3, Y is inclined with respect to the pass line XX by a predetermined crossing angle γ with the front portion facing downward, and as shown in FIGS. The fitting material 4 is inclined by a predetermined oblique angle β in the circumferential direction, and each inclined roll 11, 11.11 -Y, they are driven to rotate in the same direction and synchronously with each other, as shown by arrows in FIG. 2, by a driving force from a driving source (not shown).

而して、前述の如く加熱炉において所定の温度にまで加
熱され、傾斜圧延機10に送給される前記嵌合材4は、
その軸心をパスラインX−Xに一致させた状態にて入口
面11b、 llb、 llb間に噛み込まれ、前記傾
斜角βだけ傾斜して回転する傾斜ロール11.11.1
1の回転により、第3図に白抜矢符にて示す如く、パス
ラインX−Xに沿って螺進移動せしめられつつ、入口面
11b、llb、llbの間にて、例えば最大減面率が
80〜90%なる高圧下を加えられ、圧延部が円錐台状
に徐々に縮径されて、ゴージ部11a、 lla、 l
la及び出口面11c、 llc、 llc間を通過し
た後、所定の外径を有する前記円形断面複合材5となる
。このように、傾斜圧延機10は、嵌合材4が傾斜ロー
ル11,11.11の回転に応じてその軸心層りに一回
転する間に、各ロール11.11.11にて各−回の圧
下を加え、嵌合材4が、ゴージ部11a、 lla。
As described above, the fitting material 4 is heated to a predetermined temperature in the heating furnace and fed to the inclined rolling mill 10.
A tilted roll 11.11.1 that is bitten between the entrance surfaces 11b, llb, and llb with its axis aligned with the pass line XX, and rotates with an inclination angle β.
1, as shown by the white arrow in FIG. 3, while being spirally moved along the pass line A high pressure of 80 to 90% is applied, and the rolled portion is gradually reduced in diameter into a truncated cone shape, forming the gorge portions 11a, lla, l.
After passing between the la and exit surfaces 11c, llc, llc, the circular cross-section composite material 5 has a predetermined outer diameter. In this way, in the inclined rolling mill 10, while the fitting material 4 rotates once in its axial center layer in accordance with the rotation of the inclined rolls 11, 11.11, each of the - After applying pressure twice, the fitting material 4 forms the gorge portions 11a and 11a.

11aに達するまでの間に前記圧下を断続的に繰り返し
て前記縮径を行い、−回の圧下により嵌合材4が受ける
変形量は小さいから、嵌合材4を円形断面複合材5に成
形するために大幅な縮径を要する場合においても、割れ
等を生じることなく、容易に成形できると共に、芯材2
と外層材3とを確実に一体化せしめることが可能である
Until reaching 11a, the diameter reduction is performed by repeating the rolling intermittently, and since the amount of deformation that the fitting material 4 undergoes due to - times of rolling is small, the fitting material 4 is formed into a circular cross-section composite material 5. Even if a large diameter reduction is required to make the core material 2, it can be easily formed without cracking, etc.
and the outer layer material 3 can be reliably integrated.

ところで、芯材2の変形抵抗に比較して外層材3のそれ
が小さい嵌合材4から円形断面複合材5を得るべく、傾
斜圧延機10により圧延を行う場合、外層材3の変形量
が、芯材2のそれに比較して大となり、外層材3が大き
く減肉されてその周長が長くなる結果、これが圧延中に
ロール11.11.11の間に張り出す、所謂フレアリ
ングが生じ、前記加熱の段階において、芯材2と外層材
3との間に生じている拡散層に剥離が生じるから、前述
の複合材の製造に本発明方法を適用することはできない
By the way, when rolling is performed using the inclined rolling mill 10 in order to obtain a circular cross-section composite material 5 from the fitting material 4, in which the deformation resistance of the outer layer material 3 is smaller than that of the core material 2, the amount of deformation of the outer layer material 3 is , is larger than that of the core material 2, and the outer layer material 3 is greatly thinned and its circumference becomes longer, resulting in so-called flaring, which protrudes between the rolls 11, 11, 11 during rolling. During the heating step, the diffusion layer formed between the core material 2 and the outer layer material 3 peels off, so the method of the present invention cannot be applied to the production of the above-mentioned composite material.

