JPS63236721A - Production of glass particles - Google Patents

Production of glass particles

Info

Publication number
JPS63236721A
JPS63236721A JP7245287A JP7245287A JPS63236721A JP S63236721 A JPS63236721 A JP S63236721A JP 7245287 A JP7245287 A JP 7245287A JP 7245287 A JP7245287 A JP 7245287A JP S63236721 A JPS63236721 A JP S63236721A
Authority
JP
Japan
Prior art keywords
glass
glass particles
particles
cylinder
glass powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7245287A
Other languages
Japanese (ja)
Inventor
Keizou Makio
槙尾 圭造
Masayuki Ishihara
政行 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7245287A priority Critical patent/JPS63236721A/en
Publication of JPS63236721A publication Critical patent/JPS63236721A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • C03B19/1025Bead furnaces or burners
    • C03B19/103Fluidised-bed furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To obtain glass particles which have small specific surface area and give good sintered products with a small amount of a binder included, by heating a glass powder in the temperature range from the softening point to the phase-transition point so as to become round. CONSTITUTION:A cylinder 2 is inserted into a vertical type calcinating furnace 1 which is shorter than the cylinder 2. While glass particles 6 are fed by the feeder 3 at the top of the cylinder 2, air is blown from the bottom upward so that the particles are fluidized and fly down through the cylinder 2. Thus, the glass particles are heated by the furnace 1 in the temperature range from the softening point to the phase transition point and their surfaces are made round. The resultant particles 7 has small specific surface area and are converted into glass-sintered products such as base plates for electronic parts with a reduced amount of a binder, because the glass particles have good drapeability.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、たとえば、ガラス焼結体を得るために用い
られるガラス粒子の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing glass particles used, for example, to obtain a glass sintered body.

〔背景技術〕[Background technology]

近年、電子部品の基板材料としてガラス系の低温焼成セ
ラミック材料が注目されている。従来、このような材料
は、粒子状ガラスに結合剤(バインダー)を含む添加剤
を添加し混合して得た泥しよう(スラリー)を所望の形
に成形してグリーン成形体を形成たのち、このグリーン
シートを焼成して製品にされるようになっている。
In recent years, glass-based low-temperature fired ceramic materials have attracted attention as substrate materials for electronic components. Conventionally, such materials are made by adding and mixing additives including binders to particulate glass, forming a slurry into a desired shape, and then forming a green molded body. This green sheet is fired and made into a product.

粒子状ガラスとしては、ガラス組成物をボールミルなど
で粉砕して得たガラス粉末が用いられている。ところが
、このようなガラス粉末は、結合剤との馴染みが悪いた
め、混合が不十分であると、グリーン成形体の乾燥工程
において、クランクが発生したり、焼成後の製品に隙間
が生じたりすると言う問題があった。一方、結合剤の配
合量を増やすようにすれば、上記問題は解決できるので
あるが、結合剤の配合量が多いと焼成時の寸法収縮率が
太き(なり、製品の寸法精度が悪くなるという問題が生
じる恐れがあった。
As the particulate glass, a glass powder obtained by pulverizing a glass composition using a ball mill or the like is used. However, such glass powder does not mix well with the binder, so if the mixing is insufficient, cracks may occur during the drying process of the green molded product, or gaps may appear in the product after firing. There was a problem. On the other hand, the above problem can be solved by increasing the amount of binder blended, but if the amount of binder blended is large, the dimensional shrinkage rate during firing will increase (and the dimensional accuracy of the product will deteriorate). There was a possibility that this problem would arise.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みて、結合剤の配合量
を少なくできて、しかも、製品として良好なガラスセラ
ミック焼結体を得ることができるガラス粒子の製法を提
供することを目的としている。
In view of these circumstances, it is an object of the present invention to provide a method for producing glass particles that can reduce the amount of binder blended and also produce a glass ceramic sintered body that is good as a product. .

