JPS63237802A - Method and device for machining outer diameter of piston for internal combustion engine - Google Patents

Method and device for machining outer diameter of piston for internal combustion engine

Info

Publication number
JPS63237802A
JPS63237802A JP6904387A JP6904387A JPS63237802A JP S63237802 A JPS63237802 A JP S63237802A JP 6904387 A JP6904387 A JP 6904387A JP 6904387 A JP6904387 A JP 6904387A JP S63237802 A JPS63237802 A JP S63237802A
Authority
JP
Japan
Prior art keywords
machining
tool holder
piston
axis
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6904387A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Tsukagoshi
塚越 廉吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Engine Components Japan Corp
Original Assignee
Izumi Automotive Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Izumi Automotive Industry Co Ltd filed Critical Izumi Automotive Industry Co Ltd
Priority to JP6904387A priority Critical patent/JPS63237802A/en
Publication of JPS63237802A publication Critical patent/JPS63237802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PURPOSE:To attain simple and precise high-speed machining for a complicated piston external surface by causing a tool holder to advance or recede finely in a direction orthogonal with a main spindle and turn about the spindle, turning a workpiece at a speed higher than the rotational speed of the holder by a specific times and feeding a machining head toward the main spindle. CONSTITUTION:When a piston is machined, a column 2 is shifted on a bed 1 and the rotary main spindle 7' of a tool holder 7 and the rotary spindle 11' of a carriage bed 11 are finely dislocated. And the carriage bed 11 is turned at a speed 3/2 times the speed of the holder 7. Concurrently therewith, when a machining head 4 is moved toward the rotary spindle 11' for machining feed and the holder 7 is displaced for the spindle 7' with a servo motor 9, a distance between the cutting edge of a tool 8 and the main spindle 7' changes and furthermore the main spindle 7' is so controlled with the inclination mechanism of the head 4 as to make a fine inclination angle theta from a position parallel with the rotary spindle 11' match the machining feed, thereby proceeding with a machining process. In this case, the taper amount of a piston corresponds to a distance between the cutting edge of the tool 8 and the main spindle 7. The eccentricity of an ellipse is a deviation (q) between the main spindle 7' and the rotary spindle 11'. And the amount of addition is controlled by the inclination angle theta of the head 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関用ピストン外径加工方法及びこれを実
施するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for machining the outer diameter of a piston for an internal combustion engine and an apparatus for carrying out the method.

〔従来の技術〕[Conventional technology]

従来、ピストン外周面を加工する方法の一つとして、加
工すべきピストン材と、予め所期のピストン形状に作製
されたマスターカムモデルを同一の主軸上に取り付け、
両者を同期させて回転せしめると共に、上記マスターカ
ムモデルの表面にスタイラスの先端を当接せしめ、上記
スタイラスの動きに対応して移動するバイトによって上
記ピストン材の外周を加工するという所謂倣い加工が利
用されている。
Conventionally, one method for machining the outer circumferential surface of a piston is to attach the piston material to be machined and a master cam model prefabricated into the desired piston shape on the same main shaft.
So-called copying processing is used in which both are rotated in synchronization, the tip of the stylus is brought into contact with the surface of the master cam model, and the outer periphery of the piston material is machined with a cutting tool that moves in response to the movement of the stylus. has been done.

然しなから、加工すべきピストンの形状は後で詳しく説
明する通り極めて複雑な形態を有するものであり、上記
倣い加工に於ては、この複雑な形状を有するマスターカ
ムモデルを予め製作しておく必要があり、それには3次
元加工による高度の技術が要求されることから、多種少
量生産には不通であるという問題点がある。更にまた、
加工の際の回転数が増加すると、上記スタイラスが跳ね
てマスターカムモデルの表面から離れ、そのため正確な
追随ができないという問題も存在する。
However, as will be explained in detail later, the shape of the piston to be machined is extremely complex, and in the copying process described above, a master cam model having this complex shape is manufactured in advance. This requires advanced technology using three-dimensional processing, which poses a problem in that it is not suitable for high-mix, low-volume production. Furthermore,
There is also the problem that when the number of revolutions during machining increases, the stylus bounces and separates from the surface of the master cam model, making accurate tracking impossible.

これらの問題を解決する方法として、数値制御装置を利
用してバイトを加工すべきピストン表面に向けてサーボ
装置により進退させつ\加工を行なう方法が考えられる
。この方法は現在低速では可能であるが、高速では不可
能な状況にある。その理由としては、主軸エンコーダか
らの回転位置検出信号及び数値制御装置からの信号に基
づいて工具位置を制御するACサーボモータへの制御信
号が発せられるが、高速回転に於てはサーボ系の遅れが
発生し、位相のズレが生じてピストンのカム量が少なく
なること、サーボ系の制御をエンコーダによるフィード
バック形式とした場合にはフィードバック系統で遅れが
生じること等が挙げられる。
As a method to solve these problems, a method can be considered in which a numerical control device is used to move a cutting tool forward and backward toward the piston surface to be processed using a servo device while processing is performed. Although this method is currently possible at low speeds, it is currently not possible at high speeds. The reason for this is that a control signal is issued to the AC servo motor that controls the tool position based on the rotational position detection signal from the spindle encoder and the signal from the numerical control device, but at high speed rotation, the servo system lags. This may cause a phase shift and reduce the amount of cam on the piston, and if the servo system is controlled using an encoder feedback system, a delay may occur in the feedback system.

これらの問題を解決するため、本発明者は先に特願昭6
0−149946号において、被加工体と工具を互いに
僅かな角度で交差した軸を中心に同一方向に但し異なっ
た速度で回転させることによりピストン外周面を加工す
る新規な内燃機関用ピストン外径加工方法及び装置を開
示した。
In order to solve these problems, the present inventor first filed a patent application in 1983.
No. 0-149946 discloses a novel method for machining the outer circumferential surface of a piston for an internal combustion engine, in which the outer peripheral surface of the piston is machined by rotating the workpiece and the tool around axes that intersect with each other at a slight angle in the same direction but at different speeds. A method and apparatus are disclosed.

