JPS63237303A - Electrode-free discharge lamp - Google Patents

Electrode-free discharge lamp

Info

Publication number
JPS63237303A
JPS63237303A JP7227687A JP7227687A JPS63237303A JP S63237303 A JPS63237303 A JP S63237303A JP 7227687 A JP7227687 A JP 7227687A JP 7227687 A JP7227687 A JP 7227687A JP S63237303 A JPS63237303 A JP S63237303A
Authority
JP
Japan
Prior art keywords
lamp
microwave
wall
discharge
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7227687A
Other languages
Japanese (ja)
Inventor
児玉 仁史
勲 正田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7227687A priority Critical patent/JPS63237303A/en
Publication of JPS63237303A publication Critical patent/JPS63237303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分計〕 この発明は、マイクロ波放電光源装置に用いられる無電
極放電ランプに関し、特にその寿命改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to an electrodeless discharge lamp used in a microwave discharge light source device, and particularly relates to improvement of its lifespan.

〔従来の技術〕[Conventional technology]

第2図は例えば特開昭61−99264号公報に示され
たマイクロ波放電光源装置の断面図である。
FIG. 2 is a sectional view of a microwave discharge light source device disclosed in, for example, Japanese Unexamined Patent Publication No. 61-99264.

図において、(1)は周波数24SOMHzのマイクロ
波を発振するマグネトロン、(2)はマグネトロンアン
テナ、(3)は端部にこのマグネトロンを装置した導波
管、(5)はマイクロ波共振空胴で導波管(3)の他端
部に接続された空胴壁(6)と高さ90m、径80■の
円筒の金属メツシュよりなる光透過性部材(7)とから
形成される。(8)は空胴壁(6)に設けられた給電口
で、導波管(3)よりマイクロ波共振空胴(5)内にマ
イクロ波を供給するものである。(9)はマイクロ波共
振空胴内に配設された球形の無電極ランプで、中に希ガ
スや水銀などが封入され、石英ガラスのような透光体で
できている。
In the figure, (1) is a magnetron that oscillates microwaves with a frequency of 24 SOMHz, (2) is a magnetron antenna, (3) is a waveguide with this magnetron installed at the end, and (5) is a microwave resonant cavity. It is formed of a cavity wall (6) connected to the other end of the waveguide (3) and a light-transmitting member (7) made of a cylindrical metal mesh with a height of 90 m and a diameter of 80 cm. Reference numeral (8) denotes a power feeding port provided in the cavity wall (6), which supplies microwaves from the waveguide (3) into the microwave resonant cavity (5). (9) is a spherical electrodeless lamp placed in a microwave resonant cavity, which is filled with a rare gas, mercury, etc., and is made of a transparent material such as quartz glass.

(91)はランプ(9)の外壁から伸びたランプ支持部
で、やはり石英ガラスのような誘電体であり、ランプ止
めねしく10)でランプ(9)を空胴壁(6)に固定さ
れている。(11)はマイクロ波共振空胴(5)から放
射された光を反射する光反射板、(12)はマグネトロ
ン(1)やランプ(9)を冷却する冷却ファンで、(4
)は冷却風を導波管内へ導く通風口、(13)は全体を
覆う箱体である。
(91) is a lamp support extending from the outer wall of the lamp (9), which is also made of a dielectric material such as quartz glass, and the lamp (9) is fixed to the cavity wall (6) with a lamp clamp 10). ing. (11) is a light reflection plate that reflects the light emitted from the microwave resonant cavity (5), (12) is a cooling fan that cools the magnetron (1) and lamp (9);
) is a ventilation hole that guides cooling air into the waveguide, and (13) is a box that covers the entire structure.

この装置の動作は次のようである。マグネトロン【1)
で発振されたマイクロ波はマグネト四ンアンテナ(2)
から導波管(3)へ伝搬モードとして励振される。この
マイクロ波は給電口(8)を通じて空胴壁(6)を光透
過性部材(7)とで囲まれたマイクロ波共振空胴(5)
へ給電される。このマイクロ波によってランプ(9)中
の希ガスが放電し、このエネルギーでランプ壁が加熱さ
れ、封入された水銀などが蒸発、ガス化して放電は水銀
などの金属ガスの放電が主となり、ガスの種類に応じた
スペクトルで発光スル。
The operation of this device is as follows. Magnetron [1]
The microwave oscillated by the magneto antenna (2)
is excited as a propagation mode from the waveguide (3). This microwave is transmitted through the power supply port (8) to the microwave resonant cavity (5) whose cavity wall (6) is surrounded by a light-transmitting member (7).
Power is supplied to the The rare gas in the lamp (9) is discharged by this microwave, and this energy heats the lamp wall, and the enclosed mercury is evaporated and gasified, and the discharge is mainly a discharge of metal gas such as mercury. It emits light with a spectrum depending on its type.

