JPS63238207A - Method for pretreating molten iron - Google Patents

Method for pretreating molten iron

Info

Publication number
JPS63238207A
JPS63238207A JP7155487A JP7155487A JPS63238207A JP S63238207 A JPS63238207 A JP S63238207A JP 7155487 A JP7155487 A JP 7155487A JP 7155487 A JP7155487 A JP 7155487A JP S63238207 A JPS63238207 A JP S63238207A
Authority
JP
Japan
Prior art keywords
hot metal
slag
lance
molten iron
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7155487A
Other languages
Japanese (ja)
Inventor
Ryoji Tsujino
良二 辻野
Masazumi Hirai
平居 正純
Fumihiro Sato
佐藤 文廣
Kazuyuki Morii
森井 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7155487A priority Critical patent/JPS63238207A/en
Publication of JPS63238207A publication Critical patent/JPS63238207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To improve efficiency of dephosphorizing reaction for low P or low P and extremely low S iron by providing desiliconizing and successive slag-off operating stage and slag-off operating after dephosphorizing stage at the time of treating by blowing powdery material by gas into molten iron in a casting floor trough. CONSTITUTION:At a first stage, the powdery desiliconizing agent is blown into the molten iron by the carrier gas through a lance nozzle, set above the molten iron or submerged into the molten iron in the molten iron trough on the casting bed of a blast furnace to mainly execute the desiliconization and at the same time, execute the slag-off operation. Next, at a second stage, the powdery dephosphorizing agent is blown by the carrier gas through the same lance nozzle as the above and after mainly executing the dephosphorization, bubbling is executed from the lance nozzle submerged at the floating position of slag and successively the slag-off operation is executed. Then, after that, as a third stage, the powdery desulfurizing agent is added on the molten iron surface by natural dropping, to execute the desulfurization or the desulfurization may be executed by stirring at the time of dropping the molten iron from the molten iron trough to tilting trough and further to torpedo-car, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、転炉精錬用の溶銑を、脱Si、脱P、脱S等
の予備処理を行なう方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for pre-treating hot metal for converter refining, such as removing Si, removing P, and removing S.

従来の技術 従来、鋳床樋にて溶銑上に設置された、又は溶銑中に浸
漬して設置されたランスノズルからキャリアガスと共に
粉体をインジェクションし、溶銑予備処理を行なう方法
については、特開昭57−200510号公報、特開昭
58−130208号公報等多数の開示例がある。
Conventional technology A method for pre-treating hot metal by injecting powder together with a carrier gas from a lance nozzle placed above hot metal in a casting bed trough or immersed in hot metal is disclosed in Japanese Patent Application Laid-Open No. There are many disclosed examples, such as Publication No. 57-200510 and Japanese Unexamined Patent Publication No. 130208-1984.

上記従来方法による脱Si処理及び脱P処理において、
各々の反応効率はトピードカー等の容器で行うバッチ処
理等に比べ、反応効率は高いものの、未反応の酸化鉄が
スラグ中に相当量残留し、さらに反応効率を改善する余
地が残されていた。
In the Si removal treatment and P removal treatment by the above conventional method,
Although each reaction efficiency was higher than batch processing performed in a container such as a torpedo car, a considerable amount of unreacted iron oxide remained in the slag, leaving room for further improvement in reaction efficiency.

発明が解決しようとする問題点 鋳床溶銑樋での粉体吹込による脱Si処理、脱P処理の
場合、反応効率を改善する余地が残されている理由とし
ては、粉体が溶銑中に吹込まれてから浮上するまでは攪
拌力も強く反応は進行するものの、浮上後はほとんど攪
拌されないため反応は進行せず、したがって反応時間と
しては非常に短く、実際、未反応の酸化鉄がスラグ中に
残留し、一般的にスラグ中の%(FelO)が高い。
Problems to be Solved by the Invention In the case of Si-removal treatment and P-removal treatment by injecting powder into the cast-bed hot metal trough, there is still room for improvement in reaction efficiency. Although the stirring force is strong and the reaction progresses from the time the slag floats until it floats, the reaction does not proceed because there is almost no stirring after floating, and therefore the reaction time is very short, and in fact, unreacted iron oxide remains in the slag. However, the percentage (FelO) in the slag is generally high.