即ち、当該加工方法は、被加工体の外周面を旋削し得る
工具を主軸に直角に交差する方向に微小距離進退自在に
保持するステップと、被加工体の45°方向外径拡大量
を調整する付加量調整具を上記主軸に直角な面に対し微
小角度傾斜可能に保持するステップと、被加工体を上記
主軸に平行な一軸を中心に回転自在に支承するステップ
と、上記工具を上記主軸に直角に交差する方向に微小距
離進退せしめ且つ上記付加量調整具を上記主軸に直角な
面に対する傾斜角度を変更せしめつ\上記主軸を中心に
回転せしめると共に、上記被加工体を上記一軸を中心に
上記工具の回転速度の372の速度で回転せしめつ\上
記主軸方向に加工送りするステップとから成ることを特
徴とするものであり、また当該加工方法を実施するため
の装置は、加工ヘッドにより回転自在に支承され、被加
工体の外周面を旋削し得る工具を主軸に直角に交差する
方向に微小距離進退自在に保持すると共に主軸に対し微
小角度傾斜可能な付加量調整具と、工具ホルダに取り付
けられ、上記工具を主軸に直角に交差する方向に進退制
御する装置と、上記付加量調整具を所定の方向に所定の
角度傾斜させる装置と、上記工具ホルダを回転させる装
置と、被加工体が取り付けられ、上記主軸に平行な一軸
を中心に回転自在に支承されると共に、主軸方向に加工
送りされ、更に上記主軸に直角に微小距離偏心加工送り
される載物台と、上記載物台を上記工具ホルダの3/2
の速度で回転させる装置とから成ることを特徴とするも
のであった。
That is, the processing method includes the steps of holding a tool capable of turning the outer circumferential surface of the workpiece so that it can move forward and backward by a minute distance in a direction perpendicular to the main axis, and adjusting the amount of expansion of the outer diameter of the workpiece in the 45° direction. a step of holding an additional amount adjuster capable of tilting at a minute angle with respect to a plane perpendicular to the main axis; a step of supporting a workpiece rotatably about an axis parallel to the main axis; The workpiece is moved forward and backward a minute distance in a direction perpendicular to the main axis, changes the inclination angle of the additional amount adjusting tool with respect to a plane perpendicular to the main axis, rotates the workpiece about the main axis, and rotates the workpiece about the one axis. The method is characterized by comprising the steps of rotating the tool at a speed of 372 times the rotational speed of the tool and feeding the tool in the direction of the main axis. A tool holder that is rotatably supported and holds a tool capable of turning the outer circumferential surface of a workpiece so that it can move forward and backward over a minute distance in a direction perpendicular to the spindle, and that can be tilted at a minute angle with respect to the spindle, and a tool holder. a device that is attached to the tool and controls the advance and retreat of the tool in a direction perpendicular to the main axis; a device that tilts the additional amount adjuster at a predetermined angle in a predetermined direction; a device that rotates the tool holder; and a device that rotates the tool holder. a workpiece table to which a body is attached, is rotatably supported around an axis parallel to the main axis, and is processed and fed in the direction of the main axis, and further eccentrically fed by a minute distance perpendicular to the main axis; and the above-mentioned object. Place the stand on 3/2 of the above tool holder.
It was characterized by consisting of a device that rotated the machine at a speed of .

然しなから、上記の方法及び装置に於ては、その付加量
調整具とこれを所定の角度傾斜させる機構が複雑となり
、しかも高精度かつ高強度のものが要求されるという実
用上の困難性があった。
However, in the above method and device, the addition amount adjusting device and the mechanism for tilting it at a predetermined angle are complicated, and there are practical difficulties in that they require high precision and high strength. was there.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の問題点を解決するためなされたものであ
り、その目的とするところは、上記特顆昭60−149
946号において開示された加工方法及び装置を改良し
て、複雑な形状を有するピストン外周面を比較的簡単な
手段により正確且つ高速度で加工し得る内燃機関用ピス
トン外径加工方法及び装置を提供することにある。
The present invention has been made to solve the above problems, and its purpose is to solve the above problems.
To provide a method and device for machining the outer diameter of a piston for an internal combustion engine, which improves the machining method and device disclosed in No. 946, and can process the outer circumferential surface of a piston having a complicated shape accurately and at high speed using relatively simple means. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、 加工ヘッドに回転自在に取り付けられた工具ホルダをそ
の回転主軸に直角に交差する方向に微小距離進退自在に
保持するステップと、 被加工体を上記主軸に平行な一軸を中心に回転自在に支
承するステップと、 加工ヘッドの上記主軸を上記一軸に対して微小角度傾斜
させるステップと、 上記工具ホルダをその回転主軸に直角に交差する方向に
微小距離進退せ、しめつ−上記主軸を中心に回転せしめ
ると共に、上記被加工体を上記一軸を中心に上記工具ホ
ルダの回転速度の372の速度で回転せしめ、更に上記
加工ヘッドを上記主軸方向に加工送りするステップと、 から成る内燃機関用ピストン外径加工方法によって達成
し得る。
The above purpose is to hold a tool holder that is rotatably attached to the processing head so that it can move back and forth a minute distance in a direction perpendicular to the main axis of rotation, and to rotate the workpiece about an axis that is parallel to the main axis. a step of freely supporting the main shaft of the machining head with respect to the one axis; and a step of moving the tool holder forward and backward a very small distance in a direction perpendicular to the main shaft of rotation, and then tightening the main shaft. for an internal combustion engine, comprising the steps of rotating the workpiece about the one axis at a speed of 372 times the rotational speed of the tool holder, and further processing and feeding the processing head in the direction of the main axis. This can be achieved by a piston outer diameter machining method.