〔発明の開示〕[Disclosure of the invention]

発明者らは、このような目的を達成するために、種々研
究を重ねた。そして、ガラス粉末の形状をできるだけ球
状にして比表面積を小さくすれば、結合剤が馴染みやす
くなると言うことに着目した。しかし、ボールミルなど
によって球状のガラス粉末を得ることは、非常に時間が
かかるとヒもに、徐々にボールの径を小さくしていく必
要があり、工業的に実施することは不可能である。そこ
で、鋭意検討を重ねた結果、この発明を完成するに至っ
た。
The inventors have conducted various studies in order to achieve such an objective. They focused on the fact that if the shape of the glass powder is made as spherical as possible to reduce the specific surface area, the binder will be more compatible with it. However, obtaining spherical glass powder using a ball mill or the like takes a very long time and requires gradually reducing the diameter of the balls, which is impossible to implement industrially. As a result of extensive research, we have completed this invention.

したがって、この発明は、比表1面積が小さいガラス粒
子を得る方法であって、ガラス粉末をその軟化温度以上
相変態温度以下の温度で加熱してその表面に丸みを帯び
させるようにすることを特徴とするガラス粒子の製法を
要旨としている。
Therefore, the present invention provides a method for obtaining glass particles having a small area in the specific table, which involves heating glass powder at a temperature above its softening temperature and below its phase transformation temperature to round its surface. The main point is the manufacturing method of the characteristic glass particles.

以下に、この発明を、その実施例をあられす図面を参照
しつつ詳しく説明する。
Hereinafter, embodiments of the present invention will be explained in detail with reference to the accompanying drawings.

第1図は、この発明の製法を実施するにあたり使用する
装置の1実施例を模式的にあられしている。図にみるよ
うに、この装置は、竪型の焼成炉1を備え、焼成炉1に
は、焼成炉1の長さより長い筒体2が挿入されている。
FIG. 1 schematically shows one embodiment of the apparatus used to carry out the manufacturing method of the present invention. As shown in the figure, this apparatus includes a vertical firing furnace 1, into which a cylindrical body 2 longer than the length of the firing furnace 1 is inserted.

筒体2の上部入口には、ガラス粉末供給手段3の供給口
31が臨んでいて、供給口31から供給されたガラス粉
末6がこの筒体2内を通って焼成炉1内を落下し、筒体
2の下部出口からガラス粒子7となって受皿4に入るよ
うになっている。筒体2には、図示していないが、送風
手段が設けられていて、下部出口から上部入口に向かっ
て風を送るようになっている。この風によって、筒体2
内に供給されたガラス粉末6は、筒体2内を浮遊しつつ
軟化してその表面が丸みを帯びたガラス粒子7となって
受皿4まで落下してくるようになっている。つまり、こ
のように浮遊させることによって、ガラス粉末6を焼成
炉1内に所定時間停まらせるようにするとともに、ガラ
ス粉末6同士が筒体2内で引つついたりしないようにし
ている。風速は自由に変えることができるようになって
いて、ガラスの組成や粒径などによってガラス粉末が焼
成炉1内に停まっている時間(炉温時間)を自由に変え
ることができる。なお、炉温時間は、通常、数十秒から
数分程度の短い時間であって、短い時間で効率よくガラ
ス粒子7を得ることができる。ガラス粒子は、できるだ
け球状になっていることが好ましいが、ガラス粉末の角
張った部分が丸みを帯びたようになる程度でも構わない
A supply port 31 of the glass powder supply means 3 faces the upper entrance of the cylinder 2, and the glass powder 6 supplied from the supply port 31 passes through the cylinder 2 and falls inside the firing furnace 1. Glass particles 7 enter the saucer 4 from the lower outlet of the cylinder 2. Although not shown, the cylindrical body 2 is provided with an air blower, which sends air from the lower outlet toward the upper inlet. This wind causes the cylindrical body 2
The glass powder 6 supplied into the cylinder 2 softens while floating inside the cylinder 2, and falls to the saucer 4 as glass particles 7 with rounded surfaces. That is, by floating the glass powder 6 in this way, the glass powder 6 is kept in the firing furnace 1 for a predetermined period of time, and the glass powder 6 is prevented from being dragged together in the cylinder 2. The wind speed can be changed freely, and the time that the glass powder remains in the firing furnace 1 (furnace temperature time) can be changed freely depending on the glass composition, particle size, etc. Note that the furnace temperature time is usually a short time of several tens of seconds to several minutes, and the glass particles 7 can be obtained efficiently in a short time. It is preferable that the glass particles are as spherical as possible, but the angular parts of the glass powder may be rounded.

