JPS6323822B2 - - Google Patents

Info

Publication number
JPS6323822B2
JPS6323822B2 JP55134821A JP13482180A JPS6323822B2 JP S6323822 B2 JPS6323822 B2 JP S6323822B2 JP 55134821 A JP55134821 A JP 55134821A JP 13482180 A JP13482180 A JP 13482180A JP S6323822 B2 JPS6323822 B2 JP S6323822B2
Authority
JP
Japan
Prior art keywords
particles
fluidized bed
classifier
bed reactor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55134821A
Other languages
Japanese (ja)
Other versions
JPS5759633A (en
Inventor
Akinobu Shiga
Masahiro Kakugo
Koji Yamada
Hajime Sadatoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP13482180A priority Critical patent/JPS5759633A/en
Publication of JPS5759633A publication Critical patent/JPS5759633A/en
Publication of JPS6323822B2 publication Critical patent/JPS6323822B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、流動層反応装置に関するものであ
る。さらに詳しくは流動層中にある固体粒子を分
級して取り出す機能を有した流動層反応装置に関
する。 流動層反応装置を用いた工業には、灯油以上の
高沸点石油留分を流動化している触媒と接触させ
て分解し、高オクタン価ガソリンを製造する工
業、石油の重質油を流動化している熱媒体固体粒
子で接触分解してオレフインを主体とするガスを
得る工業、プロピレン、アンモニアおよび空気を
流動化した触媒と接触させアクリロニトリルを合
成する工業、金属酸化物を流動状態で還元する工
業、α−オレフインを固体重合触媒を含んだ粒子
を流動化し、そこで重合させる工業等多く有る。
これら流動層反応装置内での粗粒が発生し蓄積し
て来ると、流動化を悪化させる原因となる。これ
までにも、この粗粒分離の方法及び装置について
は、特公昭55−9048号公報、特開昭52−129680号
公報で提案されている。しかしながら、これらは
とにかく粗粒を取り出すことに重点がおかれ、分
級効率が低く取出した粗粒中に細粒も多く含まれ
るという欠点を有している。 そこで、所定の径を持つた粗粒を分別して取り
出すことを鋭意検討した結果、流動層下部に分級
器を持ち該分級器が流動層と同一か、もしくは小
さい内径の円筒であり、かつ円筒内に多段の多孔
板を有し、その多孔板の下に流動化ガスの供給口
を持つ構造のものが、流動層中で成長して来る粗
粒の内所定の径の粒子を分級して取り出せること
を見い出し、本発明に到つた。 本発明を以下に、α−オレフインをチーグラ
ー・ナツタ触媒により気相重合させる際に使用さ
れる流動層反応器を例にして詳細に説明する。 流動層装置内における混合状態については、近
年著しい解明が行われており、流動化粒子間の密
度差が小さい場合には該粒子径の多少の差によら
ず、粒子はほぼ完全混合であることが知られてい
る。従つて流動層反応器を用いてα−オレフイン
の連続気相重合を実施するにおいては、触媒粒子
間で反応器内の滞留時間分布が生じる。一般にチ
ーグラー・ナツタ触媒の活性は時間とともに低下
するので、滞留時間に分布があるというのは、触
媒当りの重合量が減少し、結果的には製品中の触
媒残渣が増加するため、熱安定性、耐候性等を損
うという重大な問題が発生する。また、多段階の
工程よりなる重合を直列に結合した反応器で行う
場合には、生成した重合体粒子間で巾広い組成分
布を持つことになり、物性上好ましくない製品を
得ることになる。すなわち、分子量が高い重合を
行う工程を含む場合には該工程で重合される重合
体を多い割合で有する重合体粒子は、溶融混練に
よつてもさらに細かく分散することが困難で、成
形品中にブツとして残留し外観を著しく低下させ
るとともに引張特性及び衝撃強度等の機械的性質
を著しく低下させる。この場合、流動層反応器内
に滞留する触媒粒子の滞留時間を実質的に均一に
することが可能であれば、かかる物性上の問題を
回避することが可能になり、工学的利得は多大な
ものとなる。α−オレフインの気相重合に際して
触媒粒子の流動層反応器内での滞留時間を均一に
することは、触媒粒子間での重合量分布を消失さ
せることに等しい。 重合体は、触媒粒子を該としてその周囲に生成
成長して行くことから、生成した重合体粒子の粒
子径を均一にすることへとつながる。つまり、触
媒粒子の反応器内での滞留時間を実質的に均一に
するためには、連続操作で反応器から取り出され
る重合体粒子に対し所定の滞留時間を経過せずに
取り出される粒子径の小さい粒子と所定の滞留時
間を経過した粒子径の大きい粒子とを分離し、大
きい粒子を選択的に分離し取り出すことが必要と
なる。 本発明を、この流動層反応器に適用すれば流動
層反応器内で生成した粒子を分級して取り出すこ
とにより、流動層反応器内での触媒粒子の滞留時
間を実質的に均一にし、より優れた物性を持つ重
合体粒子を製造できる。 本発明を第1図によりさらに詳しく説明する。
分級器は、流動層反応装置の下部に接続さ
れ、流動化ガスはから供給されるがから入つ
た流動化ガスが分級器を通過する際に分級器
内に滞留する粒子を分級し、分級された粒子が分
級器下部からバルブ,を操作することによ
り取り出される。なお、ガス入口は流動層をよ
り安定化するために必要とあれば使用する補助的
なものである。分級器は流動層反応装置の内
径と等しい内径か、もしくは小さい内径を有する
円筒構造である。分級は、与えられた流体の条件
(圧力、温度、組成)から計算される粒子の終末
沈降速度Vtと、下から上へと流れるガス流速U
の向流平衡分級機構を用いるものである。分級器
内のガス流速が粘性による速度分布あるいは乱れ
をもつと鋭い分級が得られなくなる。このため
に、分級器に多孔板を多段に設置することによ
り分級率を向上させたが、分級器ののぞましい
構造を示す。 1 分級器の空塔断面積は、上部の流動層空塔断
面積の1/5〜1である。 2 分級器の内径と高さの比は1:1〜1:10好
ましくは1:1〜1:3である。 3 多孔板の孔形は特に限定するものではない
が、均一な流速を得るために円形が好ましい。 4 多孔板の孔径(矩形の場合は1辺の長さ)は
特に限定するものではないが、均一な流速を得
るために2cm以下が好ましい。 5 多孔板の段数は特に限定するものではないが
2〜10段で充分である。 6 多孔板の段間隔は特に限定するものではない
が、前述2及び5から求められるものであり、
等間隔にすることが好ましい。 さらに本発明の大きな特徴は、分級を行うため
に必要なガスを流動層を流動化させるために用い
るガスと同時に用いることが可能なことであり、
これにより分級のために特にガス供給設備を設け
る必要がないことである。以下、本発明を実施例