問題点を解決するための手段 本発明は、低燐銑又は低燐、極低硫銑を鋳床で製造する
場合の脱P反応効率を向上させ、安価に製造できるプロ
セスを提供せんとするものであり、その要旨とするとこ
ろは、 (1)高炉鋳床の溶銑樋において溶銑上に設置された、
又は溶銑中に浸漬して設置された。1個又は複数個のラ
ンスノズルを通じて脱Si剤の粉体をキャリアガスにて
溶銑中に吹込んで主として脱SiL同時に排滓する第一
工程と高炉鋳床の溶銑樋において溶銑上に設置された、
又は溶銑中に浸漬して設置された。1個又は複数個のラ
ンスノズルを通じて脱P剤の粉体をキャリアガスにて溶
銑中に吹込んで主として脱Pした後、スラグが浮上する
位置に浸漬させたランスノズルからガスを吹込んでバブ
リングを行ない、ついで排滓する第二工程からなること
を特徴とする溶銑予備処理法、および(2)高炉鋳床の
溶銑樋において溶銑上に設置された、又は溶銑中に浸漬
して設置された。1個又は複数個のランスノズルを通じ
て脱Si剤の粉体をキャリアガスにて溶銑中に吹込んで
主として脱Siシ同時に排滓する第一工程と、高炉鋳床
の溶銑樋において溶銑上に設置された。又は溶銑中に浸
漬して設置された、1個又は複数個のランスノズルを通
じて脱P剤の粉体をキャリアガスにて溶銑中に吹込んで
主として脱Pした後、スラグが浮上する位置又は浮上後
の位置に浸漬させたランスノズルからガスを吹込んでバ
ブリングを行ない、ついで排滓する第二工程と、高炉鋳
床の溶銑樋の傾注樋前にて脱S剤の粉体を自然落下によ
り溶鉄面上に添加し、溶銑樋から傾注樋さらにトピード
カー又は溶銑鍋へ落下する時の攪拌によって脱Sし、生
成した脱Sスラグは溶銑の放熱防止のためトピードカー
又は溶銑鍋の溶銑面を覆ったまま転炉前まで送られ、そ
の後排出される第三工程からなることを特徴とする溶銑
予備処理法、および(3)1個のランスノズルから吹込
む処理剤の上限量を25kg/tと定め、それ以上の吹
込量に対しては、複数個のランスを用いて各々のランス
間隔を1.0m以上離して吹込むことを特徴とする前記
(1)、(2)の溶銑予備処理法である。
Means for Solving the Problems The present invention aims to improve the dephosphorization reaction efficiency when producing low phosphorus pig iron or low phosphorus or extremely low sulfur pig iron in a cast bed, and to provide a process that can be produced at low cost. The gist is as follows: (1) The hot metal gutter installed above the hot metal in the blast furnace casthouse.
Or installed immersed in hot metal. The first step is to blow the powder of the Si-removal agent into the hot metal using a carrier gas through one or more lance nozzles to remove SiL and simultaneously discharge the slag.
Or installed immersed in hot metal. Powder of the dephosphorizing agent is blown into the hot metal using a carrier gas through one or more lance nozzles to mainly remove phosphor, and then gas is blown through the lance nozzle immersed in the position where the slag floats to perform bubbling. , followed by a second step of discharging the slag, and (2) the hot metal trough of the blast furnace casthouse is installed above the hot metal or is installed immersed in the hot metal. The first step is to blow the powder of the desiliconizing agent into the hot metal using a carrier gas through one or more lance nozzles to mainly remove the Si and simultaneously discharge the slag. Ta. Or the position where the slag floats or after the slag floats after mainly dephosphorizing by blowing the powder of the dephosphorizing agent into the hot metal with a carrier gas through one or more lance nozzles that are immersed in the hot metal. The second step involves bubbling gas by blowing it through a lance nozzle immersed in the position of The slag is added to the top of the hot metal and is removed by stirring as it falls from the pouring gutter to the torpedo car or hot metal ladle.The generated desulfurized slag is rolled while covering the surface of the hot metal in the torpedo car or hot metal ladle to prevent heat radiation of the hot metal. A hot metal pretreatment method characterized by comprising a third step in which the hot metal is sent to the front of the furnace and then discharged, and (3) the upper limit amount of the treatment agent injected from one lance nozzle is set at 25 kg/t, and For the above blowing amount, the hot metal pretreatment method described in (1) and (2) above is characterized in that a plurality of lances are used and the lances are blown at intervals of 1.0 m or more.

