JPS63237023A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPS63237023A
JPS63237023A JP62072679A JP7267987A JPS63237023A JP S63237023 A JPS63237023 A JP S63237023A JP 62072679 A JP62072679 A JP 62072679A JP 7267987 A JP7267987 A JP 7267987A JP S63237023 A JPS63237023 A JP S63237023A
Authority
JP
Japan
Prior art keywords
leaf spring
mirror
displacement
approximately
optical scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62072679A
Other languages
Japanese (ja)
Inventor
Motoo Igari
素生 井狩
Yoshito Kato
加藤 由人
Yasuo Ishiguro
石黒 恭生
Nobuyuki Suzuki
信幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Works Ltd filed Critical Toyota Motor Corp
Priority to JP62072679A priority Critical patent/JPS63237023A/en
Publication of JPS63237023A publication Critical patent/JPS63237023A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical scanner which has a semi-permanent life, is small in size and low in cost by bending both sides of a mirror mounting part of a leaf spring to directions opposite from each other so that both ends of the leaf spring are approximately paralleled and increasing and decreasing the distance between both ends of the leaf spring by an expanding and contracting mechanism thereby rotationally driving a mirror. CONSTITUTION:The mirror 2 for scanning light is mounted to approximately the central part of the leaf spring 1 and both sides of the mirror mounting part of the leaf spring 1 are bent in the directions opposite from each other so that both ends of the leaf spring are approximately paralleled. The expanding and contracting mechanism 3 to increase or decrease the distance between the two ends of the leaf spring 1 is provided so as to generate the motion in the rotating direction in the mirror 2. The leaf spring 1 is deformed and the mirror 2 rotates when compressive force is exerted to both ends of the buckled leaf spring 1 in the direction shown by arrows. The need for providing a sliding part is thereby eliminated and the life is semipermanent since there are no wearing parts. In addition; the scanner is reduced in size and is produced at the lower cost.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光をスキャニングするための光スキャナーに
関するものであり、レーザー光などをスキャニングする
のに適するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an optical scanner for scanning light, and is suitable for scanning laser light or the like.

(背景技術) 従来、光をスキャニングするための一般的な方法として
は、次の2つの方法が知られている。1つはポリゴンミ
ラーを用いる方法であり、例えば6・〜12角のポリゴ
ンミラー(多面鏡)をモータで回転駆動して、ミラー面
に照射された光の反射方向を変えることにより、光のス
キャニングを行うものである。この方法にあっては、ス
キャニング角度を大きくすることができ、非常に良好な
性能が得られるものであって、広く用いられている。
(Background Art) Conventionally, the following two methods are known as general methods for scanning light. One method is to use a polygon mirror. For example, a 6- to 12-sided polygon mirror (polygon mirror) is rotated by a motor and the direction of reflection of the light irradiated on the mirror surface is changed, thereby scanning the light. This is what we do. This method allows the scanning angle to be increased and provides very good performance, and is widely used.

しかしながら、ポリゴンミラーがコスト高になるので、
ポリゴンミラーを用いた光スキャナーは一般的に非常に
高価なものとなる。また、モータを用いてポリゴンミラ
ーを回転駆動しているので、モータの軸受の摩耗等によ
り寿命的にも限度がある。
However, since polygon mirrors are expensive,
Optical scanners using polygon mirrors are generally very expensive. Furthermore, since the polygon mirror is rotationally driven using a motor, there is a limit to its lifespan due to wear of the motor bearings, etc.

もう1つの方法はガルバノミラ−を用いる方法であり、
一対の永久磁石のステータとロータとを備え、ロータの
回転角を制御する一対の制御コイルを有するガルバノミ
ラ−を用いて光をスキャニングするものである。この方
法にあっては、ポリゴンミラーを用いる方法よりは低コ
ストであるが、ガルバノミラ−が摺動部分を有するため
に、寿命的にはポリゴンミラーを用いる方法と余り変わ
らなかった。
Another method is to use a galvanometer mirror,
It scans light using a galvanometer mirror that includes a pair of permanent magnet stator and rotor, and a pair of control coils that control the rotation angle of the rotor. This method is lower in cost than the method using a polygon mirror, but because the galvanometer mirror has a sliding part, its lifespan is not much different from the method using a polygon mirror.