により説明する。 実施例 1 (1) 触媒の合成 200l撹拌機付オートクレーブに、ヘキサン
45.5とTiCl411.8を装入し、この溶液を−
10〜−5℃に保ちながら、ヘキサン43.2とジ
エチルアルミニウムクロリド13.5からなる溶
液を撹拌下に3時間で滴下した。 ついで、反応混合物を15分間−10〜0℃に保
持した後に、2時間で65℃まで昇温し、更に65
℃で2時間撹拌下に保持した。次に反応混合物
は固体(還元固体と略す)を、液相から分離し
50のヘキサンで6回洗浄した後にヘキサンを
除去した。 得られた還元固体を、ヘキサン92中に懸濁
させ、これにジイソアミルエーテル19.6を添
加した。この懸濁液を35℃で1時間撹拌した
後、得られた固体(エーテル処理固体と略す)
を液相から分離し、50のヘキサンで6回洗浄
した後にヘキサンを除去した。 得られたエーテル処理固体にTiCl4の40容量
%のヘキサン溶液60を添加し、この懸濁液を
70℃で2時間撹拌した。 ついで得られた固体を液相から分離し、50
のヘキサンで10回洗浄した後にヘキサンを除去
し、乾燥を行つた。 かくして得られた固体を三塩化チタン固体触
媒()とする。 (2) α−オレフインの重合 流動層反応器の構造は、径50cm高さ300cmの直
胴部の下部に分級器を接続した第1図に示す様な
構造を持つものである。分級器の構造は、内径25
cm高さ50cmで多孔板を15cm間隔に3段設置した。
多孔板の孔径は1cmφで正三角形配列、開口比は
約50%である。 まず、反応器を真空にひいた後にプロピレンを
300mmHg(ゲージ圧)まで圧入し、−500mmHg(ゲ
ージ圧)まで減圧する操作を3回繰り返した。つ
いで、あらかじめ純粋な窒素の雰囲気中でジエチ
ルアルミニウムクロリドを少量添加して処理した
プロピレンのホモ重合体粒子80Kgを該反応器に充
てんした後、プロピレンと水素で15Kg/cm2Gまで
加圧し槽内温度をほぼ70℃に設定し、充てんした
粒子を80m3/hrの循環ガス流量で流動化させた状
態で、以下の条件で連続40時間重合を行つた。 三塩化チタン固体触媒 10g/hrの割合で供給 ジエチルアルミニウムクロリド20%ヘプタン溶
液 97.5g/hrの割合で供給 トリエチルアルミニウムクロリド20%ヘプタン
溶液 18.8g/hrの割合で供給 メチルメタアクリレート 6.5g/hrの割合で供給 水素濃度約1.5% 該反応器内の重合体粒子層のレベル制御は、流
動化ガスが、粒子層を通過する時の圧力損失値を
検出することにより行い、1時間当り30Kgの重合
体粒子を抜出した。表1には、重合開始から30時
間後の重合体粒子の粒子径分布を測定した結果を
示し。 〔比較例 1〕 分級器を取除いた実施例1で示す反応器を用
い、実施例1と全く同一の条件でプロピレンの連
続重合を行い、30時間後の重合体粒子の粒子径分
布測定結果を実施例1と同じく表−1に示した。 以上で明らかなよう完全混合である流動層反応
装置の下部に分級器を設置することにより、装置
内から取出す粒子中に含まれる微小粒子を分離し
装置内での粒子の滞留時間を実質的に均一にする
ことが可能になつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluidized bed reactor. More specifically, the present invention relates to a fluidized bed reactor having a function of classifying and extracting solid particles in a fluidized bed. Industries that use fluidized bed reactors include those that produce high-octane gasoline by contacting and decomposing petroleum fractions with a higher boiling point than kerosene with a fluidizing catalyst, and those that fluidize heavy petroleum oil. Industry to obtain gas mainly composed of olefins through catalytic cracking with heat carrier solid particles, industry to synthesize acrylonitrile by contacting propylene, ammonia and air with a fluidized catalyst, industry to reduce metal oxides in a fluidized state, α - There are many industries in which olefins are polymerized by fluidizing particles containing solid polymerization catalysts.
When these coarse particles are generated and accumulated in the fluidized bed reactor, it causes deterioration of fluidization. Methods and apparatus for separating coarse particles have been proposed in Japanese Patent Publication No. 55-9048 and Japanese Patent Application Laid-open No. 52-129680. However, these methods focus on extracting coarse particles, and have the disadvantage that the classification efficiency is low and the extracted coarse particles also contain many fine particles. Therefore, as a result of intensive consideration of separating and extracting coarse particles with a predetermined diameter, we found that a classifier is installed at the bottom of the fluidized bed, and the classifier is a cylinder with an inner diameter that is the same as or smaller than that of the fluidized bed, and that A structure with a multi-stage perforated plate and a fluidizing gas supply port below the perforated plate can classify and extract particles of a predetermined diameter from among the coarse particles that grow in the fluidized bed. They discovered this and