作用 以下本発明の詳細な説明する。action The present invention will be explained in detail below.

本発明者らは、鋳床樋での粉体吹込による脱Si処理、
脱P処理の試験を鋭意推進した結果、脱Sr処理、脱P
処理とし、未反応の酸化鉄がスラグ中に105以上の(
Fete)として残留しており、しかも樋長さ方向にて
溶銑試料を採取し、[Sil又は[P]の推移をみても
粉体の吹込位置から約1m以上ではあまり変化がないこ
とがわかった。
The present inventors performed a Si removal process by blowing powder in a cast bed gutter,
As a result of earnestly promoting tests on P removal treatment, we have achieved Sr removal treatment and P removal treatment.
treatment, unreacted iron oxide is present in the slag with a concentration of 105 or more (
Furthermore, hot metal samples were collected along the length of the gutter, and when looking at the changes in [Sil or P], it was found that there was no significant change over approximately 1 m from the powder injection position. .

したがって反応効率を上げる方法として、粉体を溶銑中
に極力深く吹込み、浮上中の反応時間を長くすること、
粉体の粒径を気泡から脱出できる範囲で極力小さくシ1
反反応面積を上げること、粉体の凝集合体を防止するよ
うランス羽口間隔を離す、あるいはランス羽口1個当り
の吹込粉体量を制限すること等の対策と同時に、浮上後
スラグの再利用を図ることが重要であることがわかった
Therefore, one way to increase the reaction efficiency is to inject the powder into the hot metal as deeply as possible and lengthen the reaction time during floating.
The particle size of the powder is made as small as possible within the range that allows it to escape from the air bubbles.
At the same time as measures such as increasing the reaction area, increasing the distance between lance tuyeres to prevent powder agglomeration, or limiting the amount of powder blown per lance tuyere, it is possible to regenerate slag after floating. We learned that it is important to make use of it.

そこで、本発明者らはスラグの浮上後の位置において、
ランスノズルを浸漬し、ガスによるバブリングを行なっ
たところ、脱Si処理後では脱Si反応効率は向上する
が、復Pすることによって本来脱Siと同時にかなり起
こる脱Pがみられなくなること、脱P処理後では脱P反
応効率を向上させることがわかった。
Therefore, the present inventors determined that the position of the slag after it floated was
When the lance nozzle was immersed and gas was bubbled, it was found that the efficiency of the Si removal reaction improved after the Si removal treatment, but that the dephosphorization that normally occurs at the same time as the dephosphorization was not observed, and that It was found that the dephosphorization reaction efficiency was improved after the treatment.

図面に脱P処理時のスラグメタルP分配値に及ぼすガス
バブリングの影響を示す、ガスバブリンクによりスラグ
メタルP分配値が向−Hし、脱P反応がより進行してい
ることがわかる。
The figure shows the influence of gas bubbling on the slag metal P distribution value during the dephosphorization process. It can be seen that the gas bubbling link causes the slag metal P distribution value to move in the direction of -H, indicating that the dephosphorization reaction is progressing more.

すなわち低燐溶銑をつくる上で、脱Si処理後のバブリ
ングは不適当であり、脱P処理掻のバブリングは効果が
あるという重要な知見が明らかとなった。
In other words, important findings have been made that bubbling after the Si-removal treatment is inappropriate for producing low-phosphorus hot metal, and bubbling during the P-removal treatment is effective.

本発明者らの実験で脱Si処理時にかなりの脱Pが同時
に起こることがわかったが、脱Si処理後のバブリング
により脱Pがみられなくなる理由としては、高酸素ポテ
ンシャル又は何らかの脱P促進反応で起こった脱Pが(
1)、(2)式のように生成したP?への還元反応によ
って溶銑中に復Pするためと考えられる。
The inventors' experiments have shown that a considerable amount of P removal occurs simultaneously during the Si removal process, but the reason why no P removal is observed due to bubbling after the Si removal process is due to a high oxygen potential or some kind of deP promotion reaction. The withdrawal from P that occurred in (
P? generated as in equations 1) and (2)? This is thought to be because P is returned to the hot metal by the reduction reaction to .