(発明の目的) 本発明は上述のような点に鑑みてなされたものであり、
その目的とするところは、寿命が半永久的であり、小型
で且つ低コストな光スキャナーを提供するにある。
(Object of the invention) The present invention has been made in view of the above points, and
The purpose is to provide an optical scanner that has a semi-permanent life, is small in size, and is low in cost.

(発明の開示) 本発明に係る光スキャナーにあっては、添付図面に示す
ように、板ばね1の略中央部に光をスキャニングするた
めのミラー2を装着し、前記板ばね1の両端部が略平行
となるように前記板ばね1のミラー装着部分の両側を互
いに反対方向に折曲し、前記ミラー2に回転方向の運動
が生じるように前記板ばね1の両端部間の距離を伸縮せ
しめる伸縮fii3を備えて成るものである。
(Disclosure of the Invention) In the optical scanner according to the present invention, as shown in the attached drawings, a mirror 2 for scanning light is attached to a substantially central portion of a leaf spring 1, and a mirror 2 for scanning light is attached to both ends of the leaf spring 1. Both sides of the mirror mounting portion of the leaf spring 1 are bent in opposite directions so that the mirrors are substantially parallel, and the distance between both ends of the leaf spring 1 is expanded or contracted so that the mirror 2 moves in the rotational direction. It is equipped with a telescopic fii3 that allows the user to move.

第1図は本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

本実施例にあっては、ミラー2と同幅の板ばね1の略中
央部にミラー2を装着し、ミラー装着部の両側を互いに
反対方向に鈍角に折曲して、板ばね1の両端部を略平行
となるようにしている。このように加工された座屈板ば
ね1の両端部に第1図の矢印に示す方向に圧縮力を加え
ると、板ばね1が変形してミラー2が回転する。第2図
はこの動作を説明するための図である。第2図において
、実線は板ばね1の両端部から均等にΔyの変位が与え
られた状態、を示しており、破線は前記変位Δyが与え
られていない自然な状態を示している。
In this embodiment, the mirror 2 is mounted approximately at the center of a leaf spring 1 having the same width as the mirror 2, and both ends of the leaf spring 1 are bent by bending both sides of the mirror mounting part at obtuse angles in opposite directions. The parts are made to be approximately parallel. When a compressive force is applied to both ends of the buckled leaf spring 1 processed in this way in the direction shown by the arrow in FIG. 1, the leaf spring 1 is deformed and the mirror 2 is rotated. FIG. 2 is a diagram for explaining this operation. In FIG. 2, the solid line shows a state in which a displacement of Δy is equally applied from both ends of the leaf spring 1, and the broken line shows a natural state in which the displacement Δy is not applied.

ミラー2の略中央部には例えばスポットビーム状の入射
光が照射されており、変位Δyが与えられていない自然
な状態においては、第2図の破線で示す方向の反射光が
得られる。一方、変位Δyが与えられた状態においては
、第2図の実線で示す方向の反射光が得られる。これに
よって光のスキャニングが行なわれるものであり、スキ
ャニングの角度は変位Δyに応じて変化する。なお、第
2図に示す例では、上下方向から均等に変位Δyを与え
ているので、ミラー2はミラー中心Cを軸として回転す
ることになる。
For example, incident light in the form of a spot beam is irradiated approximately at the center of the mirror 2, and in a natural state where no displacement Δy is applied, reflected light is obtained in the direction shown by the broken line in FIG. On the other hand, when the displacement Δy is applied, reflected light in the direction shown by the solid line in FIG. 2 is obtained. This performs light scanning, and the scanning angle changes depending on the displacement Δy. In the example shown in FIG. 2, since the displacement Δy is applied evenly from above and below, the mirror 2 rotates about the mirror center C as an axis.