arrived at the present invention. The present invention will be explained in detail below using a fluidized bed reactor used for gas phase polymerization of α-olefin using a Ziegler-Natsuta catalyst as an example. The mixing state in fluidized bed equipment has been significantly elucidated in recent years, and it has been found that if the density difference between fluidized particles is small, the particles are almost completely mixed regardless of the difference in particle size. It has been known. Therefore, when carrying out continuous gas phase polymerization of α-olefin using a fluidized bed reactor, a residence time distribution within the reactor occurs among catalyst particles. In general, the activity of Ziegler-Natsuta catalysts decreases with time, so the presence of a distribution in residence time means that the amount of polymerization per catalyst decreases, resulting in an increase in catalyst residue in the product, which increases thermal stability. , a serious problem arises in that weather resistance etc. are impaired. Furthermore, when polymerization consisting of a multi-step process is carried out in reactors connected in series, the resulting polymer particles will have a wide compositional distribution, resulting in a product with unfavorable physical properties. In other words, when a step of polymerization with a high molecular weight is included, it is difficult to disperse the polymer particles containing a large proportion of the polymer polymerized in the step even finely even by melt-kneading, and the polymer particles are not easily dispersed in the molded product. It remains in the form of lumps on the surface, significantly deteriorating the appearance and significantly deteriorating mechanical properties such as tensile properties and impact strength. In this case, if it were possible to make the residence time of the catalyst particles in the fluidized bed reactor substantially uniform, it would be possible to avoid such physical property problems, and there would be a huge engineering gain. Become something. In the gas phase polymerization of α-olefin, making the residence time of catalyst particles uniform in the fluidized bed reactor is equivalent to eliminating the polymerization amount distribution among the catalyst particles. Since the polymer forms and grows around the catalyst particles, the particle size of the formed polymer particles becomes uniform. In other words, in order to make the residence time of the catalyst particles substantially uniform in the reactor, it is necessary to increase the particle size of the polymer particles taken out from the reactor in continuous operation without elapse of a predetermined residence time. It is necessary to separate small particles from large particles after a predetermined residence time, and to selectively separate and take out the large particles. If the present invention is applied to this fluidized bed reactor, the particles generated in the fluidized bed reactor can be classified and taken out, thereby making the residence time of the catalyst particles in the fluidized bed reactor substantially uniform and making it more Polymer particles with excellent physical properties can be produced. The present invention will be explained in more detail with reference to FIG.