2P2へ+59i  → 5SiO2+4P  ・・・
(1)P20g+5C→   5GO+2P     
 ・ 拳 ・ (2)脱P処理時に(1)、(2)式の
ような復P反応が起こらず、ざらに脱P反応が進む理由
としては、脱Si処理時に比べ溶銑中のSiが比較的少
ないこと、又生成したスラグの塩基度が比較的高いため
と考えられる。
+59i to 2P2 → 5SiO2+4P...
(1) P20g+5C→ 5GO+2P
・ Fist ・ (2) The reason why the dephosphorization reaction does not occur as shown in equations (1) and (2) during the dephosphorization process and the dephosphorization reaction progresses more or less is that the Si in the hot metal is lower than during the desiliconization process. This is thought to be due to the fact that there are few targets and the basicity of the generated slag is relatively high.

なお脱P処理後のバブリングは、溶銑中に深く浸漬した
ランスノズルから、はぼ0.5〜5 (Nrn”/t)
で吹込むのが良く、あまりガス量が多いと溶銑樋内での
溶銑の揺動が激しく、飛散するし、又ガス量が少ないと
反応促進効果が低下する。なおガスの種類としてはAr
、N2等の不活性ガスの他、空気、酸素等いずれでもよ
い。
The bubbling after deP treatment is approximately 0.5 to 5 (Nrn"/t) from the lance nozzle deeply immersed in the hot metal.
If the amount of gas is too large, the hot metal will shake violently in the hot metal gutter and scatter, and if the amount of gas is too small, the reaction promotion effect will be reduced. The type of gas is Ar.
In addition to inert gases such as , N2, air, oxygen, etc. may be used.

また、脱P処理後のスラグメタルの攪拌方法として、上
記ガスバブリングが最も容易であるが。
Furthermore, as a method of stirring the slag metal after deP treatment, the above-mentioned gas bubbling is the easiest method.

羽根車等による機械攪拌でも同様な反応促進効果がある
Mechanical stirring using an impeller or the like has a similar reaction promoting effect.

なお以上の方法により低燐溶銑が容易にできるが、低燐
、極低硫溶銑をつくる場合、高炉鋳床の溶銑樋の傾注樋
前にて脱S剤の粉体を自然落下により溶銑面上に添加し
、溶銑樋から傾注樋さらにトピードカー又は溶銑鍋へ落
下する時の攪拌によって脱Sし、生成した脱Sスラグは
溶銑の放熱防止のためトピードカー又は溶銑鍋の溶銑面
を覆ったまま、転炉前まで送られ、その後排出される工
程を脱Si工程、さらに脱P工程の後に行なうことによ
って容易に可能である。
Although low-phosphorus hot metal can be easily produced by the above method, when producing low-phosphorus and extremely low-sulfur hot metal, powder of the desulfurization agent is allowed to fall naturally onto the surface of the hot metal in front of the tilting gutter of the hot metal gutter in the blast furnace casthouse. The de-S slag is added to the molten pig iron, and is removed by stirring as it falls from the pouring culvert to the torpedo car or hot metal ladle. This is easily possible by carrying out the step of sending the material to the front of the furnace and then discharging it after the Si removal step and further the P removal step.

又木発明者らが特願昭Elf−212802にて開示し
たように、鋳床樋での粉体吹込による溶銑予備処理の場
合1反応効率を上げるためには、1個のランスノズルか
ら吹込む処理剤の上限量を25kg/tと定め、それを
越える吹込量に対しては、複数個のランスを用いて各々
のランス間隔を1.0m以上離して吹込むことが重要で
あり、この技術を本発明に取り入れることによって、効
果がさらに大きくなる。
As disclosed by the inventors of Mataki in Japanese Patent Application Sho Elf-212802, in the case of pre-treatment of hot metal by blowing powder in the cast bed gutter, in order to increase the reaction efficiency, it is necessary to blow from one lance nozzle. The upper limit of the treatment agent amount is set at 25 kg/t, and for blowing amounts exceeding that, it is important to use multiple lances and keep each lance spaced at least 1.0 m apart. By incorporating this into the present invention, the effect becomes even greater.