焼成炉1の形式は、とくに限定されず、電気炉でもガス
炉でも構わない□。焼成炉lの温度は、ガラス粉末6の
軟化温度(軟化点)より高くする。
The type of firing furnace 1 is not particularly limited, and may be an electric furnace or a gas furnace. The temperature of the firing furnace 1 is set higher than the softening temperature (softening point) of the glass powder 6.

しかも、ガラス粉末6の相変態(結晶化も含む)温度よ
り低い温度にすることが好ましい。このような温度に設
定することにより、ガラス粉末の物性を変えることなく
表面のみを丸みが帯びた状態にして比表面積を低下させ
ることができる。
Moreover, the temperature is preferably lower than the phase transformation (including crystallization) temperature of the glass powder 6. By setting the temperature to such a temperature, only the surface can be rounded and the specific surface area can be reduced without changing the physical properties of the glass powder.

筒体2は、焼成炉1の温度に耐え、ガラス粉末に化学的
に影響を及ぼさない材質ならば、と(に限定されないが
、石英ガラスチューブなどが好ましい。
The cylindrical body 2 is preferably made of a material that can withstand the temperature of the firing furnace 1 and does not chemically affect the glass powder, such as a quartz glass tube, but is not limited to this material.

ガラス粉末6は、たとえば、ガラス熔融物を水中に投入
し、急冷することにより得たガラスフリフト(水砕品)
を、ボールミル内に入れて粉砕するなどの方法によって
得られる。粉砕は、湿式。
The glass powder 6 is, for example, a glass flift (crushed product) obtained by pouring a glass melt into water and rapidly cooling it.
It can be obtained by a method such as putting it in a ball mill and pulverizing it. Grinding is wet.

乾式いずれでも構わない。Either dry method is fine.

このようにして得たガラス粒子7に、結合剤を可塑剤9
分散剤、溶剤などの他の添加剤とともに加えてボールミ
ルなどによって混合する。ガラス粒子は、比表面積が小
さくなって結合剤の馴染みがよくなっているので、結合
剤の添加量を少なくし、混合時間を短くしても、グリー
ン成形体の乾燥工程においてクラックが入ったりするこ
とがない。しかも、結合剤の配合量が少なくできるので
、焼結によって寸法変化が少ない。したがって、寸法精
度よく焼結体を得ることができる。
A binder is added to the glass particles 7 obtained in this way, and a plasticizer 9 is added to the glass particles 7.
It is added together with other additives such as dispersants and solvents and mixed using a ball mill or the like. Glass particles have a smaller specific surface area and are more compatible with the binder, so even if you reduce the amount of binder added and shorten the mixing time, cracks may occur during the drying process of green molded products. Never. Moreover, since the amount of binder compounded can be reduced, dimensional changes due to sintering are small. Therefore, a sintered body can be obtained with high dimensional accuracy.

結合剤としてはポリビニルブチラールltMtj<pV
B)やアクリル樹脂など、分散剤としては界面活性剤な
ど、可塑剤としてはフタル酸エステルなど、溶剤として
はトルエン、イソプロピルアルコールなどのアルコール
類、メチルエチルケトン(MEK>などが挙げられる。
As a binder, polyvinyl butyral ltMtj<pV
B) and acrylic resin, dispersants include surfactants, plasticizers include phthalate esters, solvents include alcohols such as toluene and isopropyl alcohol, and methyl ethyl ketone (MEK).

