JPS63237821A - Diamond tool and manufacture thereof - Google Patents

Diamond tool and manufacture thereof

Info

Publication number
JPS63237821A
JPS63237821A JP7554487A JP7554487A JPS63237821A JP S63237821 A JPS63237821 A JP S63237821A JP 7554487 A JP7554487 A JP 7554487A JP 7554487 A JP7554487 A JP 7554487A JP S63237821 A JPS63237821 A JP S63237821A
Authority
JP
Japan
Prior art keywords
cutting edge
ions
diamond
atmospheric pressure
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7554487A
Other languages
Japanese (ja)
Other versions
JPH0450136B2 (en
Inventor
Naoya Igawa
井川 直哉
Shoichi Shimada
尚一 島田
Hirotoshi Yoshinaga
吉永 博俊
Eiji Kamijo
上條 榮治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Diamond Industrial Co Ltd
Nissin Electric Co Ltd
Original Assignee
Osaka Diamond Industrial Co Ltd
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Diamond Industrial Co Ltd, Nissin Electric Co Ltd filed Critical Osaka Diamond Industrial Co Ltd
Priority to JP7554487A priority Critical patent/JPS63237821A/en
Publication of JPS63237821A publication Critical patent/JPS63237821A/en
Publication of JPH0450136B2 publication Critical patent/JPH0450136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To smooth a cutting edge and satisfy a sharpened cutting quality and a stable cutting edge by irradiating ions to a tool material after the formation of a cutting edge thereon via machining and exposure to heat treatment at 500-630k in the atmospheric pressure or 500-1,500k in vacuum. CONSTITUTION:Ions accelerated at a high speed are irradiated on the surface of a diamond, thereby dispelling carbon atoms within crystal structure near the surface and increasing the number of holes. In this case, the ions of relatively small atomic radius are utilized, including hydrogen, helium, neon, argon and carbon ions. And as irradiation conditions, it is suitable to take an acceleration voltage at 1-10,000kV, and an irradiation quantity at 10<13>-10<19>/cm<2>. Then, the diamond surface is smoothed by heat treatment. In this case, the heating condition of 500-630k under the atmospheric pressure and 500-1,500k in vacuum enables obtaining a good quality and sharp cutting edge and high stability allowing the maintenance of such a cutting edge for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ダイヤモンド単結晶を用いたダイヤモンド
工具とその製造方法に関し、詳しくは刃先の原子レベル
の平滑化を実現したダイヤモンド工具及びその製造方法
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a diamond tool using a diamond single crystal and a method for manufacturing the same, and more specifically, a diamond tool that achieves atomic level smoothness of the cutting edge and a method for manufacturing the same. It is related to.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来のダイヤモンド工具における刃先の形成・仕上げは
研摩の研ぎ出しによっている。しかしこの方法では、す
くい面や逃げ面などの面の研摩は比較的容易Kできるが
、面と面で構成される切刃稜を精度良く仕上げることは
困難であった。即ち、切刃稜はほぼ数10から100程
度の原子で構成される幅でしかないため、研摩粉として
用いるダイヤモンド粉末が如何に粒度の細かい高精度の
ものであったとしても、切刃稜を均一で平滑に仕上げる
のは、事実上不可能である。このため、仕上げられた刃
先を原子レベルで見た場合、第1図に示すようK、突出
した原子や内部に入り込んだクランクにより激しい凹凸
状態を呈している。
The cutting edge of conventional diamond tools is formed and finished by polishing. However, with this method, surfaces such as the rake face and flank surface can be polished relatively easily, but it is difficult to finish the cutting edge, which is composed of two surfaces, with high precision. In other words, the width of the cutting edge is only made up of approximately several tens to 100 atoms, so no matter how fine and precise the diamond powder used as the abrasive powder is, it is difficult to cut the cutting edge. It is virtually impossible to achieve a uniform and smooth finish. For this reason, when the finished cutting edge is viewed at the atomic level, it exhibits severe unevenness due to K, protruding atoms, and cranks that have entered the interior, as shown in FIG.

このような刃先の凹凸は、突出原子の脱落やクランク等
から亀裂が工具の内部に向けて進行して、加工中の思い
がけない破損やチフビングをうむ要因になる。即ち、切
削中過大な負荷が生じたとは考えられない切削条件下に
おいて、工具切刃が突発欠損する事故原因の一つは刃先
の形状によるものと考えられ、安定した精密切削の実現
を阻害する要因となっている。
Such unevenness on the cutting edge causes cracks to propagate toward the inside of the tool from the falling off of protruding atoms and cranks, etc., resulting in unexpected breakage and chipping during machining. In other words, it is thought that one of the causes of accidental breakage of the tool cutting edge is due to the shape of the cutting edge under cutting conditions where it is not considered that an excessive load has occurred during cutting, which hinders the realization of stable precision cutting. This is a contributing factor.