また、上記の方法は、 ベッド上に移動可能に搭載されたカラムと、上記カラム
に昇降自在に取り付けられた加工ヘッドと、 上記加工ヘッドに回転自在に取り付けられた工具ホルダ
と、 被加工体を上記工具ホルダの回転速度の3/2の速度で
回転自在に支承する載物台と、上記カラムを上記ベッド
上で被加工体の回転軸に直角に交差する方向に変位させ
るカラム変位機構と、 上記工具ホルダの回転主軸が上記被加工体の回転軸に対
して微小角度傾斜するよう上記加工ヘッドを上記カラム
上で微小角度傾斜させる加工ヘッド傾斜機構と、 上記加工ヘッドを上記カラム上で被加工体の回転軸方向
に昇降させて加工送りを行なう加工ヘッド昇降機構と、 上記加工ヘッド上で上記工具ホルダをその回転主軸に直
角に交差する方向に微小距離進退可能に保持する工具ホ
ルダ進退機構と、 を備えた内燃機関用ピストン外径加工装置によって実施
し得る。
Further, the above method includes a column movably mounted on a bed, a machining head attached to the column so as to be movable up and down, a tool holder rotatably attached to the machining head, and a workpiece. a stage that is rotatably supported at a speed of 3/2 of the rotation speed of the tool holder; a column displacement mechanism that displaces the column on the bed in a direction perpendicular to the rotation axis of the workpiece; a machining head tilting mechanism that tilts the machining head at a slight angle on the column so that the main rotation axis of the tool holder is tilted at a slight angle with respect to the rotation axis of the workpiece; a machining head elevating mechanism that moves the tool holder up and down in the direction of the rotational axis of the body to perform machining feed; This can be carried out by a piston outer diameter machining device for an internal combustion engine equipped with the following.

〔作 用〕[For production]

上記の如き構成であると、被加工体に向けて工具を頻繁
に往復移動させることなく楕円形状が加工され、また要
求されるピストンの複雑な外周形状も加工ヘッド自体を
微小角度傾斜させることによって正確に制御、加工し得
るものであるから、比較的簡便な手段により正確且つ高
速度の加工を行ない得る優れた内燃機関用ピストン外径
加工方法及び装置が提供されるものである。
With the above configuration, an elliptical shape can be machined without frequently reciprocating the tool toward the workpiece, and the required complicated outer peripheral shape of the piston can be achieved by tilting the machining head itself at a minute angle. Since the method can be controlled and processed accurately, an excellent method and apparatus for machining the outer diameter of a piston for an internal combustion engine can be provided, which can perform accurate and high-speed machining using relatively simple means.

〔実 施 例〕〔Example〕

以下、図面を参照しつ\本発明の構成の詳細を説明する
Hereinafter, details of the configuration of the present invention will be explained with reference to the drawings.

第1図は本発明に係る方法を実施するために用いられる
本発明に係る加工装置の一実施例を示す正面図、第2図
はその左側面図、第3図は第1図及び第2図に示した加
工装置の加工部分の詳細を示す要部説明図、第4図は加
工により作製されるべきピストンの外径プロフィールの
一例を示す説明図、第5図は上記ピストンの軸直角断面
プロフィールを示す説明図、第6図ないし第15図は第
1図ないし第3図に示した装置により加工が行なわれる
様子を順次段階的に示す説明図、第16図は第1図ない
し第3図に示した装置により加工される楕円の形状に関
する説明図である。
FIG. 1 is a front view showing an embodiment of the processing apparatus according to the present invention used to carry out the method according to the present invention, FIG. 2 is a left side view thereof, and FIG. FIG. 4 is an explanatory diagram showing an example of the outer diameter profile of the piston to be manufactured by machining, and FIG. 5 is an axis-perpendicular cross-section of the piston shown in the figure. An explanatory diagram showing the profile, Figures 6 to 15 are explanatory diagrams showing step by step how the processing is performed by the apparatus shown in Figures 1 to 3, and Figure 16 is an explanatory diagram showing the processing performed by the apparatus shown in Figures 1 to 3. FIG. 3 is an explanatory diagram regarding the shape of an ellipse processed by the apparatus shown in the figure.

先ず第4図及び第5図を参照しつ一1加工すべきピスト
ン外周面の最終形状について説明する。
First, the final shape of the outer peripheral surface of the piston to be machined will be explained with reference to FIGS. 4 and 5.

ピストン外周面は、エンジン稼働時にシリンダ内周面と
良好な接触、摺動状態を確保し得るものでなくてはなら
ない、即ち、エンジン稼働時にピストンが高温となり熱
膨張したときに、その軸直角断面が真円となるものでな
ければならない。
The outer circumferential surface of the piston must be able to ensure good contact and sliding conditions with the inner circumferential surface of the cylinder during engine operation.In other words, when the piston becomes hot and thermally expands during engine operation, its axis-perpendicular cross section must be a perfect circle.

ところが、ピストンが接触するガスの温度は場所的にも
時間的にも不均一であり、激しく変動する上、その平均
値も場所的に異なり、またピストンの肉厚は部分的に異
なっており、更には複合材料を用いたり、冷却空洞を設
けたりすることもあり、そのため熱膨張量も均等ではな
い。
However, the temperature of the gas that the piston comes into contact with is uneven both in place and time, and fluctuates wildly, and its average value also differs from place to place, and the wall thickness of the piston varies locally. Furthermore, composite materials may be used or cooling cavities may be provided, so the amount of thermal expansion is not uniform.

このような高温時に於ける熱膨張を見越して、ピストン
の外周形状は常温時に於て通常その軸直角断面が楕円と
なるように作製されており、またピストンヘッドに近い
側はど小径になるように作製されている。
In anticipation of such thermal expansion at high temperatures, the outer peripheral shape of the piston is usually made so that the cross section perpendicular to its axis is an ellipse at room temperature, and the diameter is smaller on the side closer to the piston head. It is manufactured in

以上のようなピストン外径の理想的なプロフィールの一
例を示したのが第4図である。
FIG. 4 shows an example of the ideal profile of the piston outer diameter as described above.