実施例 以下本発明を実施例に基づき説明する。Example The present invention will be explained below based on examples.

第1表に示す比較例1は、鋳床樋での溶銑面上からの粉
体吹付による脱Si、脱P(脱S)処理の結果であり、
脱Si剤原単位30(kg/t)、脱P剤原単位40(
kg/t)で、出銑[P]が0.100%から処理後[
P] 0.025%に脱Pされているが、低燐銑([P
]≦o、oto%)は得られていない。
Comparative Example 1 shown in Table 1 is the result of deSi and deP (deS) treatment by powder spraying from the surface of hot metal in the cast bed gutter,
Desiliconizing agent basic unit: 30 (kg/t), P dephosphorizing agent basic unit: 40 (kg/t)
kg/t), tap iron [P] is from 0.100% to after treatment [
P] It has been dephosphorized to 0.025%, but low phosphorus pig iron ([P
]≦o, oto%) was not obtained.

一方、第2表に示す実施例は、脱Si処理、脱P処理と
も鋳床溶銑樋において、溶銑内に粉体吹込して処理し、
同時に排滓した後、!8床溶銑樋の傾注樋前にて脱S剤
を溶銑上方から自然落下によって添加し、傾注樋さらに
トピードカー等の容器への落下時の攪拌混合によって脱
S反応を促進させ、スラグは転炉前にて排滓した場合で
あり、特に脱P処理後溶銑内に浸漬させたランスノズル
からArバブリング(約INm″/1)を行なった例で
ある。比較例1と同様な出銑成分のものが同じ脱Si剤
原単位、脱P剤原単位で、脱P処理後の[P]は0.0
07%と明らかに比較例1のバブリングを行なわなかっ
た場・合に比べ、脱P効率は高くなっており、低燐銑が
得られていることがわかる。ざらに脱P処理後の脱S処
理により、極低硫の[S]0.007%の溶銑になって
いることがわかる。
On the other hand, in the examples shown in Table 2, both the Si-removal treatment and the P-removal treatment were performed by injecting powder into the hot metal in the cast bed hot metal trough.
After removing the slag at the same time! The desulfurization agent is added by gravity from above the hot metal in front of the tilting gutter of the 8-bed hot metal gutter, and the desulfurization reaction is promoted by stirring and mixing when the hot metal falls into the tilting gutter and then into a container such as a torpedo car. In particular, this is an example in which Ar bubbling (approximately INm''/1) was performed from a lance nozzle immersed in hot metal after deP treatment.The same tapping components as in Comparative Example 1 are the same de-Si agent unit and de-P agent unit, and [P] after de-P treatment is 0.0
It can be seen that the P removal efficiency is clearly higher than that of Comparative Example 1 in which bubbling was not performed, which was 0.7%, and that low phosphorus pig iron was obtained. It can be seen that the sulfur removal treatment after the rough deP treatment resulted in hot metal with an extremely low sulfur content of 0.007% [S].

また第3表に示す比較例2は、比較例1と同様の方法で
あるが、異なっている点は脱Si処理後、脱P処理後に
、ともにArバブリング(1,5Nm”/t)を行なっ
ており、この場合脱P処理時の反応効率は実施例と同様
高いものの、脱Si処理時の脱Pがないことによって脱
P処理前の[P]が高く、結果的に脱P処理後の[P]
は、比較例1、実施例と同じフラックス原単位で0.0
30%で低燐溶銑とはなっていない。
Comparative Example 2 shown in Table 3 uses the same method as Comparative Example 1, but the difference is that Ar bubbling (1.5 Nm''/t) was performed after the Si removal treatment and the P removal treatment. In this case, although the reaction efficiency during the P removal process is high as in the example, the [P] before the P removal process is high due to the lack of P removal during the Si removal process, and as a result, the [P] after the P removal process is high. [P]
is 0.0 at the same flux consumption rate as Comparative Example 1 and Example.
At 30%, it is not low phosphorus hot metal.