〔発明の目的〕[Purpose of the invention]

この発明は、上記の問題点に漏みてなされたもので、刃
先の原子レベルでの平滑化を達成して、超精密切削工具
に要求される鋭い切れ味と、刃先の安定性を満足させた
ダイヤモンド工具とその製造方法を提供することを目的
としている。
This invention was made to address the above-mentioned problems, and it is a diamond that has smoothed the cutting edge at the atomic level and satisfies the sharpness and stability of the cutting edge required for ultra-precision cutting tools. The purpose is to provide tools and methods of manufacturing them.

〔目的を達成するための手段〕[Means to achieve the purpose]

上記の目的を達成するための本発明のダイヤモンド工具
は、機械加工により刃先を形成後、工具材にイオンを照
射し、その後、少なくとも上記刃先を大気圧中で500
〜630K、又は真空中で500〜1.500 Kで熱
処理して成る。またその製造方法は、機械加工により刃
先を形成した後、工具材にイオンを照射し、その後、そ
の少なくとも刃先を大気圧中で500〜630K、又は
、真空中で500〜1.500 Kで熱処理することを
特徴とする。
In the diamond tool of the present invention for achieving the above object, after forming a cutting edge by machining, the tool material is irradiated with ions, and then at least the cutting edge is heated for 500 minutes at atmospheric pressure.
~630K, or heat treated at 500~1.500K in vacuum. In addition, the manufacturing method includes forming a cutting edge by machining, irradiating the tool material with ions, and then heat-treating at least the cutting edge at 500 to 630 K in atmospheric pressure or 500 to 1.500 K in vacuum. It is characterized by

以下、その内容を詳述する。The details are detailed below.

固体を加熱すると、その固体を構成している原子の熱振
動が増大し、ある活性化エネルギ以上のエネルギを持つ
に至った原子は、原子間に介在する空孔等分して移動す
ることができる。(所謂原子の拡散現象が生じる。) 上記の原子の移動を規制する活性化エネルギの大きさは
、原子の界面部においては、その界面部に作用する表面
張力に影響される。
When a solid is heated, the thermal vibrations of the atoms that make up the solid increase, and atoms that have more than a certain activation energy are able to move by dividing the vacancies between them into equal parts. can. (The so-called atomic diffusion phenomenon occurs.) The magnitude of the activation energy that regulates the movement of the atoms described above is influenced by the surface tension acting on the atomic interface at the interface.

すなわち、第1図において1を半円形のクランクとした
場合、そのクラックの先端部にある原子には、表面張力
により外部空間に向かう力が作用し、クラック側から外
部空間側への移動に対する活性化エネルギの大きさを小
さくする。このため、クランクの先端部においては、原
子がクランク界面から外部空間に向かって張り出す頻度
が相対的に高くなると共K、先端部近傍での空孔濃度が
高くなり、先端部分は第3図のa部分に示すごとく移動
してくる原子により埋められて、クラック長さが小さく
なっていく。(これはクランク・ヒーリング現象と称さ
れている。) 一方、刃先表面から外側に突出した原子には、上記のク
ラブク先端部とは逆の表面張力が作用し、表面から内側
に向かう力が作用する。このため、表面から内側への移
動に対する活性化エネルギの大きさが低下し、原子の刃
先内側に移動する頻度は、刃先の外側に向かう頻度によ
り相対的に大きくなる。
In other words, if 1 is a semicircular crank in Fig. 1, a force toward the external space acts on the atoms at the tip of the crack due to surface tension, and the atoms are activated to move from the crack side to the external space side. Reduce the amount of energy. Therefore, at the tip of the crank, as the frequency of atoms protruding from the crank interface toward the external space becomes relatively high, the vacancy concentration near the tip increases, and As shown in part a, the crack is filled with moving atoms and the crack length becomes smaller. (This is called the crank-healing phenomenon.) On the other hand, on the atoms protruding outward from the surface of the cutting edge, a surface tension opposite to that at the tip of the blade acts on the atoms, and a force moves inward from the surface. do. For this reason, the magnitude of activation energy for movement from the surface to the inside decreases, and the frequency at which atoms move toward the inside of the cutting edge becomes relatively greater than the frequency at which atoms move toward the outside of the cutting edge.