第3図(、)(b)は他の実施例の側面図及び正面図で
あり、板ばね1の幅すをミラー2の幅誓よりも細くしで
ある0図に示す各部の寸法が、例えば、板ばね1の厚さ
t=o、1(鵜餉〕、幅b= 1 、6 (+sn+)
、板ばね1の両端部の飛開距離d= 2 (mm)、板
ばね1の両端部間の自然な状態での長さII=22 (
n…〕、ミラー2の厚さa= 1 (mm)、長さ1=
 6 (nn+)、幅−= 4 (+1〕で、板ばね1
の材質がリン青銅である場合において、板ばね1の両端
部に与える圧縮変位量Δyが各々0 、2 (n+m)
であるとしたときに、ミラー2の回転角θは約9°とな
り、実用的な光スキャナーであることが分かった。
3(a) and 3(b) are a side view and a front view of another embodiment, in which the width of the leaf spring 1 is made thinner than the width of the mirror 2. The dimensions of each part shown in FIG. For example, the thickness of the leaf spring 1 is t = o, 1 (uncoated), the width b = 1, 6 (+sn+)
, jump distance d between both ends of the leaf spring 1 = 2 (mm), length II in the natural state between both ends of the leaf spring 1 = 22 (
n...], thickness a of mirror 2 = 1 (mm), length 1 =
6 (nn+), width -= 4 (+1), leaf spring 1
When the material of is phosphor bronze, the amount of compressive displacement Δy given to both ends of the leaf spring 1 is 0 and 2 (n+m), respectively.
When this is assumed, the rotation angle θ of the mirror 2 is approximately 9°, and it has been found that this is a practical optical scanner.

なお、実施例ではミラー中心Cを軸にしてミラー2を回
転させるために、板ばね1の形状を上下対称形とし、上
下両側から同じ量の圧縮を行っているが、ミラー2を回
転させれば良いだけならば、板ばね1の一端部を固定し
て、他端部のみを変位させても良いし、また板ばね1の
形状を上工具なる形状としても良いことは言うまでもな
い。
In the embodiment, in order to rotate the mirror 2 around the mirror center C, the shape of the leaf spring 1 is vertically symmetrical, and the same amount of compression is applied from both the upper and lower sides. It goes without saying that if it is only necessary, one end of the leaf spring 1 may be fixed and only the other end may be displaced, or the shape of the leaf spring 1 may be shaped like an upper tool.

次に、板ばね1に変位Δyを与えるための具体的な手段
としては種々のものが考えられ、例えば、電磁ソレノイ
ドや、ボイスコイル、リニアモータ等を用いることがで
きるが、最も小型化が容易で高速応答が可能な伸縮機構
の例を第4図に示す。
Next, various methods can be considered as specific means for applying the displacement Δy to the leaf spring 1. For example, an electromagnetic solenoid, a voice coil, a linear motor, etc. can be used, but miniaturization is the easiest. An example of a telescoping mechanism capable of high-speed response is shown in Fig. 4.

同図に示す伸縮機構3は、電気信号を伸縮運動に変換す
る積層圧電素子4と、積層圧電素子4の伸縮運動の変位
を拡大する変位拡大機構5とから成る。積層圧電素子4
は、圧電逆効果を利用したちので、厚みの薄い圧電素子
を多数積層し、それに電界を掛けることにより、電界の
大きさに比例して積層方向に変位を生じるアクチュエー
タである。
The expansion/contraction mechanism 3 shown in the figure is composed of a laminated piezoelectric element 4 that converts an electric signal into an expansion/contraction motion, and a displacement amplification mechanism 5 that magnifies the displacement of the expansion/contraction movement of the laminated piezoelectric element 4. Laminated piezoelectric element 4
is an actuator that utilizes the piezoelectric inverse effect, so by stacking a large number of thin piezoelectric elements and applying an electric field to them, displacement occurs in the stacking direction in proportion to the magnitude of the electric field.