つぎに、実施例を詳しく説明する。Next, examples will be explained in detail.

(実施例1) ガラス軟化温度が575℃(ガラス1lhl)のガラス
粉末を用意した。このガラス粉末を上記した装置を用い
、590℃で加熱処理してガラス粒子へを得た。
(Example 1) Glass powder having a glass softening temperature of 575° C. (1 lhl of glass) was prepared. This glass powder was heat-treated at 590°C using the above-mentioned apparatus to obtain glass particles.

(実施例2) ガラス軟化温度が620℃(ガラス隘2)のガラス粉末
を用意した。このガラス粉末を上記した装置を用い、6
50℃で加熱処理してガラス粒子Bを得た。
(Example 2) Glass powder having a glass softening temperature of 620° C. (glass hole 2) was prepared. Using the above-mentioned apparatus, this glass powder was
Glass particles B were obtained by heat treatment at 50°C.

(実施例3) ガラス軟化温度が650°C(ガラスN[L3)のガラ
ス粉末を用意した。このガラス粉末を上記した装置を用
い、700℃で加熱処理してガラス粒子Cを得た。
(Example 3) Glass powder having a glass softening temperature of 650°C (glass N [L3) was prepared. This glass powder was heat-treated at 700°C using the above-mentioned apparatus to obtain glass particles C.

(実施例4) ガラス軟化温度が700℃(ガラスl1h4)のガラス
粉末を用意した。このガラス粉末を上記した装置を用い
、730℃で加熱処理してガラス粒子りを得た。
(Example 4) Glass powder having a glass softening temperature of 700° C. (glass l1h4) was prepared. This glass powder was heat-treated at 730° C. using the above-mentioned apparatus to obtain glass particles.

(比斂例1) ガラス軟化温度が575℃(ガラス魚1)のガラス粉末
を用意した。このガラス粉末を上記した装置を用い、5
30℃で加熱処理してガラス粒子Eを得た。
(Comparison Example 1) A glass powder having a glass softening temperature of 575° C. (Glass Fish 1) was prepared. Using the above-mentioned apparatus, this glass powder was
Glass particles E were obtained by heat treatment at 30°C.

(比較例2) ガラス軟化温度が620℃(ガラス隘2)のガラス粉末
を用意した。このガラス粉末を上記した装置を用い、5
50℃で加熱処理してガラス粒子Fを得た。
(Comparative Example 2) Glass powder having a glass softening temperature of 620° C. (glass hole 2) was prepared. Using the above-mentioned apparatus, this glass powder was
Glass particles F were obtained by heat treatment at 50°C.

上記した実施例1〜4および比較例1. 2で用いたガ
ラス粉末の比表面積と得られたガラス粒子の比表面積を
測定し、その結果を第1表にしめした。なお、比表面積
は、公知のBET法により求めた。
Examples 1 to 4 and Comparative Example 1 described above. The specific surface area of the glass powder used in 2 and the specific surface area of the obtained glass particles were measured, and the results are shown in Table 1. Note that the specific surface area was determined by the known BET method.

第1表にみるように、この発明の製法によって得られた
実施例1〜4のガラス粒子は、原料のガラス粉末に比べ
ていずれも比表面積が小さくなっている。しかし、比較
例1,2のガラス粒子は、いずれも原料のガラス粉末と
比表面積が全く変わらなかった。
As shown in Table 1, the glass particles of Examples 1 to 4 obtained by the production method of the present invention all have a smaller specific surface area than the raw material glass powder. However, the glass particles of Comparative Examples 1 and 2 had no difference in specific surface area from the raw material glass powder.