以上のような現象により、刃先は原子レベルで凹凸状態
が矯正され、平滑化がはかられることになる。
Due to the above-mentioned phenomenon, the uneven state of the cutting edge is corrected at the atomic level, and the cutting edge is smoothed.

ところで、上記のような平滑化現象における原子の移動
や原子配列の組み替えは、結晶構造内に空孔が多く存在
している方がより活発に生じ、クランク長さの変化や破
壊強度の上昇が著しい。
By the way, the movement of atoms and rearrangement of atomic arrangement in the above-mentioned smoothing phenomenon occurs more actively when there are many vacancies in the crystal structure, which leads to changes in crank length and increase in fracture strength. Significant.

このため、この発明では、熱処理前にダイヤモンド表面
に各種のイオンを照射して表面を改質することにより、
界面部近傍の空孔濃度の増大処理を実施する。
Therefore, in this invention, by irradiating the diamond surface with various ions to modify the surface before heat treatment,
Perform a process to increase the vacancy concentration near the interface.

これは高速度に加速させたイオンをダイヤモンド表面に
照射し、そのイオンのエネルギにより、表面近傍の結晶
構造内の炭素原子をはじき飛ばし、空孔の数を増大させ
るものである。この場合、照射するイオンは比較的原子
半径の小さいもの、例えば水素、ヘリウム、ネオン、ア
ルゴン、カーボン等のイオンを使用する。また照射条件
としては、加速電圧がIKV〜1万KVの範囲でそのう
ち高い方が好ましく、照射量は10”〜10′9個ノC
1)2程度が適当である。
This method involves irradiating the diamond surface with ions accelerated at high speed, and using the energy of the ions to repel carbon atoms in the crystal structure near the surface, increasing the number of vacancies. In this case, the ions to be irradiated are those having a relatively small atomic radius, such as hydrogen, helium, neon, argon, carbon, etc. ions. In addition, as for the irradiation conditions, the accelerating voltage is in the range of IKV to 10,000 KV, the higher of which is preferable, and the irradiation amount is 10'' to 10'9 C.
1) About 2 is appropriate.

なお、上記の平滑化現象は、加熱温度が一定の範囲、即
ちダイヤモンド表面に酸化が生じる温度以下で、かつ移
動のために十分な熱振動工矛ルギを原子に付与できる温
度以上であることが必要である。
Note that the smoothing phenomenon described above requires that the heating temperature be within a certain range, that is, below the temperature at which oxidation occurs on the diamond surface, and above the temperature at which sufficient thermal vibrational force is imparted to the atoms for movement. is necessary.

一般に大気圧下で加熱した場合、ダイヤモンド表面は、
500に以下の温度までは酸素分子を吸着した状態で安
定し、630にの温度までは大きな変化が見られないが
、630Kを超えると、連続的酸化(燃焼)が始まり、
約1)50Kで急激に燃焼することが観察されている。
Generally, when heated under atmospheric pressure, the diamond surface becomes
Up to a temperature below 500K, it remains stable with oxygen molecules adsorbed, and no major changes are seen up to a temperature of 630K, but when it exceeds 630K, continuous oxidation (combustion) begins.
Approximately 1) Rapid combustion has been observed at 50K.

加熱温度が630Kを越えると、界面から張り出して活
性化状態にある炭素原子が、活発に酸素と化学的に結合
して酸化物として取り去られ、このためクランクの長さ
は逆に大きくなり、刃先の凹凸はより激しくなっていく
、この場合、微小破壊強度の低下も著しい。
When the heating temperature exceeds 630K, the activated carbon atoms protruding from the interface actively chemically combine with oxygen and are removed as oxides, which causes the length of the crank to increase. The unevenness of the cutting edge becomes more severe, and in this case, the microfracture strength also decreases significantly.

一方、加熱温度が500に以下の場合は、原子の熱振動
エネルギが活性化エネルギまでを越えて十分に大きくな
らず、このため原子の移動が生じないため、平滑化の現
象が得られない。
On the other hand, if the heating temperature is below 500° C., the thermal vibrational energy of the atoms will not be sufficiently large beyond the activation energy, and therefore no movement of the atoms will occur, so that the smoothing phenomenon cannot be obtained.

以上のことから平滑化の加熱温度は大気圧中では500
〜630にの範囲であることが条件となり、特に600
〜630 Kの範囲にあるときが最も良好な結果が得ら
れる。
From the above, the heating temperature for smoothing is 500 at atmospheric pressure.
The condition is that it is in the range of ~630, especially 600
The best results are obtained in the range of ~630K.