しかしながら、複合材は、その用途上、外層材3の変形
抵抗が芯材2のそれよりも大きいものが殆どであり、前
述のガ点は、本発明方法の通用範囲を狭めるものではな
い。
However, in most composite materials, the deformation resistance of the outer layer material 3 is greater than that of the core material 2 due to its usage, and the above-mentioned gas point does not narrow the scope of application of the method of the present invention.

このようにして形成された円形断面複合材5は、前述の
如く、その外表面に生じたスケールを除去せしめた後、
矩形断面複合材1を得るべく、前記4万ロ一ル圧延機2
0に送給される。第5図は、圧延材たる円形断面複合材
5の送給方向から見た4万ロ一ル圧延機20の一部破断
圧面図である。
After removing the scale generated on the outer surface of the circular cross-section composite material 5 thus formed, as described above,
In order to obtain a rectangular cross-section composite material 1, the 40,000 roll rolling mill 2
0. FIG. 5 is a partially cutaway pressure surface view of the 40,000-roll rolling mill 20 as seen from the feeding direction of the circular cross-section composite material 5 as a rolled material.

4方ロ一ル圧延機20の、4個のロール21,21.2
1゜21は、短寸円柱状をなし、本図に示す如(、へ角
形の正面形状を有するハウジング22に、圧延対象であ
る円形断面複合材5のパスラインに直交する一平面内に
おいて、該平面と前記パスラインの交点(パスセンタ)
Zから等距離だけ離隔し、互いに直交する夫々の軸心層
りに回動自在に枢支してあり、前記パスセンタZを中心
として、互いに対向するこれらの外周面間に、成形結果
として得られる前記矩形断面複合材1の外形寸法に対応
する矩形の開口部23を形成している。各ロール21の
軸長方向両側には、一対の傘歯車24 、24が、夫々
のロール21と同心をなして共に回動すべく、夫々の歯
形成面を外向きとして装着してあり、また前記ロール2
1,21.21.21の内の一個のロール21には、一
端部を図示しない駆動源に連結してなる駆動軸25の他
端部が、その回転により該ロール21及びこれに装着さ
れた傘歯車24.24を回転せしめるべく挿着しである
。従って、前記ロール21,21,21.21は、互い
に隣接するロール21.21間にて噛合する前記傘歯車
24.24により伝動作用により、前記駆動軸25の回
転に応じて、夫々第5図に矢符にて示す向きに、同期的
に且つ同速度にて回転駆動されるようになっている。
Four rolls 21, 21.2 of a four-way rolling mill 20
1°21 has a short cylindrical shape and has a hexagonal front shape as shown in this figure. Intersection of the plane and the path line (path center)
They are rotatably supported on respective axis layers that are spaced apart from Z by an equal distance and are perpendicular to each other, and between these outer circumferential surfaces that face each other with the path center Z as the center, a molding result is obtained. A rectangular opening 23 corresponding to the outer dimensions of the rectangular cross-section composite material 1 is formed. A pair of bevel gears 24 , 24 are mounted on both sides of each roll 21 in the axial direction with their respective tooth forming surfaces facing outward so as to rotate together concentrically with the respective rolls 21 . Said roll 2
1, 21, 21, 21, the other end of a drive shaft 25 whose one end is connected to a drive source (not shown) is attached to the roll 21 and this by its rotation. It is inserted to rotate the bevel gear 24.24. Accordingly, the rolls 21, 21, 21.21 are rotated in accordance with the rotation of the drive shaft 25, respectively, by means of the bevel gear 24.24 meshing between the adjacent rolls 21.21. They are rotated synchronously and at the same speed in the direction shown by the arrows.

而して、前記第2工程において得られ、4万ロ一ル圧延
機20に送給される円形断面複合材5は、前記バスセン
タZにその軸心を一致させ、第5図における紙面の表側
から前記開口部23に挿入され、該開口部23を通過す
る間にロール21,21.21.21にてその4方から
加えられる圧下刃により、開口部23の形状寸法に応じ
た矩形の断面を有する矩形断面複合材1に成形される。
The circular cross-section composite material 5 obtained in the second step and fed to the 40,000-roll rolling mill 20 has its axis aligned with the bus center Z, and is placed on the front side of the paper in FIG. is inserted into the opening 23, and while passing through the opening 23, the rolling blades applied from four sides by the rolls 21, 21, 21, 21 form a rectangular cross section corresponding to the shape and dimensions of the opening 23. A composite material 1 having a rectangular cross section is formed.