つぎに、実施例1〜4および比較例1,2において得た
ガラス粒子A〜Fを用い、それぞれのガラス粒子に第2
表にみるような割合で結合剤、可塑剤、溶剤を加え、ボ
ールミルで混合゛して泥しよう (スラリー)を得た。
Next, using the glass particles A to F obtained in Examples 1 to 4 and Comparative Examples 1 and 2, a second
A binder, plasticizer, and solvent were added in the proportions shown in the table and mixed in a ball mill to obtain a slurry.

この泥しようを真空下で脱泡したのち、ドクターブレー
ド法によってテープ成形を行い、グリーンシートを得た
。このグリーンシートを自然乾燥させたのち、クランク
の有無を目視により調べた。また、このグリーンシート
の引っ張り強度も測定した。
After degassing this slurry under vacuum, it was tape-molded using a doctor blade method to obtain a green sheet. After the green sheet was air-dried, the presence or absence of a crank was visually inspected. The tensile strength of this green sheet was also measured.

このグリーンシートを焼成して焼結基板を得たのち、そ
の収縮率および吸水率を測定した。
After firing this green sheet to obtain a sintered substrate, its shrinkage rate and water absorption rate were measured.

上記測定で得たクランクの有無、グリーンシートの引っ
張り強度、焼結基板の収縮率および吸水率を前述した結
合剤などの配合割合と併せて第2表にしめした。
The presence or absence of cranks, the tensile strength of the green sheet, the shrinkage rate and water absorption rate of the sintered substrate obtained in the above measurements are shown in Table 2 together with the blending ratio of the binder and the like mentioned above.

第2表にみるように、実施例、1〜4で得られたガラス
粒子A−Dは、結合剤の配合量を比較例1.2で得られ
たガラス粒子E、Fの場合と同量にしても、グリーンシ
ートにクランクが発生することがない、しかも、引っ張
り強度、収縮率、吸水率の全ての点でガラス粒子E、F
より優れている。すなわち、この発明の製法を用いて比
表面積を小さくしなければ、結合剤の配合量の馴染みが
悪いことがよく判る。
As shown in Table 2, the glass particles A-D obtained in Examples 1 to 4 contained the same amount of binder as the glass particles E and F obtained in Comparative Example 1.2. However, no cranking occurs in the green sheet, and glass particles E and F are superior in terms of tensile strength, shrinkage rate, and water absorption rate.
Better. That is, it is clear that unless the specific surface area is reduced using the production method of the present invention, the blending amount of the binder will be inconsistent.

この発明にかかるガラス粒子の製法を用いて得られるガ
ラス焼結体は、上記実施例のような基板状のものに限ら
ない。他の成形品でも構わない。
The glass sintered body obtained using the method for producing glass particles according to the present invention is not limited to the substrate-like body as in the above embodiment. Other molded products may also be used.

成形法もドクターブレード法に限定されない、製造装置
も上記の実施例のものに限定されない。
The molding method is not limited to the doctor blade method, and the manufacturing apparatus is not limited to that of the above embodiments.

〔発明の効果〕〔Effect of the invention〕

この発明にかかるガラス粒子の製法は、以上のように、
ガラス粉末をその軟化温度以上相変態温度以下の温度で
加熱してその表面に丸みを帯びさせるようにするので、
結合剤の配合量を少なくでき、しかも、製品として良好
なガラスセラミック焼結体を得ることができるガラス粒
子が、効率良く得られる。
The method for producing glass particles according to the present invention is as described above.
The glass powder is heated at a temperature above its softening temperature and below its phase transformation temperature to make its surface rounded.
Glass particles can be efficiently obtained in which the amount of binder added can be reduced and glass ceramic sintered bodies of good quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製法を行うために用いられる装置を
説明する模式図である。
FIG. 1 is a schematic diagram illustrating an apparatus used for carrying out the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)比表面積が小さいガラス粒子を得る方法であって
、ガラス粉末をその軟化温度以上相変態温度以下の温度
で加熱してその表面に丸みを帯びさせるようにすること
を特徴とするガラス粒子の製法。
(1) A method for obtaining glass particles with a small specific surface area, which comprises heating glass powder at a temperature above its softening temperature and below its phase transformation temperature to round the surface of the glass powder. manufacturing method.
JP7245287A 1987-03-26 1987-03-26 Production of glass particles Pending JPS63236721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7245287A JPS63236721A (en) 1987-03-26 1987-03-26 Production of glass particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7245287A JPS63236721A (en) 1987-03-26 1987-03-26 Production of glass particles