光透過性部材(7)はマイクロ波に対しては金属と同様
、反射するように作用し、光はメツシュ開口部から透過
するようになっている。すなわち、マイクロ波には不透
明体として働く。したがって、ランプからの光はマイク
ロ波共振空胴(5)から外へ放射され、光反射板(11
)で反射される。光反射板(11)は用途により種々の
形状に設計される。
The light-transmitting member (7) acts to reflect microwaves like metal, and the light is transmitted through the mesh openings. In other words, it acts as an opaque body to microwaves. Therefore, the light from the lamp is radiated out from the microwave resonant cavity (5) and the light reflecting plate (11
) is reflected. The light reflecting plate (11) is designed in various shapes depending on the purpose.

一方、マグネトロン(1)およびランプ(9)は装置の
動作中、冷却を行う必要があり、この冷却は冷却ファン
(12)による冷却風でマグネトロン(1)を冷却した
後、上記冷却風は導波管(3)に設けられた通風口(4
)をより導波管(3)内に導かれ、給電口(8)を介し
てランプ(9)を冷却した後、金属メツシュ(7)を通
して装置外に排出される。なお、冷却風の一部は、マグ
ネトロン(11を冷却することなく、通風口(4)より
直接導波管内に導かれるものもある。
On the other hand, the magnetron (1) and the lamp (9) need to be cooled during operation of the device, and this cooling is done by cooling the magnetron (1) with cooling air from the cooling fan (12), and then using the cooling air to guide the magnetron (1). The ventilation hole (4) provided in the wave tube (3)
) is guided into the waveguide (3) and, after cooling the lamp (9) through the power supply port (8), is discharged to the outside of the device through the metal mesh (7). Note that some of the cooling air is guided directly into the waveguide through the ventilation opening (4) without cooling the magnetron (11).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来のマイクロ波放電光源装置においては
、マイクロ波共振空胴内に第3図および第4図に示す電
磁界モード(円筒のTEIIIモード)が形成される図
において、実NsEは電気力線すなわち電界を示し、破
線Hは磁力線すなわち磁界を示す。また、第4図中に示
す円はランプ(9)を示し、内部の斜線域はランプ(9
)内部に形成されるアーク放電部の形状を示している。
In the conventional microwave discharge light source device as described above, in the diagrams in which the electromagnetic field mode (cylindrical TEIII mode) shown in FIGS. 3 and 4 is formed in the microwave resonant cavity, the actual NsE is The lines of force or electric field are shown, and the dashed line H is the line of force or the magnetic field. In addition, the circle shown in Fig. 4 indicates the lamp (9), and the shaded area inside is the lamp (9).
) shows the shape of the arc discharge part formed inside.

この図から明らかなように、ランプ(9)内部のア一り
放電部は、電界方向に偏平した楕円形状となり、このた
め、図中AおよびBで示す部分のランプ壁温度は、Cお
よびBで示す部分に対して高くなり、ランプ入力を増加
させた場合、AおよびB部分の温度が石英ガラスの軟化
点にまで達し、この部分よりランプのふくらみが破損に
いたるという問題があった。これに対し、AおよびB部
分に対向する冷却風用ノズルを設ける場合、構造が複雑
になると同時に配光上の障害となるという問題があった
As is clear from this figure, the air discharge part inside the lamp (9) has an elliptical shape that is flattened in the direction of the electric field. Therefore, the lamp wall temperature at the parts indicated by A and B in the figure is When the lamp input is increased, the temperature of parts A and B reaches the softening point of the quartz glass, and the lamp bulges from these parts, leading to damage. On the other hand, when providing cooling air nozzles facing the A and B portions, there is a problem that the structure becomes complicated and at the same time it becomes an obstacle to light distribution.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記問題点を解決するためになされたもの
で、マイクロ波空胴共振器内に形成されるマイクロ波電
界と平行な方向にランプ壁部に凸部を設けたものである
This invention was made to solve the above-mentioned problems, and includes providing a protrusion on the lamp wall in a direction parallel to the microwave electric field formed within the microwave cavity resonator.