最後に本発明方法によりチタンクラッド銅棒及びステン
レスクラッド銅棒を製造し、これにおける芯材と外層材
の接合状態を検査した実施例について説明する。
Finally, a description will be given of an example in which a titanium clad copper rod and a stainless steel clad copper rod were manufactured by the method of the present invention, and the bonding state of the core material and outer layer material therein was inspected.

(実施例 1) JIS Cl100のタフピッチ銅を、外径49.5m
m、公差±0.1mn+に機械加工して得られた丸棒状
の芯材2と、57a+n+の外径を有するJIS 2種
の純チタンを、内径51mm、公差±0.1mmにて機
械加工して得られた円筒状の外層材3とを夫々脱脂、清
浄化し、前記芯材2を前記外層材3の内部に挿入した後
、外径が55+u+の嵌合材4を得るべく冷間抽伸を行
った。
(Example 1) JIS Cl100 tough pitch copper with an outer diameter of 49.5 m
m, a round bar-shaped core material 2 obtained by machining to a tolerance of ±0.1 mm+, and JIS Class 2 pure titanium having an outer diameter of 57a+n+ were machined to an inner diameter of 51 mm and a tolerance of ±0.1 mm. After degreasing and cleaning the obtained cylindrical outer layer material 3 and inserting the core material 2 into the outer layer material 3, cold drawing is performed to obtain a fitting material 4 having an outer diameter of 55+u+. went.

次いで、これを加熱炉内において略1時間加熱し750
℃とした後、外径が3011I11の円形断面複合材5
を得るべく、第2図〜第4図に示す傾斜圧t!tffl
lOにて熱間圧延を実施した。傾斜圧延機10の仕様は
以下の通りである。
Next, this was heated in a heating furnace for approximately 1 hour to a temperature of 750℃.
℃, circular cross-section composite material 5 with an outer diameter of 3011I11
In order to obtain the gradient pressure t! shown in FIGS. 2 to 4, tffl
Hot rolling was carried out at IO. The specifications of the inclined rolling mill 10 are as follows.

ロール交叉角 γ   5@ ロール傾斜角 β  13゜ ロール径      180 arm ロール材質     SCM 440 ロ一ル回転数    10Orpm 次に、熱間圧延により得られた円形断面複合材5の外周
面を、センターレスグラインダにて0.41研削し、そ
の表面スケールを除去せしめた後、外径が180mmの
345C製の4個のロールを備えた4方ロ一ル圧延機2
0にて冷間圧延を行い、中25 X 25及び中31 
X 24の2種類の断面寸法を有する矩形断面のチタン
クラッド銅棒を製造した。
Roll crossing angle γ 5 @ Roll inclination angle β 13° Roll diameter 180 arm Roll material SCM 440 Roll rotation speed 10 Orpm Next, the outer peripheral surface of the circular cross-section composite material 5 obtained by hot rolling was placed in a centerless grinder. After grinding to 0.41 and removing the surface scale, a four-way rolling mill 2 equipped with four rolls made of 345C with an outer diameter of 180 mm was used.
Cold rolled at 0, medium 25 x 25 and medium 31
Titanium-clad copper rods of rectangular cross-section with two cross-sectional dimensions of x24 were manufactured.