また加熱時間は、10分以上であれば、時間が長くなる
ほど平滑化が進行し、より均一な刃先が得られる。なお
、工具の量産性等を併せ考慮すると、600〜630に
の最適温度において、数時間以上の加熱時間をとるのが
適当である。
Further, if the heating time is 10 minutes or more, the longer the heating time, the more smoothing will progress and a more uniform cutting edge will be obtained. In addition, considering the mass productivity of the tool, etc., it is appropriate to take several hours or more of heating time at the optimum temperature of 600 to 630 degrees Celsius.

以上大気圧下の熱処理条件について示したが、真空中で
は、酸化が少ない為K、加熱温度をより高くすることが
でき、かつ加熱時間も短縮することができる。真空下に
おける加熱条件は、500 Kから、最高温度が10−
’Paの圧力下で1.500 Kであり、1.500 
Kを超えると、ダイヤモンド表面の変化が発生する。
Although the heat treatment conditions under atmospheric pressure have been described above, in a vacuum, there is less oxidation, so the heating temperature can be increased, and the heating time can also be shortened. Heating conditions under vacuum range from 500 K to a maximum temperature of 10-
1.500 K under the pressure of 'Pa and 1.500
Above K, changes in the diamond surface occur.

また、原子の移動による平滑化現象は、物体内に介在す
るクランクの長さを小さくする現象であるため、物体の
微小破壊強度の増強にも寄与していると考えられる。実
際K、熱処理前後における破壊強度の変化を測定した結
果を第2図に示すが、熱処理前後において、約12%の
明らかな強度上昇が見られた。テスト条件は573にの
温度で2時間加熱したものである。このように破壊強度
と平滑化現象とは明らかな相関関係があり、云い換えれ
ば、破壊強度の上昇の度合を知ることにより、平滑化の
進行度を判別する目安とすることができる。
Furthermore, the smoothing phenomenon due to the movement of atoms is a phenomenon that reduces the length of cranks interposed within the object, and is therefore considered to also contribute to increasing the microfracture strength of the object. In fact, the results of measuring the change in breaking strength before and after heat treatment are shown in Figure 2, and a clear increase in strength of about 12% was observed before and after heat treatment. The test conditions were heating at a temperature of 573 °C for 2 hours. As described above, there is a clear correlation between the breaking strength and the smoothing phenomenon.In other words, by knowing the degree of increase in the breaking strength, it can be used as a guide for determining the degree of progress of smoothing.

また、ダイヤモンド内部の欠陥や不純物は、電子スピン
共鳴(ESR)により同定することができ、さらに不純
物等の含有を示す相対値を基準にすることにより、ダイ
ヤモンド原石の品質を選別することができる。そこで、
ESRを用いて、予め欠陥の少ない高品質のダイヤモン
ド原石を選別し、その原石に機械加工により刃先を形成
後、イオンを照射し、熱処理を行なうようにすれば、よ
り高い平滑化処理を行なうことができる。
In addition, defects and impurities inside the diamond can be identified by electron spin resonance (ESR), and the quality of rough diamonds can be selected based on relative values indicating the presence of impurities. Therefore,
If you use ESR to select high-quality rough diamonds with few defects in advance, form cutting edges on the rough diamonds by machining, and then irradiate them with ions and heat treat them, you can achieve a higher level of smoothing. Can be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したようK、この発明のダイヤモンド工具及び
その製造方法によれば、炭素原子の拡散運動等を利用し
て原子レベルにおいて刃先の平滑化を達成するので、切
れ味の鋭い刃先とそれを長期にわたって維持しうる高い
安定性を得ることができ、超精密切削に最良の工具を提
供することができる。
As explained above, according to the diamond tool and its manufacturing method of the present invention, the smoothing of the cutting edge is achieved at the atomic level by utilizing the diffusion movement of carbon atoms, etc., so that the cutting edge can be sharply cut and maintained for a long time. The high stability that can be maintained can be obtained, and the best tool for ultra-precision cutting can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は刃先の原子レベルでの状態を模式的に示す図、
第2図は熱処理前後の破壊強度と破壊確率の関係を示す
グラフ、第3図はクランク長さの変化を模式的に示す図
である。 特許出願人  大阪ダイヤモンド工業株式会社同  日
新電機株式会社
Figure 1 is a diagram schematically showing the state of the cutting edge at the atomic level.
FIG. 2 is a graph showing the relationship between fracture strength and fracture probability before and after heat treatment, and FIG. 3 is a diagram schematically showing changes in crank length. Patent applicant Osaka Diamond Industry Co., Ltd. Nissin Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)機械加工により刃先を形成後、工具材にイオンを
照射し、その後、少なくとも上記刃先を大気圧中で50
0〜630K、又は、真空中で500〜1,500Kで
熱処理して成るダイヤモンド工具。
(1) After forming the cutting edge by machining, the tool material is irradiated with ions, and then at least the cutting edge is heated at atmospheric pressure for 50 minutes.
A diamond tool heat treated at 0 to 630K or 500 to 1,500K in vacuum.
(2)上記機械加工前の工具材がESR(電子スピン共
鳴)により工具材料として適と判別したものであること
を特徴とする特許請求の範囲第(1)項記載のダイヤモ
ンド工具。
(2) The diamond tool according to claim (1), wherein the tool material before machining is determined to be suitable as a tool material by ESR (electron spin resonance).
(3)機械加工により刃先を形成した後、工具材にイオ
ンを照射し、その後少なくとも上記刃先を大気圧中で5
00〜630K、又は、真空中で500〜1,500K
で熱処理することを特徴とするダイヤモンド工具の製造
方法。
(3) After forming the cutting edge by machining, the tool material is irradiated with ions, and then at least the cutting edge is heated at atmospheric pressure for 5 minutes.
00-630K or 500-1,500K in vacuum
A method for manufacturing a diamond tool, characterized by heat treatment.
JP7554487A 1987-03-26 1987-03-26 Diamond tool and manufacture thereof Granted JPS63237821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7554487A JPS63237821A (en) 1987-03-26 1987-03-26 Diamond tool and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7554487A JPS63237821A (en) 1987-03-26 1987-03-26 Diamond tool and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS63237821A true JPS63237821A (en) 1988-10-04
JPH0450136B2 JPH0450136B2 (en) 1992-08-13