即ち、第4図はその左半分に示したピストン100の軸
方向に沿った外径の変化を右側の曲線に拡大プロットし
て示すものであり、曲線100aはピストンの軸直角断
面に於ける短軸のピストン軸方向の外径の変化を、また
曲線100bはその長軸のピストン軸方向の外径の変化
をそれぞれ示している。
That is, FIG. 4 shows the change in the outer diameter along the axial direction of the piston 100 shown in the left half of the figure, plotted enlarged on the right curve, and the curve 100a shows the change in the outer diameter of the piston 100 along the axial direction. The curve 100b shows the change in the outer diameter of the shaft in the axial direction of the piston, and the curve 100b shows the change in the outer diameter of the long axis in the axial direction of the piston.

この図から判るように、ピストン100はそのスカート
部の中間領域に於て最も膨んだ樽形の形状をしている。
As can be seen from this figure, the piston 100 has a barrel-shaped shape that is most bulging in the middle region of its skirt.

(このような軸方向に沿ったピストン径の変化を以下の
説明に於ては「テーバ」と称する。) 而して、ピストン100に於ては、第5図に示す如く、
上記軸直角断面の楕円の長軸と短軸の長さの差αもピス
トンの軸方向に沿って変化していること、即ち上記楕円
の離心率も軸方向に沿って次第に変化していることが理
解される。これもピストンの肉厚や温度分布の変化に応
じた熱膨張量の変化に対応させるためである。
(Such a change in the piston diameter along the axial direction will be referred to as "Taber" in the following explanation.) Therefore, in the piston 100, as shown in FIG.
The difference α between the lengths of the major and minor axes of the ellipse in the cross section perpendicular to the axis also changes along the axial direction of the piston, that is, the eccentricity of the ellipse also gradually changes along the axial direction. is understood. This is also to accommodate changes in the amount of thermal expansion in response to changes in the piston wall thickness and temperature distribution.

更にまた、上記楕円は理想的には完全な1つの楕円では
なく、第5図に示す如く、一点鎖線で示す1つの楕円1
00cの頂点から45°離れた領域を中心として半径が
若干拡大するように、即ち、二点鎖線で示す曲線100
dのような形状とすることが望ましい。(この拡大量β
を以下「付加量」と称する。)これは離心率が僅かに異
なる二つの楕円を組み合せた公知の二重楕円と略同等の
ものである。
Furthermore, ideally, the above ellipse is not a complete ellipse, but as shown in FIG.
In other words, the curve 100 shown by the two-dot chain line is arranged so that the radius slightly expands around the area 45° away from the apex of 00c.
It is desirable to have a shape like d. (This expansion amount β
is hereinafter referred to as the "additional amount". ) This is approximately equivalent to the known double ellipse, which is a combination of two ellipses with slightly different eccentricities.

上記の如き複雑な外径を有するピストンを従来公知の方
法若しくは装置によって高速で加工するのが困難なこと
は前記の通りである。
As mentioned above, it is difficult to process a piston having such a complicated outer diameter at high speed using conventionally known methods or devices.

以下、第1図ないし第3図に示した本発明に係る装置に
より上記の如きピストン外周面を加工する方法について
説明する。
Hereinafter, a method for machining the above-mentioned piston outer circumferential surface using the apparatus according to the present invention shown in FIGS. 1 to 3 will be explained.

第1図ないし第3図中、1はベッド、2は上記ベッド1
上に搭載されたカラム、3は上記カラム2をベッド1上
で第2図中左右方向に移動させるカラム変位機構、4は
上記カラム2上に昇降自在に取り付けられた加工ヘッド
、5は上記加工ヘッド4の昇降機構、6は上記加工へン
ド4を上記カラム2上で微小角度傾斜させる加工ヘッド
傾斜機構、7は上記加工ヘッド4に回転自在に取り付け
られた工具ホルダ、8はバイト等の工具、9はボールス
クリューテーブルエ0を介して上記工具ホルダ7をその
回転主軸に直角に交差する方向に微小距離進退させるサ
ーボモータ、11は被加工体100を取り付ける載物台
、12は上記載物台11を回転させるための回転機構等
を内蔵した加工テーブル、13は加工条件等を設定する
ために用いる操作盤である。
In Figures 1 to 3, 1 is the bed and 2 is the bed 1.
3 is a column displacement mechanism that moves the column 2 on the bed 1 in the left-right direction in FIG. 2; 4 is a processing head mounted on the column 2 so as to be able to rise and fall; 5 is the processing A lifting mechanism for the head 4, 6 a processing head tilting mechanism for tilting the processing hand 4 at a minute angle on the column 2, 7 a tool holder rotatably attached to the processing head 4, and 8 a tool such as a cutting tool. , 9 is a servo motor that advances and retreats the tool holder 7 by a minute distance in a direction perpendicular to its rotational axis via the ball screw table 0, 11 is a stage on which the workpiece 100 is attached, and 12 is the above-mentioned object. A processing table has a built-in rotation mechanism for rotating the table 11, and 13 is an operation panel used to set processing conditions and the like.

載物台11の回転軸は第2図及び第3図中点線11′で
示してあり、工具ホルダ7の回転主軸は一点鎖線7′で
示しである。
The axis of rotation of the stage 11 is indicated by a dotted line 11' in FIGS. 2 and 3, and the main axis of rotation of the tool holder 7 is indicated by a chain line 7'.

なお、工具ホルダ7の回転、載物台11の回転、サーボ
モータ9を駆動して行なう工具ホルダ7の回転主軸7′
へ向けての進退、加工ヘッド4の昇降による加工送り、
カラム2のベッド上での移動等は、図では省略した数値
制御装置により一括制御されるようになっている。
Note that the rotation of the tool holder 7, the rotation of the stage 11, and the rotation main shaft 7' of the tool holder 7, which is performed by driving the servo motor 9,
Advances and retreats toward the target, processing feed by raising and lowering the processing head 4,
The movement of the column 2 on the bed is collectively controlled by a numerical control device, which is not shown in the figure.