このようにして製造されたチタンクラッド銅棒における
芯材と外層材との接合界面を、走査電子顕微1m(SE
M)及び電子プローブマイクロアナライザ(EPMA)
により夫々観察すると共に、超音波探傷を行った結果、
前記2種のチタンクラッド銅棒のいずれにおいても、接
合界面における剥離、酸化物及び欠陥の発生は認められ
ず、拡散が十分に進行していることが観察され、芯材と
外層材との間の接合状態が良好であることが明らかとな
った。第6図は、外層材たるチタンと芯材たる銅との接
合界面近傍のSEM観察写真である。
The bonding interface between the core material and the outer layer material in the titanium clad copper rod manufactured in this way was examined using a scanning electron microscope (SE
M) and electronic probe microanalyzer (EPMA)
As a result of both observation and ultrasonic flaw detection,
In both of the above two types of titanium-clad copper rods, no peeling, oxides, or defects were observed at the bonding interface, and it was observed that diffusion had progressed sufficiently, and the gap between the core material and the outer layer material was observed to be sufficient. It became clear that the bonding condition was good. FIG. 6 is an SEM observation photograph of the vicinity of the bonding interface between titanium, which is the outer layer material, and copper, which is the core material.

(実施例 2) JIS Cl100のタフピッチ銅を、外径49.5m
m、公差±0.1m−に機械加工して得られた先棒を脱
脂。
(Example 2) JIS Cl100 tough pitch copper with an outer diameter of 49.5 m
Degrease the tip bar obtained by machining to a tolerance of ±0.1 m.

清浄化した後、その外周に、同じく脱脂、清浄化した厚
さ40μ−のニッケル箔を巻回してなる芯材2を、外径
60.5vw、肉厚3.5mmなるJIS 5IJS3
10S製のステンレス鋼管を税脂、清浄化してなる外層
材3の内部に挿入した後、外径が55Il111の嵌合
材4を得るべく冷間抽伸を行った0次いで、これを加熱
炉内において1020℃にまで加熱した後、前記チタン
クラッド銅棒の製造例において説明した傾斜圧延機lO
にて、外径が30++mの円形断面複合材5を得るべく
熱間圧延を実施した。次に、この円形断面複合材5の外
周面を、センターレスグラインダにて0.4■−研削し
、その表面スケールを除去せしめた後、前記チタンクラ
ッド銅棒の製造例において説明した4方ロ一ル圧延機2
0にて冷間圧延を行い、中25 X 25の断面寸法を
有する矩形断面のステンレスクラフト銅棒を製造した。
After cleaning, a core material 2 made by winding a nickel foil with a thickness of 40μ, which has also been degreased and cleaned, is wrapped around the outer periphery of the core material 2, which has an outer diameter of 60.5vw and a wall thickness of 3.5mm, as per JIS 5IJS3.
After inserting a 10S stainless steel pipe into the cleaned and cleaned outer layer material 3, cold drawing was performed to obtain a fitting material 4 with an outer diameter of 55Il111.Next, this was placed in a heating furnace. After heating to 1020°C, the inclined rolling mill lO explained in the manufacturing example of the titanium clad copper bar was used.
Hot rolling was carried out to obtain a circular cross-section composite material 5 having an outer diameter of 30++ m. Next, the outer circumferential surface of this circular cross-section composite material 5 is ground by 0.4 mm using a centerless grinder to remove surface scale, and then the four-sided circular cross-section composite material 5 is ground using a centerless grinder to remove surface scale. Single rolling mill 2
Cold rolling was performed at 0 to produce a stainless steel craft copper bar with a rectangular cross section having a cross-sectional size of 25 x 25 mm.

このようにして製造されたステンレスクラッド銅棒にお
ける芯材と外層材との接合界面を、走査電子顕微!*(
SEM)及び電子プロープマイクロアナライザ(EPM
A)により夫々観察すると共に、超音波探傷を行った結
果、接合界面における剥離、酸化物及び欠陥の発生は認
められず、拡散が十分に進行していることが観察され、
芯材と外層材との間の接合状態が良好であることが、前
記チタンクラッド銅棒の製造の場合と同様に明らかとな
った。
Scanning electron microscopy shows the bonding interface between the core material and the outer layer material in the stainless steel clad copper rod manufactured in this way! *(
SEM) and electronic probe microanalyzer (EPM)
As a result of both observation using A) and ultrasonic flaw detection, no peeling, oxides, or defects were observed at the bonding interface, and it was observed that diffusion was sufficiently progressing.
It was found that the bond between the core material and the outer layer material was good, as in the case of manufacturing the titanium clad copper rod.