ところが、積層圧電素子4の変位量自体は、長さが20
 (mm)程度のもので10〜20μ納程度しか得られ
ないため、変位を拡大するための機構が必要になってく
る。第4図に示す変位拡大機fiM5は、可視性を有す
る成型品よりなり、積層圧電素子4の一端部を当接され
た略コ字状の固定部6と、一対の略し字状をなすアーム
7a、7bと、固定部6とアーム7a、7bとをつなぐ
薄肉の支点部8a、8bと、各アーム7 a、 7 b
の支点部8 a 、 8 bに近い側の端部を連結して
′f?tW1圧電素子4の他端部に当接する略コ字状の
可動部9とを一体的に成型して成るものである。積層圧
電素子4の両側に設けられた電極E、、E2に電圧を印
加して電界を加えると、積層圧電素子4に′ra層方向
の伸びを生じ、可動部9が図において下方に変位するの
で、支点部8a。
However, the amount of displacement itself of the laminated piezoelectric element 4 is limited to a length of 20
(mm), it is only possible to obtain a displacement of about 10 to 20 μm, so a mechanism for enlarging the displacement is required. The displacement magnifying machine fiM5 shown in FIG. 4 is made of a visible molded product, and includes a substantially U-shaped fixing part 6 that abuts one end of the laminated piezoelectric element 4, and a pair of arms forming an abbreviated letter shape. 7a, 7b, thin fulcrum parts 8a, 8b connecting the fixed part 6 and arms 7a, 7b, and each arm 7a, 7b.
'f?' by connecting the ends near the fulcrum parts 8a and 8b of 'f? It is formed by integrally molding a substantially U-shaped movable part 9 that abuts the other end of the tW1 piezoelectric element 4. When a voltage is applied to the electrodes E, E2 provided on both sides of the laminated piezoelectric element 4 to apply an electric field, the laminated piezoelectric element 4 stretches in the 'ra layer direction, and the movable part 9 is displaced downward in the figure. Therefore, the fulcrum part 8a.

8bを中心にしてアーム7a、7bが矢印で示す方向に
変位する。このとき、可動部9の変位は“′てこ′の原
理により拡大され、アーム7a、7bの上端部における
変位は大きくなる。各アーム7a、7bの上端部には板
ばね1の両端部が夫々固定されており、アーム7a、7
bが矢印で示す方向に変位することにより、板ばね1の
両端部間の距離は圧縮される。
Arms 7a and 7b are displaced in the direction shown by the arrow with 8b as the center. At this time, the displacement of the movable part 9 is magnified by the "lever" principle, and the displacement at the upper ends of the arms 7a, 7b becomes larger.Both ends of the leaf spring 1 are attached to the upper ends of the arms 7a, 7b, respectively. It is fixed, and the arms 7a, 7
By displacing b in the direction indicated by the arrow, the distance between both ends of the leaf spring 1 is compressed.

(発明の効果) 上述のように本発明にあっては、板ばねの略中央部に光
をスキャニングするためのミラーを装着し、この板ばね
におけるミラー装着部の両側を互いに反対方向に折曲し
て板ばねの両端部を略平行とし、板ばねの両端部間の距
離を伸縮Ia構によって伸縮せしめることによりミラー
を回転駆動するようにしたものであるから、従来のポリ
ゴンミラーやガルバノミラ−を用いる光スキャナーの場
なのように摺動部分を設ける必要がなく、摩耗する部分
が無いので、寿命は半永久的であるという効果があり、
また、所定形状に加工された板ばねと゛その伸wJ機構
とでミラーの駆動R搭を構成できるので、小型で且つ安
価に製作することができるという効果がある。
(Effects of the Invention) As described above, in the present invention, a mirror for scanning light is mounted approximately in the center of a leaf spring, and both sides of the mirror mounting portion of the leaf spring are bent in opposite directions. The two ends of the leaf spring are made substantially parallel, and the mirror is rotated by expanding and contracting the distance between the two ends of the leaf spring using an expansion/contraction Ia mechanism, which makes it possible to drive the mirror rotationally. There is no need to provide sliding parts like in optical scanners, and there are no parts that wear out, so it has the effect of a semi-permanent lifespan.
Further, since the mirror drive R tower can be constructed from a leaf spring processed into a predetermined shape and its extension WJ mechanism, it is possible to manufacture the mirror in a small size and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の斜視図、第2図は同上の動
作説明図、第3図(a)は本発明の池の実施例の側面図
、同図(b)は同上の正面図、第・1図は本発明に用い
る伸縮機構の一例を示す斜視図である。 1は板ばね、2はミラー、3は伸縮機構である。
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the same operation as above, FIG. 3(a) is a side view of an embodiment of the pond of the present invention, and FIG. The front view and FIG. 1 are perspective views showing an example of the telescoping mechanism used in the present invention. 1 is a leaf spring, 2 is a mirror, and 3 is an expansion/contraction mechanism.