Family

ID=13579249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7554487A Granted JPS63237821A (en) 1987-03-26 1987-03-26 Diamond tool and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63237821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527117A (en) * 2010-06-03 2013-06-27 エレメント シックス リミテッド Diamond tools
EP2813304A3 (en) * 2013-05-20 2016-07-06 Japan Aviation Electronics Industry Limited Edge tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527117A (en) * 2010-06-03 2013-06-27 エレメント シックス リミテッド Diamond tools
EP2813304A3 (en) * 2013-05-20 2016-07-06 Japan Aviation Electronics Industry Limited Edge tool

Also Published As

Publication number Publication date
JPH0450136B2 (en) 1992-08-13

Similar Documents

Publication Publication Date Title
JP5597327B2 (en) Diamond-coated tool and manufacturing method thereof
JP5956855B2 (en) Cutting edge processing method and tool manufacturing method
JP5924094B2 (en) CUTTER, MANUFACTURING METHOD THEREOF, AND PLASMA DEVICE FOR MANUFACTURING THE SAME
JPWO2016010028A1 (en) Single crystal diamond, method for producing single crystal diamond, and tool using single crystal diamond
JPS63237821A (en) Diamond tool and manufacture thereof
Islam et al. Characterization of ELID grinding process for machining silicon wafers
US2448511A (en) Glossing corundum and spinel
US4319889A (en) Ultrasharp diamond edges and points and methods of making same by precision micro-irradiation techniques
JPS634627B2 (en)
JPS63237820A (en) Diamond tool and manufacture thereof
JP2011178616A (en) Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method
JP6359805B2 (en) Diamond composite, method for producing diamond composite, and method for producing single crystal diamond
JP2697983B2 (en) Diamond knife for microtome
CN110199041B (en) Method for cutting refractory metal
Chyhyrynets et al. Vibro-tumbling as an alternative to standard mechanical polishing techniques for SRF cavities
RU1755494C (en) Abrasive grinding wheel
Lavrinenko et al. A Study of the influence of plasma treatment on the working surface of superabrasive grinding wheels
JP6275821B2 (en) Steel parts and manufacturing method thereof
JPH05180736A (en) Manufacture of diamond knife for microtome
JP4186277B2 (en) Artificial quartz manufacturing method and artificial quartz and quartz substrate
JP6825518B2 (en) Silicon carbide electrode plate for plasma processing equipment and its manufacturing method
Gao et al. Orthogonal experimental study on two side-direction burrs of grind-hardening workpiece based on transverse feed
JP2019203195A (en) Structural member and manufacturing method thereof
JPH0196099A (en) Process for cleaning surface of crystal material
Kelly et al. Metallography and Microstructures of Refractory Metals and Alloys