なお本実施例においては、矩形の断面形状を有する複合
材を製造する場合について説明したが、六角形、六角形
等の断面形状を有する異形断面複合材の製造においても
、第3工程における成形に用いる圧延機、又は前記ダイ
ス若しくはローラダイスの変更により、本発明方法が通
用可能であることは言う′までもない。
In this example, a case was explained in which a composite material having a rectangular cross-sectional shape was manufactured. However, when manufacturing a composite material having an irregular cross-section having a hexagonal, hexagonal, etc. It goes without saying that the method of the present invention can be applied by changing the rolling mill used or the die or roller die.

〔効果〕〔effect〕

以上詳述した如く本発明方法は、第1工程における抽伸
によって芯材と外層材とを密着せしめるから、これらを
高精度に前加工する必要がなく、また、第2工程におい
て傾斜圧延機による熱間圧延により円形断面を有する複
合材を形成するから、高能率にて良絆な接合状態を有す
る複合材が得られ、更に、この円形断面複合材を、後続
の第3工程において異形断面に成形して、異形断面複合
材を得るから、良質の異形断面複合材が高生産能率にて
製造できる等優れた効果を奏する。
As detailed above, in the method of the present invention, the core material and the outer layer material are brought into close contact with each other by drawing in the first step, so there is no need to pre-process them with high precision. Since a composite material with a circular cross section is formed by inter-rolling, a composite material with a high efficiency and good bonding state can be obtained.Furthermore, this circular cross-sectional composite material is formed into an irregular cross section in the subsequent third step. Since a composite material with an irregular cross section is thus obtained, excellent effects such as the ability to manufacture a composite material with a high quality irregular cross section at high production efficiency are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すものであり、第1図は本
発明方法の工程図、第2図は本発明方法に使用する傾斜
圧延機の要部正面図、第3図は第2図のm−nt線によ
る側断面図、第4図は傾斜角βを示す第2図のIV−I
V線による矢視図、第5図は本発明方法に使用する4方
ロ一ル圧延機の一部破断正面図、第6図は本発明方法に
より製造したチタンクラッド銅棒の接合界面近傍のSE
M観察写真である。 1・・・矩形断面複合材  2・・・芯材  3・・・
外層材  4・・・嵌合材  5・・・円形断面複合材
10・・・傾斜圧延機  20・・・4方ロ一ル圧延機
特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  夫第2図   IV 第3図 第4図 、υ     zl 不 5 区 fメ尻 第 6 図
The drawings show one embodiment of the present invention, and FIG. 1 is a process diagram of the method of the present invention, FIG. 2 is a front view of main parts of an inclined rolling mill used in the method of the present invention, and FIG. Figure 4 is a side cross-sectional view taken along line m-nt in Figure 4, and IV-I in Figure 2 shows the inclination angle β.
5 is a partially cutaway front view of a four-way rolling mill used in the method of the present invention, and FIG. 6 is a view of the vicinity of the bonding interface of a titanium-clad copper rod manufactured by the method of the present invention. S.E.
This is an M observation photograph. 1... Rectangular cross section composite material 2... Core material 3...
Outer layer material 4... Fitting material 5... Circular cross section composite material 10... Inclined rolling mill 20... Four-way roll rolling mill patent Applicant Sumitomo Metal Industries Co., Ltd. agent Patent attorney Kono Noboru Figure 2 IV Figure 3 Figure 4, υ zl Fu 5 Ward f Mejiri Figure 6

Claims (1)