The classifier is connected to the lower part of the fluidized bed reactor, and the fluidizing gas is supplied from the classifier.When the fluidizing gas enters the classifier, it classifies the particles that stay in the classifier. The particles are removed from the bottom of the classifier by operating a valve. Note that the gas inlet is an auxiliary device that is used if necessary to further stabilize the fluidized bed. The classifier is a cylindrical structure with an inner diameter equal to or smaller than the inner diameter of the fluidized bed reactor. Classification is based on the final sedimentation velocity Vt of particles calculated from the given fluid conditions (pressure, temperature, composition) and the gas flow velocity U flowing from bottom to top.
This method uses a countercurrent equilibrium classification mechanism. If the gas flow velocity in the classifier has velocity distribution or turbulence due to viscosity, sharp classification cannot be obtained. For this purpose, the classification rate was improved by installing perforated plates in multiple stages in the classifier, but this shows a desirable structure for the classifier. 1. The cross-sectional area of the classifier is 1/5 to 1/5 of the cross-sectional area of the upper fluidized bed. 2. The ratio of the inner diameter to the height of the classifier is 1:1 to 1:10, preferably 1:1 to 1:3. 3. The hole shape of the perforated plate is not particularly limited, but a circular shape is preferred in order to obtain a uniform flow rate. 4. The hole diameter (in the case of a rectangle, the length of one side) of the perforated plate is not particularly limited, but is preferably 2 cm or less in order to obtain a uniform flow rate. 5. The number of stages of the perforated plate is not particularly limited, but 2 to 10 stages is sufficient. 6. The step spacing of the perforated plate is not particularly limited, but is determined from 2 and 5 above,
Preferably, they are spaced at equal intervals. Furthermore, a major feature of the present invention is that the gas necessary for classification can be used simultaneously with the gas used to fluidize the fluidized bed.
This eliminates the need for special gas supply equipment for classification. The present invention will be explained below with reference to Examples. Example 1 (1) Synthesis of catalyst Place hexane in a 200l autoclave with a stirrer.
45.5 and TiCl 4 11.8 and the solution was −
While maintaining the temperature at 10 to -5°C, a solution consisting of 43.2 parts of hexane and 13.5 parts of diethylaluminium chloride was added dropwise over 3 hours with stirring. The reaction mixture was then held at -10 to 0°C for 15 minutes, then heated to 65°C for 2 hours, and further heated to 65°C.
It was kept under stirring for 2 hours at °C. The reaction mixture then separates the solid (abbreviated as reduced solid) from the liquid phase.
The hexane was removed after washing six times with 50 g of hexane. The resulting reduced solid was suspended in 92% hexane and 19.6% diisoamyl ether was added thereto. After stirring this suspension at 35°C for 1 hour, the obtained solid (abbreviated as ether treated solid)
was separated from the liquid phase and the hexane was removed after washing six times with 50 g of hexane. To the resulting ether-treated solid was added a 40% by volume solution of TiCl 4 in hexane, and this suspension was