而して、加工を行なう際には、カラム2をベッド1上で
移動させることにより、工具ホルダ7の回転主軸7′と
載物台11の回転軸11′を微小量(第2図及び第3図
中qで示す。)偏心させた状態とし、載物台11を工具
ホルダ70回転数の3/2倍の回転数(例えば工具ホル
ダ7の回転数が400゜rpmのときには、載物台の回
転数を600Orpmにする。)で回転させ、それと同
時に加工ヘッド4を載物台11の回転軸11′の方向に
沿ってゆっくりと移動させて加工送りを付与すると共に
、サーボモータ9を作動させて工具ホルダ7をその回転
主軸7′に対して変位させることにより工具8の刃先と
回転主軸7′の距離を変化させ、更に、加工ヘッド4の
傾斜機構6を作動させて第1図に示す如く工具ホルダ7
の回転主軸7′を載物台11の回転軸11′に平行な位
置からの微小な傾斜角度θを加工送りに合せて制御しつ
\加工を行なうものである。
When performing machining, by moving the column 2 on the bed 1, the rotation main shaft 7' of the tool holder 7 and the rotation axis 11' of the workpiece table 11 are moved by a minute amount (see FIGS. 2 and 2). (Indicated by q in Fig. 3.) The workpiece stand 11 is rotated at a rotation speed 3/2 times the rotation speed of the tool holder 70 (for example, when the rotation speed of the tool holder 7 is 400° rpm, the workpiece stand 11 is in an eccentric state. ), and at the same time, the machining head 4 is slowly moved along the rotation axis 11' of the stage 11 to apply machining feed, and the servo motor 9 is activated. By displacing the tool holder 7 with respect to its rotating main shaft 7', the distance between the cutting edge of the tool 8 and the rotating main shaft 7' is changed, and furthermore, the tilting mechanism 6 of the machining head 4 is actuated to produce the state shown in FIG. Tool holder 7 as shown
Machining is carried out by controlling the slight inclination angle θ of the rotating main shaft 7' from a position parallel to the rotating shaft 11' of the stage 11 in accordance with the machining feed.

このとき、ピストンの前記テーパ量はサーボモータ9の
制御による工具8の刃先と回転主軸7′の距離により制
御され、楕円の離心率はカラム2のベッド上での位置に
基づく工具ホルダ7の回転主軸7′と載物台11の回転
軸11′間の偏心!qによって決定され、前記付加量β
は加工ヘッド4の傾斜角度θによって制御される。
At this time, the amount of taper of the piston is controlled by the distance between the cutting edge of the tool 8 and the rotating main shaft 7' controlled by the servo motor 9, and the eccentricity of the ellipse is determined by the rotation of the tool holder 7 based on the position of the column 2 on the bed. Eccentricity between the main shaft 7' and the rotating shaft 11' of the stage 11! q, and the addition amount β
is controlled by the inclination angle θ of the processing head 4.

以下、第6図ないし第15図を参照しつ一加工の進行状
態を説明する。
Hereinafter, the progress of one process will be explained with reference to FIGS. 6 to 15.

いま工具ホルダ7の回転主軸7′と載物台の回転軸11
′は互いに平行にセットされその偏心量はqとし、工具
ホルダ7は4000rpra 、載物台11は6000
rpmで回転せしめられ、工具ホルダ7の回転主軸7′
から工具8の刃先までの距離は一定であると仮定して説
明する。
Now, the rotating main shaft 7' of the tool holder 7 and the rotating shaft 11 of the stage
' are set parallel to each other and their eccentricity is q, the tool holder 7 is 4000 rpra, and the stage 11 is 6000 rpra.
The rotating main shaft 7' of the tool holder 7 is rotated at rpm.
The explanation will be made assuming that the distance from to the cutting edge of the tool 8 is constant.

第6図は、工具8が上記主軸7′及びlllを含む平面
と同一平面上にある状態を示しており、この位置から加
工を開始するものとする。また、このとき工具8の刃先
はピストン100の表面に当接した状態(図中、点aで
示す。)にあるものとする。
FIG. 6 shows a state in which the tool 8 is on the same plane as the plane containing the main shafts 7' and ll, and machining is started from this position. Further, at this time, the cutting edge of the tool 8 is assumed to be in contact with the surface of the piston 100 (indicated by point a in the figure).

而して、載物台11の回転数を工具ホルダ7の回転数の
3/2倍とすると、工具ホルダ7が例えば40′回転す
る期間中にピストン100は60′回転して第7図に示
すような状態となる。このときの工具の刃先の位置はb
となり、これにより点aがらbまでの区間、即ちピスト
ンの中心角で見れば約20°の領域(主軸71と11′
が偏心しているので正確に20°とはならない、)が旋
削されたことになる。
If the number of rotations of the stage 11 is set to 3/2 times the number of rotations of the tool holder 7, the piston 100 will rotate 60' while the tool holder 7 rotates, for example, 40', as shown in FIG. The situation will be as shown. At this time, the position of the cutting edge of the tool is b
As a result, the area from point a to b, that is, the area of about 20° in terms of the center angle of the piston (main axes 71 and 11'
Since it is eccentric, it is not exactly 20 degrees) has been turned.

以下同様にして工具ホルダ7が40°、ピストン100
が60°づつ回転した状態を第8図ないし第15図に順
次示してあり、それぞれの刃先位置はCないしjで示し
である。
Similarly, the tool holder 7 is set at 40°, and the piston 100 is
The states in which the blades are rotated by 60° are sequentially shown in FIGS. 8 to 15, and the respective positions of the cutting edges are indicated by C to J.

第15図は、工具ホルダ7が360′回転し、その期間
中にピストン100が540′回転した状態を示してお
り、これによってピストン100の半周が点aないしj
に沿って楕円形状に加工されていることが理解できる。
FIG. 15 shows that the tool holder 7 has rotated 360' and the piston 100 has rotated 540' during this period, so that the half circumference of the piston 100 is rotated from point a to j.
It can be seen that it is processed into an elliptical shape along the .