【特許請求の範囲】 1、異形断面をなす棒状の芯材の外側に外層材を被嵌し
てなる異形断面複合材の製造方法において、 円柱状の芯材の外表面及びこれより変形抵 抗が大きい円筒状の外層材の内表面を夫々脱脂、清浄化
した後、該芯材を該外層材の内部に挿入し、これらを冷
間抽伸により密着させて円柱状の嵌合材を得る第1工程
と、 該嵌合材を、前記芯材、外層材及びこれら の間に生じる金属間化合物の夫々の融点より低い所定の
温度にまで加熱した後、3個以上のコーン型ロールを備
えた傾斜圧延機にて圧延して円形断面複合材を得る第2
工程と、 該複合材を冷却した後、異形断面に成形し て異形断面複合材を得る第3工程とからなること を特徴とする異形断面複合材の製造方法。
[Scope of Claims] 1. A method for manufacturing a composite material with an irregular cross section, in which an outer layer material is fitted on the outside of a rod-shaped core material having an irregular cross section, which comprises: After degreasing and cleaning the inner surface of each of the large cylindrical outer layer materials, the core material is inserted into the outer layer material, and they are brought into close contact by cold drawing to obtain a cylindrical fitting material. and heating the fitting material to a predetermined temperature lower than the respective melting points of the core material, the outer layer material, and the intermetallic compound formed between them, and then heating the mating material to a predetermined temperature lower than the respective melting points of the core material, the outer layer material, and the intermetallic compound formed between them, and then heating the mating material to a predetermined temperature that is lower than the respective melting points of the core material, the outer layer material, and the intermetallic compound formed therebetween, and then heating the mating material to a predetermined temperature that is lower than the respective melting points of the core material, the outer layer material, and the intermetallic compound formed between them. The second step is to obtain a circular cross-section composite material by rolling with a rolling mill.
and a third step of cooling the composite material and then forming it into a modified cross-section to obtain a composite material with a modified cross-section.
JP7522887A 1987-03-27 1987-03-27 Manufacture of composite material with deformed cross section Pending JPS63238986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7522887A JPS63238986A (en) 1987-03-27 1987-03-27 Manufacture of composite material with deformed cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7522887A JPS63238986A (en) 1987-03-27 1987-03-27 Manufacture of composite material with deformed cross section

Publications (1)

Publication Number Publication Date
JPS63238986A true JPS63238986A (en) 1988-10-05

Family

ID=13570158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7522887A Pending JPS63238986A (en) 1987-03-27 1987-03-27 Manufacture of composite material with deformed cross section

Country Status (1)

Country Link
JP (1) JPS63238986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799264B1 (en) 2007-08-16 2008-01-29 주식회사 한영기계 Manufacturing apparatus for a shaft
KR101063611B1 (en) 2011-02-25 2011-09-07 이영식 Manufacturing apparatus for a shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799264B1 (en) 2007-08-16 2008-01-29 주식회사 한영기계 Manufacturing apparatus for a shaft
KR101063611B1 (en) 2011-02-25 2011-09-07 이영식 Manufacturing apparatus for a shaft

Similar Documents

Publication Publication Date Title
US20080135405A1 (en) Metal Double-Layer Structure and Method For Manufacturing the Same and Regeneration Method of Sputtering Target Employing That Method
US20080276681A1 (en) Preparation method of laminated composite materials of different alloys
CN1166468C (en) Technology and die' set for manufacturing seamless Al-alloy tube
KR101347051B1 (en) Complex aluminum alloy sheet having High strength-high tensile strength and method for fabricating the same
CN112404163A (en) Preparation method of high-performance difficult-deformation metal precision seamless pipe
TWI552971B (en) Stirrer shaft pipe and method for producing the same
JPS63238986A (en) Manufacture of composite material with deformed cross section
KR20090052233A (en) The manufacturing method for a flow formed pressure vessel using a thick plate preform prepared by welding
CN117167644A (en) Double-layer alloy composite rod wire and production process
US5004143A (en) Method of manufacturing clad bar
CN114367794A (en) Preparation method of titanium cylinder for welding large-size cathode roller
JPS63126602A (en) Production of stainless steel clad copper bar
JP2504118B2 (en) Clad steel bar manufacturing method
CN105537313A (en) Manufacturing method for copper wire
JPH01178384A (en) Stainless clad screw and its manufacture
JPH04111981A (en) Production of noble metal clad titanium wire
TWI760689B (en) Sputtering target, method for bonding target to back plate, and method for producing sputtering target
JP2017190523A (en) Cylindrical sputtering target
JPH04182023A (en) Manufacture of clad metallic tube
CN111032904A (en) Cylindrical sputtering target
US20220310371A1 (en) Sputtering target, method of bonding target material and backing plate, and method of manufacturing sputtering target
JPS63303640A (en) Production of metal pipe with spiral fin and its device
JPH0763723B2 (en) Composite manufacturing method
CN1009622B (en) Monolayer braze welding pipe
CN117450416A (en) Hollow structure and preparation method thereof