〔作用〕[Effect]

本発明によれば、ランプ冷却風はランプ壁面に沿って流
れ、これを冷却すると同時にランプ壁面の凸部をも冷却
するしたがってこの凸部は冷却ファンとして働き、前記
AおよびB部分の熱は前記凸部から放出され、Aおよび
B部の温度が下がる。
According to the present invention, the lamp cooling air flows along the lamp wall surface, and at the same time cools the lamp wall surface, it also cools the convex portion of the lamp wall surface. Therefore, this convex portion acts as a cooling fan, and the heat of the above-mentioned portions A and B is transferred from the above-mentioned portions A and B. It is released from the convex part, and the temperature of parts A and B decreases.

〔実施例〕〔Example〕

第1図は前記従来例に示したマイクロ波放電光源装置に
本発明の一実施例を示す無電極放電ランプを配設した場
合のマイクロ波共振空胴部分を示し、図において、(1
4)および(14’)はランプ(9)の外壁、前記Aお
よびB部より突出した中空石英ガラスよりなる凸部で、
その外径は6■、内径は3IllIで長さ10mである
FIG. 1 shows a microwave resonant cavity portion when an electrodeless discharge lamp according to an embodiment of the present invention is installed in the microwave discharge light source device shown in the conventional example, and in the figure, (1
4) and (14') are convex parts made of hollow quartz glass that protrude from the outer wall of the lamp (9), the above-mentioned parts A and B,
Its outer diameter is 6mm, inner diameter is 3IllI, and length is 10m.

本実施例のランプを配設した装置においても装置の動作
は基本的には従来例の場合と同様であるが、本実施例の
場合、ランプ壁の最高温度は従来例のランプの場合、1
150℃であったのに対し、約40℃低下させることが
できた。
The operation of the device in which the lamp of this embodiment is installed is basically the same as that of the conventional example, but in the case of this embodiment, the maximum temperature of the lamp wall is 1
While the temperature was 150°C, it was possible to lower the temperature by about 40°C.

以上、本実施例ではランプ壁に円筒形状の凸部を設けた
ものについて述べたが、その形状は特に限定されず、要
は前記問題点の部分で述べたランプ壁A、B部に必要に
応じた凸部を設ければ本発明の目的を達することができ
るのは当然である。
In the above embodiment, a cylindrical convex portion is provided on the lamp wall, but the shape is not particularly limited, and the point is that the lamp wall A and B portions have a cylindrical convex portion as described above. It goes without saying that the object of the present invention can be achieved by providing a corresponding convex portion.

〔発明の効果〕〔Effect of the invention〕

以上説明したように無電極ランプの壁面A18部分に凸
部を設けるという単純なランプ形状の変化により、ラン
プ壁の最高温度を下げ、高出力点灯の場合でも長寿命の
ランプを得ることができる。
As explained above, by simply changing the shape of the lamp by providing a convex portion on the wall surface A18 of the electrodeless lamp, the maximum temperature of the lamp wall can be lowered, and a lamp with a long life can be obtained even in the case of high output lighting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる無電極放電ランプを配設したマ
イクロ波放電光源装置、第2図は従来のランプを装着し
たマイクロ波放電光源装置を示し、第3図、第4図はマ
イクロ波空胴共振器内に形成されるマイクロ波電磁界の
分布を示す。 図において、(3)は導波管、(4)は通風口、(5)
はマイクロ波共振空胴、(8)は給電口、(9)はラン
プ、(12)は冷却ファン、(14)、(14′)はラ
ンプ壁に設けた凸部である。 なお、各図中同一符号は同一または相当部分を示す。 第 3r!!J 184  図 手続補正書(方式) 3.補正をする者 6、補正の対象 (1)  図面。 7、補正の内容 (11図面中、第1図から第4図を別紙のとおシ浄書す
る。(内容に変更なし) 8、添付書類の目録 (1)浄書の図面・・・・・・・・・・・曲・・・・−
曲曲曲曲・・・1通以上
Figure 1 shows a microwave discharge light source device equipped with an electrodeless discharge lamp according to the present invention, Figure 2 shows a microwave discharge light source device equipped with a conventional lamp, and Figures 3 and 4 show a microwave discharge light source device equipped with an electrodeless discharge lamp according to the present invention. The distribution of the microwave electromagnetic field formed within the cavity resonator is shown. In the figure, (3) is a waveguide, (4) is a ventilation hole, and (5)
is a microwave resonant cavity, (8) is a power supply port, (9) is a lamp, (12) is a cooling fan, and (14) and (14') are convex portions provided on the lamp wall. Note that the same reference numerals in each figure indicate the same or corresponding parts. 3rd r! ! J 184 Illustration procedure amendment (method) 3. Person making the amendment6, Subject of amendment (1) Drawings. 7. Contents of the amendment (Among the 11 drawings, Figures 1 to 4 will be inscribed on separate sheets. (No change in content) 8. List of attached documents (1) Engraved drawings... ...Song...-
Songs and songs...1 or more