Claims (2)

【特許請求の範囲】[Claims] (1)板ばねの略中央部に光をスキャニングするための
ミラーを装着し、前記板ばねの両端部が略平行となるよ
うに前記板ばねのミラー装着部分の両側を互いに反対方
向に折曲し、前記ミラーに回転方向の運動が生じるよう
に前記板ばねの両端部間の距離を伸縮せしめる伸縮機構
を備えて成ることを特徴とする光スキャナー。
(1) A mirror for scanning light is attached to approximately the center of the leaf spring, and both sides of the mirror-attached portion of the leaf spring are bent in opposite directions so that both ends of the leaf spring are approximately parallel. An optical scanner comprising: an expansion mechanism that expands and contracts the distance between both ends of the leaf spring so that the mirror moves in a rotational direction.
(2)前記伸縮機構は、電気信号にて変位を生じる積層
圧電素子と、積層圧電素子の変位を拡大する変位拡大機
構とから成ることを特徴とする特許請求の範囲第1項記
載の光スキャナー。
(2) The optical scanner according to claim 1, wherein the expansion/contraction mechanism includes a laminated piezoelectric element that generates displacement in response to an electric signal, and a displacement amplification mechanism that magnifies the displacement of the laminated piezoelectric element. .
JP62072679A 1987-03-25 1987-03-25 Optical scanner Pending JPS63237023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072679A JPS63237023A (en) 1987-03-25 1987-03-25 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072679A JPS63237023A (en) 1987-03-25 1987-03-25 Optical scanner

Publications (1)

Publication Number Publication Date
JPS63237023A true JPS63237023A (en) 1988-10-03

Family

ID=13496298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072679A Pending JPS63237023A (en) 1987-03-25 1987-03-25 Optical scanner

Country Status (1)

Country Link
JP (1) JPS63237023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013592A (en) * 2009-07-06 2011-01-20 Nec Corp Optical scanning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013592A (en) * 2009-07-06 2011-01-20 Nec Corp Optical scanning device

Similar Documents

Publication Publication Date Title
JP4492252B2 (en) Actuator
US7926369B2 (en) Actuator
JP4277921B2 (en) Actuator, optical scanner and image forming apparatus
JP5783568B2 (en) Micro scanner
EP3164755B1 (en) Micro-optical electromechanical device and method for manufacturing it
JP3759598B2 (en) Actuator
JP2008542849A (en) MEMS device, tilted micromirror, light control method, and mirror formation method
JP4428741B2 (en) Galvano mirror actuator
JP5757034B2 (en) Micro scanner
US6999215B2 (en) Multilayered oscillating functional surface
US7324252B2 (en) Electromagnetic scanning micro-mirror and optical scanning device using the same
JP2001004952A (en) Optical deflector
JP4197196B2 (en) Stage using piezoelectric actuator or ultrasonic motor, and electronic device and printing apparatus using this stage
JPH09133887A (en) Light beam deflecting optical device
US20230103088A1 (en) Distally Actuated Scanning Mirror
JPS63237023A (en) Optical scanner
JP2007168065A (en) Structure of vertical comb electrode, micro light scanner provided with this, micro-actuator and electrostatic sensor
JPH0646207A (en) Piezoelectric drive micro scanner
JPH071614Y2 (en) Optical scanner
JPS6370823A (en) Optical scanner
JP2006167860A (en) Actuator
JP2007505335A (en) Micromirror or microlens that can be electrically rotated
JP6092589B2 (en) Optical deflector
JPH0610338Y2 (en) Light scan
US8581470B2 (en) Electrode comb, micromechanical component, and method for producing an electrode comb or a micromechanical component