以下同様にして、工具ホルダ7を更に360°、ピスト
ン100を540′回転させ名と、残りの半周が加工さ
れて完全な楕円が形成される。
Thereafter, in the same manner, the tool holder 7 is further rotated by 360° and the piston 100 is rotated by 540', and the remaining half circumference is machined to form a complete ellipse.

上記の如き楕円の加工は、主軸71と11’を偏心させ
た状態で、単にピストン100若しくは工具ホルダ7の
いずれか一方のみを回転させるだけでは不可能であり、
両者を3/2の比率で回転させたときに初めて可能とな
ることは容易に理解されよう。
The above-mentioned elliptical machining is not possible by simply rotating either the piston 100 or the tool holder 7 with the main shafts 71 and 11' eccentric.
It is easily understood that this becomes possible only when both are rotated at a ratio of 3/2.

更にまた、本発明に係る方法に於ては、工具8の刃先と
工具ホルダの回転主軸7′の距離を一定に保ったま\で
上記の楕円加工を行ない得ることに注目すべきである。
Furthermore, it should be noted that in the method according to the present invention, the above-mentioned elliptical machining can be performed while keeping the distance between the cutting edge of the tool 8 and the rotating main shaft 7' of the tool holder constant.

即ち、従来の如く被加工体に向けて工具を頻繁に往復移
動させることなく楕円の加工が行なわれるものであるか
ら、上記工具ホルダ7及びピストン100を高速で回転
させても正確な加工が行なわれ、高速且つ高精度の加工
が可能となるものである。
That is, since elliptical machining is performed without frequently reciprocating the tool toward the workpiece as in the past, accurate machining can be performed even when the tool holder 7 and piston 100 are rotated at high speed. This enables high-speed and high-precision machining.

而して、上記主軸7′及び11′の偏心量qを変更し、
或いは主軸71と工具8の刃先間の距離を変更すること
により加工される楕円の形状、即ち離心率を変え得るこ
とは容易に理解されよう。第4図に示したようなピスト
ン外周面を加工するに当たり、第1図ないし第3図に示
した加工装置に於ては、主軸7′と工具8の刃先間の距
離を加工開始時に最小とし以後サーボモータ9を作動さ
せて工具ホルダ7を徐々に変位させて上記距離を次第に
増加させることにより、ピストンの外径がスカートの下
部に向けて次第に大きくなるような上記テーバの加工を
行なうものである。
Thus, changing the eccentricity q of the main shafts 7' and 11',
Alternatively, it is easily understood that by changing the distance between the main shaft 71 and the cutting edge of the tool 8, the shape of the ellipse to be machined, that is, the eccentricity can be changed. When machining the outer circumferential surface of the piston as shown in Fig. 4, the machining equipment shown in Figs. Thereafter, the servo motor 9 is operated to gradually displace the tool holder 7 to gradually increase the distance, thereby machining the taper so that the outer diameter of the piston gradually increases toward the bottom of the skirt. be.

また、加工開始時に於ける主軸71及び111の偏心量
qを調整することにより加工すべき楕円の基本的な離心
率を定め、更にカラム変位機構3を作動させて加工送り
に合せてカラム2を載物台の回転軸111に向けて緩や
かに進退せしめることにより、第5図中αで示される長
短軸の長さの差(即ち離心率の微小な変化)を形成する
ことが可能となる。
In addition, the basic eccentricity of the ellipse to be machined is determined by adjusting the eccentricity q of the main shafts 71 and 111 at the start of machining, and the column displacement mechanism 3 is operated to move the column 2 in accordance with the machining feed. By gently advancing and retracting the stage toward the rotating shaft 111, it is possible to form a difference in length between the long and short axes (that is, a minute change in eccentricity) shown by α in FIG.

これを第16図を参照しつ\説明する。工具ホルダ7の
回転主軸7′と工具8の先端間の距離をDとし、工具ホ
ルダ7の回転主軸7′と被加工体100の回転軸11′
の偏心量をq(但し1)>>q)とすれば、加工される
楕円の長径は1)+qとなり、短径はD−qとなる。
This will be explained with reference to FIG. The distance between the rotational spindle 7' of the tool holder 7 and the tip of the tool 8 is D, and the rotational spindle 7' of the tool holder 7 and the rotational axis 11' of the workpiece 100 is
If the amount of eccentricity is q (where 1) >> q), then the major axis of the ellipse to be machined will be 1) + q, and the minor axis will be D - q.

ここで、長径を変えないで短径を変えるときは、D’−
D+Δ 、   q’=q−Δ  とし、短径を変えな
いで長径を変えるときは、D’=D+Δ 、   q’
=q+Δ  とし、全体を相似的に変化させるときは、 D’=D+Δ 、   q’=q     とする。
Here, when changing the short axis without changing the long axis, D'-
D+Δ, q'=q-Δ, and when changing the major axis without changing the minor axis, D'=D+Δ, q'
= q + Δ, and when changing the whole in a similar manner, D' = D + Δ and q' = q.

従って、これらを組み合せると、軸直角断面の楕円の離
心率が軸方向に沿って次第に変化する所望の樽型加工が
可能となるものである。  。
Therefore, when these are combined, it is possible to produce a desired barrel shape in which the eccentricity of the ellipse in the cross section perpendicular to the axis gradually changes along the axial direction. .