The mixture was stirred at 70°C for 2 hours. The resulting solid was then separated from the liquid phase and
After washing with hexane 10 times, the hexane was removed and drying was performed. The solid thus obtained is used as a titanium trichloride solid catalyst (2). (2) Polymerization of α-olefin The structure of the fluidized bed reactor is as shown in Figure 1, in which a classifier is connected to the lower part of a straight body with a diameter of 50 cm and a height of 300 cm. The structure of the classifier has an inner diameter of 25
Three perforated plates were installed at 15 cm intervals with a height of 50 cm.
The perforated plate has a hole diameter of 1 cmφ, an equilateral triangular arrangement, and an aperture ratio of about 50%. First, after evacuating the reactor, add propylene.
The operation of pressurizing to 300 mmHg (gauge pressure) and reducing the pressure to -500 mmHg (gauge pressure) was repeated three times. Next, 80 kg of propylene homopolymer particles, which had been treated in advance by adding a small amount of diethylaluminium chloride in a pure nitrogen atmosphere, were filled into the reactor, and the reactor was pressurized to 15 kg/cm 2 G with propylene and hydrogen. Polymerization was carried out continuously for 40 hours under the following conditions, with the temperature set at approximately 70° C. and the filled particles fluidized with a circulating gas flow rate of 80 m 3 /hr. Titanium trichloride solid catalyst Diethylaluminum chloride 20% heptane solution fed at a rate of 10g/hr Triethylaluminum chloride 20% heptane solution fed at a rate of 97.5g/hr Methyl methacrylate fed at a rate of 18.8g/hr 6.5g/hr The hydrogen concentration in the reactor is approximately 1.5%. The level of the polymer particle layer in the reactor is controlled by detecting the pressure drop when the fluidizing gas passes through the particle layer, and the hydrogen concentration is approximately 1.5% per hour. The combined particles were extracted. Table 1 shows the results of measuring the particle size distribution of polymer particles 30 hours after the start of polymerization. [Comparative Example 1] Using the reactor shown in Example 1 with the classifier removed, propylene was continuously polymerized under exactly the same conditions as in Example 1, and the results of measuring the particle size distribution of polymer particles after 30 hours were as follows: are shown in Table 1 as in Example 1. As is clear from the above, by installing a classifier at the bottom of the fluidized bed reactor, which is a complete mixing system, it is possible to separate the microparticles contained in the particles taken out from the device, thereby effectively reducing the residence time of the particles in the device. It became possible to make it uniform. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の装置の一例を示す。 1は流動層反応装置、2は分級器を示し、3は
分級器内に設けられた多孔板、4,5は流動化ガ
スの入口、6は粒子の抜出口、7,8は抜出時に
連動するバルブを示す。
FIG. 1 shows an example of the apparatus of the present invention. 1 is a fluidized bed reactor, 2 is a classifier, 3 is a perforated plate provided in the classifier, 4 and 5 are inlets for fluidizing gas, 6 is a particle extraction port, and 7 and 8 are ports at the time of extraction. Interlocking valves are shown.