Claims (1)

【特許請求の範囲】[Claims] マイクロ波共振空胴、この空胴内に形成されるマイクロ
波電界の方向が、ランプ中心軸に対し、ほぼ平行となる
位置に配設された無電極ランプを備え、かつ上記ランプ
中心軸に直交する方向よりランプ冷却風が送られている
マイクロ波放電光源装置に配設される無電極放電ランプ
において、ランプ壁面より上記マイクロ波電界と平行と
なる方向に凸部を突出させたことを特徴とする無電極放
電ランプ。
A microwave resonant cavity, comprising an electrodeless lamp disposed in a position where the direction of the microwave electric field formed within the cavity is approximately parallel to the central axis of the lamp, and perpendicular to the central axis of the lamp. In an electrodeless discharge lamp disposed in a microwave discharge light source device in which lamp cooling air is blown from a direction in which lamp cooling air is blown, the lamp is characterized in that a convex portion is protruded from a wall surface of the lamp in a direction parallel to the microwave electric field. electrodeless discharge lamp.
JP7227687A 1987-03-26 1987-03-26 Electrode-free discharge lamp Pending JPS63237303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227687A JPS63237303A (en) 1987-03-26 1987-03-26 Electrode-free discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227687A JPS63237303A (en) 1987-03-26 1987-03-26 Electrode-free discharge lamp

Publications (1)

Publication Number Publication Date
JPS63237303A true JPS63237303A (en) 1988-10-03

Family

ID=13484600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227687A Pending JPS63237303A (en) 1987-03-26 1987-03-26 Electrode-free discharge lamp

Country Status (1)

Country Link
JP (1) JPS63237303A (en)

Similar Documents

Publication Publication Date Title
EP0840354B1 (en) High frequency discharge energy supply means and high frequency electrodeless discharge lamp device
US4975625A (en) Electrodeless lamp which couples to small bulb
RU2278482C1 (en) Electrode-less lighting system
JPH08148127A (en) Microwave discharge light source device
KR100393816B1 (en) Electrodeless discharge lamp using microwave
EP0457242B1 (en) Electrodeless HID lamp with microwave power coupler
CN100356504C (en) Electrodeless lighting system
JP3400796B2 (en) Electrodeless discharge lamp device
JPS63237303A (en) Electrode-free discharge lamp
US20020135322A1 (en) Electrodeless discharge lamp apparatus
JP2001338620A (en) Electrodeless discharge lamp device
US8405290B2 (en) Light source for microwave powered lamp
JPS63237302A (en) Microwave discharge light source unit
JPS60127697A (en) Microwave discharge light source
KR100748531B1 (en) Plasma lighting system having thin metallic flim resonator
JP2561902B2 (en) Microwave-excited electrodeless arc tube and method for manufacturing the same
KR100856779B1 (en) Electrodeless lighting system using microwave and resonator thereof
JPS6340802Y2 (en)
JPS608582B2 (en) Microwave discharge light source device
KR100788977B1 (en) Plasma lighting system having many-sideness column type resonator
JPS6236346B2 (en)
JP3178368B2 (en) High frequency electrodeless discharge lamp light reflector and high frequency electrodeless discharge lamp device
JPS645285Y2 (en)
JP2002164188A (en) Microwave electrodeless discharge lamp device
KR100400401B1 (en) Lighting apparatus for plasma lighting system