而して、第5図に示した付加量β(通常、数10μm)
を形成するため、第1図及び第2図に示した装置に於て
は、工具ホルダ7の回転主軸7′が被加工体の回転軸1
1’に対して微小角度θだけ傾斜するよう、加工ヘッド
4を微小N傾斜させて加工を行なうようにする。即ち、
加工ヘッド4を第1図に示す如く7“の位置まで傾斜さ
せた状態で加工を行なうようにする。例えばβ−30μ
mの付加量を形成する場合には、工具8の刃先と回転主
軸7′間の距離が150龍φのとき前記傾斜角度θを約
1°とすることによって目的を達成することができる。
Therefore, the additional amount β (usually several tens of μm) shown in Figure 5
In the apparatus shown in FIGS. 1 and 2, the rotation main shaft 7' of the tool holder 7 is aligned with the rotation axis 1 of the workpiece.
The machining head 4 is tilted slightly N so that the machining head 4 is tilted at a slight angle θ with respect to 1'. That is,
Processing is performed with the processing head 4 tilted to a position of 7" as shown in FIG.
In the case of forming an additional amount of m, the objective can be achieved by setting the inclination angle θ to about 1° when the distance between the cutting edge of the tool 8 and the rotating main shaft 7' is 150 mm.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上の如(構成されるから、本発明によるとき
は、複雑な形状を有するピストン外径を比較的簡単な手
段により正確且つ高速度で加工し得る優れた内燃機関用
ピストン外径加工方法及び装置が提供されるものである
Since the present invention is constructed as described above, the present invention provides an excellent piston outer diameter for internal combustion engines that allows piston outer diameters having complicated shapes to be machined accurately and at high speed by relatively simple means. A processing method and apparatus are provided.

なお、本発明の構成は叙上の実施例に限定されるもので
なく、本発明の目的の範囲内に於て上記の説明から当業
者が容易に想到し得るすべての変更実施例を包摂するも
のである。
The configuration of the present invention is not limited to the embodiments described above, but includes all modified embodiments that can be easily conceived by a person skilled in the art from the above description within the scope of the purpose of the present invention. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法を実施するために用いられる
本発明に係る加工装置の一実施例を示す正面図、第2図
はその左側面図、第3図は第1図及び第2図に示した加
工装置の加工部分の詳細を示す要部説明図、第4図は加
工により作製されるべきピストンの外径プロフィールの
一例を示す説明図、第5図は上記ピストンの軸直角断面
プロフィールを示す説明図、第6図ないし第15図は第
1図ないし第3図に示した装置により加工が行なわれる
様子を順次段階的に示す説明図、第16図は第1図ない
し第3図に示した装置により加工される楕円の形状に関
する説明図である。 1・・−・−・・・−・−−m−−−−−・−ベッド2
−−−−〜−−−−・・・・−・−・−−−−−一カラ
ム3−−−−−−−−−−−−−−・−−−m−・−・
・カラム変位機構4−−−−−・・−−−−一−−−−
−−〜−−−−−加工ヘッド5−・・・・−・・−・・
・−・・・−・−加工ヘッド昇降機構6−−−−−・−
−−−−一・・−・・−−−−〜・−加工ヘッド傾斜機
構7・・−・・−・−・−一−−・・−−一−−−・−
・工具ホルダ8−・・・−・−・−一一−−−−−−−
−−−〜工具9−−−−−−−・−・−−−−−−一−
−−・・−サーボモータ10・−・−・−・・−−−−
−・−−−−・−・・ボールスクリューテーブル1i−
−−−−一−−・−−−−−−・−−−−−−・−載物
台12−・・・−・・・−一−−−−−・・・−・−加
工テーブル13−・・−−一−−−・−・−・−・・・
・−操作盤100−〜−−−−・−−−−−−−−・・
・−・被加工体特許出願人  泉自動車工業株式会社 代理人 (7524)最上正太部 被加工体
FIG. 1 is a front view showing an embodiment of the processing apparatus according to the present invention used to carry out the method according to the present invention, FIG. 2 is a left side view thereof, and FIG. FIG. 4 is an explanatory diagram showing an example of the outer diameter profile of the piston to be manufactured by machining, and FIG. 5 is an axis-perpendicular cross-section of the piston shown in the figure. An explanatory diagram showing the profile, Figures 6 to 15 are explanatory diagrams showing step by step how the processing is performed by the apparatus shown in Figures 1 to 3, and Figure 16 is an explanatory diagram showing the processing performed by the apparatus shown in Figures 1 to 3. FIG. 3 is an explanatory diagram regarding the shape of an ellipse processed by the apparatus shown in the figure. 1・・−・−・−・−−m−−−−−・−Bed 2
−−−−〜−−−−・・・・−・−・−−−−−One column 3−−−−−−−−−−−−−−・−−−m−・−・
・Column displacement mechanism 4-------・・----1------
−−〜−−−−−Processing head 5−・・・−・・・・・
・−・−・−Processing head lifting mechanism 6−−−−−・−
−−−−1・・−・・−−−−~・−Processing head tilting mechanism 7・・−・・−・−・−1−−・・−1−−−・−
・Tool holder 8--...-----11--
−−−Tool 9−−−−−−・−・−−−−−−1−
−−・・−Servo motor 10・−・−・−・・−−−−
−・−−−−・−・・Ball screw table 1i−
−−−−1−−・−−−−−−−−−−−−−−・−Processing table 12−−−−−−1−−−−−−・−・−Processing table 13−・・−−1−−−・−・−・−・・
・−Operation panel 100−~−−−−・−−−−−−−−・・
・--Workpiece patent applicant Izumi Jidosha Kogyo Co., Ltd. Agent (7524) Mogami Seita-part Workpiece

Claims (1)