Claims (1)

【特許請求の範囲】[Claims] 1 流動層反応装置において、流動層下部に分級
器を持ち、該分級器が流動層と同一かもしくは小
さい内径の円筒であり、かつ円筒内に多段の多孔
板および、その多孔板の下部に流動化ガスの供給
口を有していることを特徴とする分級器付き流動
層反応装置。
1 In a fluidized bed reactor, a classifier is provided at the bottom of the fluidized bed, the classifier is a cylinder with an inner diameter that is the same as or smaller than that of the fluidized bed, and there is a multi-stage perforated plate inside the cylinder, and a classifier is provided at the bottom of the perforated plate. 1. A fluidized bed reactor equipped with a classifier, characterized in that it has a supply port for oxidizing gas.
JP13482180A 1980-09-26 1980-09-26 Fluidized bed device with classifier Granted JPS5759633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13482180A JPS5759633A (en) 1980-09-26 1980-09-26 Fluidized bed device with classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13482180A JPS5759633A (en) 1980-09-26 1980-09-26 Fluidized bed device with classifier

Publications (2)

Publication Number Publication Date
JPS5759633A JPS5759633A (en) 1982-04-10
JPS6323822B2 true JPS6323822B2 (en) 1988-05-18

Family

ID=15137257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13482180A Granted JPS5759633A (en) 1980-09-26 1980-09-26 Fluidized bed device with classifier

Country Status (1)

Country Link
JP (1) JPS5759633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418807A (en) * 1990-05-14 1992-01-23 Fuji Sangyo Kk Crystal resonator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350071A (en) * 1976-10-19 1978-05-08 Ebara Corp Method and apparatus for discharging extraneous substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350071A (en) * 1976-10-19 1978-05-08 Ebara Corp Method and apparatus for discharging extraneous substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418807A (en) * 1990-05-14 1992-01-23 Fuji Sangyo Kk Crystal resonator

Also Published As

Publication number Publication date
JPS5759633A (en) 1982-04-10

Similar Documents

Publication Publication Date Title
EP0579426B1 (en) Polymerization process
US5382638A (en) Apparatus for gas phase polymerization of olefins in a fluidized bed reactor
JP3096310B2 (en) Method and apparatus for gas phase polymerization of α-olefin
PL193876B1 (en) Method of and apparatus for obtaining propylene homopolymers and copolymers
EP1962996A1 (en) Gas-phase process and apparatus for the polymerization of olefins
JP2002507226A (en) Polymerization method
RU2730015C1 (en) Polymerization method involving unloading polyolefin particles from a gas-phase polymerization reactor
CN1062890C (en) FCC process using reactor riser disengager with suspended catalyst separation zone
US5235009A (en) Gas phase polymerization in multi-stage fluid beds
EP0263176B1 (en) Rough cut solids separator
US2762692A (en) Apparatus for solid-liquid contacting
US3776979A (en) Olefin block copolymer fluidized-bed polymerization process
JP2004537617A (en) Optimization of heat removal in gas-phase fluidized-bed process
US2658822A (en) Fluidized solids system
EP3976670A1 (en) Suspension process for preparing ethylene polymers comprising work-up of the suspension medium
US2506221A (en) Catalytic synthesis of hydrocarbons
EP2174706A1 (en) Apparatus and process for gas phase fluidised bed polymerisation
IL31470A (en) Process and apparatus for the polymerization of olefins
JPS6323822B2 (en)
US2474845A (en) Process for synthesizing hydrocarbons
JPH08253517A (en) Polymerizing method for olefin in vapor phase
EP0101907B1 (en) Countercurrent washing tower and countercurrent washing method using same
US5028669A (en) Installation and process for the gas-phase polymerization of olefins in a fluidized-bed reactor with the introduction of an organometallic compound
EP2528953B1 (en) Process for the gas phase polymerisation of olefins
WO2000042077A1 (en) Method for transferring polymer into a gas phase reactor