Publications (1)

Publication Number Publication Date
JPS63236721A true JPS63236721A (en) 1988-10-03

Family

ID=13489703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7245287A Pending JPS63236721A (en) 1987-03-26 1987-03-26 Production of glass particles

Country Status (1)

Country Link
JP (1) JPS63236721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486004A2 (en) * 1990-11-16 1992-05-20 Mitsubishi Chemical Corporation Method for producing a high-purity silica glass powder
US5611833A (en) * 1992-08-26 1997-03-18 Mg Industries Method and apparatus for producing spheroidal glass particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486004A2 (en) * 1990-11-16 1992-05-20 Mitsubishi Chemical Corporation Method for producing a high-purity silica glass powder
US5611833A (en) * 1992-08-26 1997-03-18 Mg Industries Method and apparatus for producing spheroidal glass particles

Similar Documents

Publication Publication Date Title
CN110128129A (en) A kind of preparation method of low-loss ferrogarnet material
CN108727009A (en) A kind of high whiteness ceramic and its manufacturing process that translucency is strong
CN106348746B (en) A kind of preparation of laser sintered 3D printing molding YAG transparent ceramic powder
CN110483008A (en) A kind of slurry and its ceramic product preparation method for photocuring 3D printing ceramics
CN112004787A (en) Method for manufacturing ceramic articles
CN107793128A (en) Low expansion ceramic blank and its preparation method and application
JPS63236721A (en) Production of glass particles
US2463979A (en) Process of making porous refractory alumina material
JPH05254955A (en) Production of porous pzt ceramic
KR101786056B1 (en) Lead-free piezoelectric seramic for low temperature firing having core-shell structure and method of manufacturing the same
CN105541303B (en) A kind of new-energy automobile ternary series high-performance fuse porcelain tube
JPH11228219A (en) Production of high-density ito sintered compact utilizing ito recycled powder
CN114249592A (en) Preparation method of hard piezoelectric ceramic material
CN103145373B (en) Injection molded aggregate for high-frequency magnetic core and preparation method of aggregate
CN108911725A (en) A kind of ceramic for filtration and preparation method thereof that applied at elevated temperature performance is good
CN115784754B (en) Ceramic chopper and preparation method thereof
JP3213384B2 (en) Manufacturing method of quartz glass
TWI687388B (en) Clean water sludge reproduction-based light-weight pellet material, preparation method and manufacturing system thereof
JP3672598B2 (en) Plastic molding slurry composition, method for producing the plastic molding slurry composition, plastic molding clay obtained by subjecting the plastic molding slurry composition to dehydration and kneading, and use of the plastic molding clay Molding method of plastic molded body, plastic molded body molded by the molding method, and dried plastic molded body obtained by drying the plastic molded body
CN109437911A (en) A kind of flame heat spray carbide composite ceramic stick and preparation method thereof
CN117164330A (en) 3D printing ceramic slurry and preparation method thereof, and preparation method of ceramic material
SU728369A1 (en) Method of manufacturing dense ceramics from stabilized zirconium dioxide
JPS6060968A (en) Manufacture of ceramic sintered body
JPH03265543A (en) Production of glass powder and slurry for glass-ceramics substrate and production of glass-ceramics substrate
JPH0672043B2 (en) Manufacturing method of magnesia porcelain