なお上記比較例、実施例の粉体吹込については、いずれ
もランスノズル1個あたりの処理材の吹込量は25kg
/を未満であり、又、ランス羽口の間隔は 1.0m以
上離した条件で行なった。
Regarding powder injection in the above comparative examples and examples, the amount of treated material blown per lance nozzle was 25 kg.
The testing was conducted under the conditions that the lance tuyeres were spaced at least 1.0 m apart.

(以下余白) 発明の効果 本発明により、安価で効率のよい鋳床溶銑予備処理が可
能となった。
(Hereinafter in the margin) Effects of the Invention The present invention has made it possible to pre-treat casthouse hot metal at low cost and with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、スラグメタルP分配値とスラグの塩基度との関
係を示す図である。
The drawing is a diagram showing the relationship between the slag metal P distribution value and the basicity of slag.

Claims (4)

【特許請求の範囲】[Claims] (1)高炉鋳床の溶銑樋において溶銑上に設置された、
又は溶銑中に浸漬して設置された、1個又は複数個のラ
ンスノズルを通じて、脱Si剤の粉体をキャリアガスに
て溶銑中に吹込んで脱Siし、引続き排滓する第一工程
と、高炉鋳床の溶銑樋において溶銑上に設置された、又
は溶銑中に浸漬して設置された、1個又は複数個のラン
スノズルを通じて脱P剤の粉体をキャリアガスにて溶銑
中に吹込んで脱Pした後、スラグが浮上する位置又は浮
上後の設置に浸漬させたランスノズルからガスを吹込ん
でバブリングを行ない、ついで排滓する第二工程からな
ることを特徴とする溶銑予備処理法。
(1) Installed above the hot metal in the hot metal gutter of the blast furnace casthouse,
or a first step of blowing powder of a desiliconizing agent into the hot metal with a carrier gas to remove the Si through one or more lance nozzles installed immersed in the hot metal, and subsequently removing the slag; Powder of the dephosphorizing agent is blown into the hot metal using a carrier gas through one or more lance nozzles installed above the hot metal or immersed in the hot metal in the hot metal trough of the blast furnace casthouse. A hot metal pretreatment method characterized by comprising a second step of bubbling gas by blowing gas from a lance nozzle immersed at a position where the slag floats or after it floats after dephosphorization, and then discharging the slag.
(2)高炉鋳床の溶銑樋において溶銑上に設置された、
又は溶銑中に浸漬して設置された、1個又は複数個のラ
ンスノズルを通じて、脱Si剤の粉体をキャリアガスに
て溶銑中に吹込んで脱Siし、引続き排滓する第一工程
と、高炉鋳床の溶銑樋において溶銑上に設置された、又
は溶銑中に浸漬して設置された、1個又は複数個のラン
スノズルを通じて脱P剤の粉体をキャリアガスにて溶銑
中に吹込んで脱Pした後、スラグが浮上する位置又は浮
上後の位置に浸漬させたランスノズルからガスを吹込ん
でバブリングを行ない、ついで排滓する第二工程と、高
炉鋳床の溶銑樋の傾注樋前にて脱S剤の粉体を自然落下
により溶銑面上に添加し、溶銑樋から傾注樋さらにトピ
ードカー又は溶銑鍋へ落下する時の攪拌によって脱Sし
、生成した脱Sスラグは溶銑の放熱防止のためトピード
カー又は溶銑鍋の溶銑面を覆ったまま転炉前まで送られ
、その後排出される第三工程からなることを特徴とする
溶銑予備処理法。
(2) Installed above the hot metal in the hot metal gutter of the blast furnace casthouse,
or a first step of blowing powder of a desiliconizing agent into the hot metal with a carrier gas to remove the Si through one or more lance nozzles installed immersed in the hot metal, and subsequently removing the slag; Powder of the dephosphorizing agent is blown into the hot metal using a carrier gas through one or more lance nozzles installed above the hot metal or immersed in the hot metal in the hot metal trough of the blast furnace casthouse. After dephosphorizing, the second process involves bubbling gas by blowing gas through a lance nozzle immersed in the position where the slag floats or the position after floating, and then discharging the slag, and before the tilting gutter of the hot metal gutter in the blast furnace casthouse. The powder of the desulfurization agent is added onto the surface of the hot metal by gravity, and the desulfurization agent is removed by stirring as it falls from the hot metal gutter to the tilting gutter and then to the torpedo car or hot metal ladle. A hot metal pretreatment method comprising a third step in which the hot metal is sent to the front of the converter with the surface of the hot metal covered in a torpedo car or hot metal ladle, and then discharged.
(3)1個のランスノズルから吹込む処理剤の上限量を
25kg/tと定め、それを越える吹込量の場合には、
複数個のランスを用いて各々のランス間隔を1.0m以
上離して吹込むことを特徴とする特許請求の範囲第1項
記載の溶銑予備処理法。
(3) The upper limit of the amount of processing agent blown from one lance nozzle is set at 25 kg/t, and if the amount blown exceeds that,
2. The hot metal pretreatment method according to claim 1, wherein the blowing is carried out using a plurality of lances with a spacing of 1.0 m or more between each lance.
(4)1個のランスノズルから吹込む処理剤の上限量を
25kg/tと定め、それを越える吹込量の場合には、
複数個のランスを用いて各々のランス間隔を1.0m以
上離して吹込むことを特徴とする特許請求の範囲第3項
記載の溶銑予備処理法。
(4) The upper limit of the amount of processing agent blown from one lance nozzle is set at 25 kg/t, and if the amount blown exceeds that,
4. The hot metal pretreatment method according to claim 3, characterized in that the blowing is carried out using a plurality of lances with the intervals between each lance being 1.0 m or more.
JP7155487A 1987-03-27 1987-03-27 Method for pretreating molten iron Pending JPS63238207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7155487A JPS63238207A (en) 1987-03-27 1987-03-27 Method for pretreating molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7155487A JPS63238207A (en) 1987-03-27 1987-03-27 Method for pretreating molten iron