【特許請求の範囲】 1)加工ヘッドに回転自在に取り付けられた工具ホルダ
をその回転主軸に直角に交差する方向に微小距離進退自
在に保持するステップと、 被加工体を上記主軸に平行な一軸を中心に回転自在に支
承するステップと、 加工ヘッドの上記主軸を上記一軸に対して微小角度傾斜
させるステップと、 上記工具ホルダをその回転主軸に直角に交差する方向に
微小距離進退せしめつゝ上記主軸を中心に回転せしめる
と共に、上記被加工体を上記一軸を中心に上記工具ホル
ダの回転速度の3/2の速度で回転せしめ、更に上記加
工ヘッドを上記主軸方向に加工送りするステップと、 から成る内燃機関用ピストン外径加工方法。 2)ベッド上に移動可能に搭載されたカラムと、上記カ
ラムに昇降自在に取り付けられた加工ヘッドと、 上記加工ヘッドに回転自在に取り付けられた工具ホルダ
と、 被加工体を上記工具ホルダの回転速度の3/2の速度で
回転自在に支承する載物台と、 上記カラムを上記ベッド上で被加工体の回転軸に直角に
交差する方向に変位させるカラム変位機構と、 上記工具ホルダの回転主軸が上記被加工体の回転軸に対
して微小角度傾斜するよう上記加工ヘッドを上記カラム
上で微小角度傾斜させる加工ヘッド傾斜機構と、 上記加工ヘッドを上記カラム上で被加工体の回転軸方向
に昇降させて加工送りを行なう加工ヘッド昇降機構と、 上記加工ヘッド上で上記工具ホルダをその回転主軸に直
角に交差する方向に微小距離進退可能に保持する工具ホ
ルダ進退機構と、 を備えた内燃機関用ピストン外径加工装置。
[Claims] 1) Holding a tool holder rotatably attached to the processing head so as to be able to move forward and backward by a minute distance in a direction perpendicular to the main axis of rotation, and holding the workpiece on one axis parallel to the main axis. a step of tilting the main axis of the machining head at a minute angle with respect to the one axis; and moving the tool holder forward and backward a minute distance in a direction perpendicular to the main axis of rotation. rotating the workpiece around the main axis, rotating the workpiece around the one axis at a speed of 3/2 of the rotational speed of the tool holder, and further processing feeding the processing head in the direction of the main axis; A method for machining the outer diameter of a piston for an internal combustion engine. 2) A column movably mounted on a bed, a machining head attached to the column so as to be movable up and down, a tool holder rotatably attached to the machining head, and a workpiece being rotated by the tool holder. a workpiece stand rotatably supported at 3/2 of the speed; a column displacement mechanism for displacing the column on the bed in a direction perpendicular to the rotation axis of the workpiece; and rotation of the tool holder. a processing head tilting mechanism that tilts the processing head at a small angle on the column so that the main axis is inclined at a small angle with respect to the rotation axis of the workpiece; an internal combustion engine comprising: a machining head elevating mechanism that moves the tool holder up and down to perform machining feed; and a tool holder advance/retreat mechanism that holds the tool holder on the machining head so that it can move back and forth over a minute distance in a direction perpendicular to its rotational main axis. Engine piston outer diameter processing equipment.
JP6904387A 1987-03-25 1987-03-25 Method and device for machining outer diameter of piston for internal combustion engine Pending JPS63237802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6904387A JPS63237802A (en) 1987-03-25 1987-03-25 Method and device for machining outer diameter of piston for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6904387A JPS63237802A (en) 1987-03-25 1987-03-25 Method and device for machining outer diameter of piston for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63237802A true JPS63237802A (en) 1988-10-04

Family

ID=13391162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6904387A Pending JPS63237802A (en) 1987-03-25 1987-03-25 Method and device for machining outer diameter of piston for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63237802A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549426A (en) * 1994-09-09 1996-08-27 Xerox Corporation Apparatus for forming several polygons together
JP2002239804A (en) * 2001-02-15 2002-08-28 Yamagata Univ Research Institute Elliptical generating device
JP2008100290A (en) * 2006-10-17 2008-05-01 Jtekt Corp Method for machining shaft-like member
JP2011073092A (en) * 2009-09-30 2011-04-14 Kreuz:Kk Tool tilting allowing mechanism
DE102019211765A1 (en) * 2019-08-06 2021-02-11 Federal-Mogul Nürnberg GmbH Piston for an internal combustion engine, use of a recess on the lower edge of a piston, method and device for producing a piston

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549426A (en) * 1994-09-09 1996-08-27 Xerox Corporation Apparatus for forming several polygons together
JP2002239804A (en) * 2001-02-15 2002-08-28 Yamagata Univ Research Institute Elliptical generating device
JP2008100290A (en) * 2006-10-17 2008-05-01 Jtekt Corp Method for machining shaft-like member
JP2011073092A (en) * 2009-09-30 2011-04-14 Kreuz:Kk Tool tilting allowing mechanism
DE102019211765A1 (en) * 2019-08-06 2021-02-11 Federal-Mogul Nürnberg GmbH Piston for an internal combustion engine, use of a recess on the lower edge of a piston, method and device for producing a piston

Similar Documents

Publication Publication Date Title
JPS5841980B2 (en) Numerical control wire cut electrical discharge machine
JP2004181621A (en) Cnc machine of spiral bevel gears, and machining method of spiral bevel gears by cnc machine
US4245939A (en) Method and apparatus for machining spherical combustion chambers
SU1729282A3 (en) Method and device for making grooves by plastic deforming on the walls of workpieces of forgeable or plastic materials
CN100415429C (en) Electrode guide for spark-erosion machines and method for spark-erosion of workpieces
JPH0715723Y2 (en) Outer diameter compaction finishing device
JPS63237802A (en) Method and device for machining outer diameter of piston for internal combustion engine
JP4986179B2 (en) Spinning method and apparatus
JP2000501656A (en) Method and apparatus for rotary milling
US7163434B2 (en) Method and apparatus for generating complex shapes on cylindrical surfaces
JPH11207592A (en) Internal fine-groove machining device and method for cylinder bore
JP7413666B2 (en) Gear processing method
JP4820039B2 (en) Cavity processing method and apparatus for continuous casting mold
JP5883535B1 (en) Cutting method for inner or outer peripheral surface of workpiece
JP6050908B1 (en) Cutting method for inner or outer peripheral surface of workpiece
JPS6215001A (en) Machining method and device for outer diameter of piston of internal-combustion engine
US6224508B1 (en) Trunnion of a toroidal continuously variable transmission and manufacturing process thereof
JPS6399136A (en) Method and device for manufacturing piston ring
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JP2000141120A (en) Trochoid tool and machining method by the same
US5669274A (en) Method for forming cam face on structure member of loading cam device for toroidal-type continuously variable transmission
US20220388050A1 (en) Spinning device and spinning method
JP6515572B2 (en) Sequential forming apparatus and sequential forming method
JP7431645B2 (en) Dress grinding device and method
JP2000190031A (en) Method and device for draw processing