Publications (1)

Publication Number Publication Date
JPS63238207A true JPS63238207A (en) 1988-10-04

Family

ID=13464064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7155487A Pending JPS63238207A (en) 1987-03-27 1987-03-27 Method for pretreating molten iron

Country Status (1)

Country Link
JP (1) JPS63238207A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035408A (en) * 1983-08-05 1985-02-23 ニチコン株式会社 Electrically insulating oil
JPS60208408A (en) * 1984-03-30 1985-10-21 Kawasaki Steel Corp Method and device for continuous treatment of molten iron
JPS61149416A (en) * 1984-12-24 1986-07-08 Sumitomo Metal Ind Ltd Pretreatment of molten pig iron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035408A (en) * 1983-08-05 1985-02-23 ニチコン株式会社 Electrically insulating oil
JPS60208408A (en) * 1984-03-30 1985-10-21 Kawasaki Steel Corp Method and device for continuous treatment of molten iron
JPS61149416A (en) * 1984-12-24 1986-07-08 Sumitomo Metal Ind Ltd Pretreatment of molten pig iron

Similar Documents

Publication Publication Date Title
JP2007224388A (en) Method for treating molten iron
JP6024192B2 (en) Method for preventing hot metal after desulphurization
JP2015042780A (en) Dephosphorization treatment method for molten iron in converter
KR100749022B1 (en) Method for desulfurization of hot metal
JP3750589B2 (en) Decarburization furnace slag manufacturing method and steel making method
JP2001288507A (en) Method for producing low phosphorus molten iron
JPS63238207A (en) Method for pretreating molten iron
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2002047509A (en) Method for refining molten iron
JP3339982B2 (en) Converter steelmaking method
JP6416634B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP4423927B2 (en) Hot metal dephosphorization method
JPH05156338A (en) Method for reusing low phosphorus converter slag
JP3736229B2 (en) Hot metal processing method
JP2671063B2 (en) Slag forming prevention method
JPS62196314A (en) Operating method for converter
JPH0826382B2 (en) Hot metal pretreatment method
JP3709141B2 (en) Sloping suppression method in hot metal pretreatment
JPH11269525A (en) Desiliconization of molten iron by addition of desiliconizing agent
JPS63238208A (en) Method for pretreating molten iron at casting floor
JPS63238209A (en) Method for pretreating molten iron
JP2000282123A (en) Method for desiliconizing molten iron
JP3784227B2 (en) Hot metal desulfurization method
JPH1150121A (en) Restraining of slag foaming
JP2004143544A (en) Desulfurization method for hot-metal