JPS63236516A - Gas separating membrane - Google Patents

Gas separating membrane

Info

Publication number
JPS63236516A
JPS63236516A JP7283687A JP7283687A JPS63236516A JP S63236516 A JPS63236516 A JP S63236516A JP 7283687 A JP7283687 A JP 7283687A JP 7283687 A JP7283687 A JP 7283687A JP S63236516 A JPS63236516 A JP S63236516A
Authority
JP
Japan
Prior art keywords
membrane
gas separating
separating membrane
gas separation
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7283687A
Other languages
Japanese (ja)
Other versions
JP2504041B2 (en
Inventor
Minoru Yoshida
実 吉田
Yasuyori Sasaki
康順 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP62072836A priority Critical patent/JP2504041B2/en
Publication of JPS63236516A publication Critical patent/JPS63236516A/en
Application granted granted Critical
Publication of JP2504041B2 publication Critical patent/JP2504041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prepare a gas separating membrane of good membrane strength and superior oil resistance and chemical resistance by carrying a silicon group high molecular substance on an orientation porous high molecule substrate. CONSTITUTION:A gas separating membrane is prepared by such a method that silicon group high molecular substance such as dimethyl siloxane, trimethyl vinyl silane, trimethyl silyl propyne polymers or the like dissolved in an organic solvent is infiltrated into an orientation porous substrate formed by polytetrafluoroethylene, polypropylene or the like and carried by the substrate by removing the solvent. A gas separating membrane the prepared is of good membrane strength and superior oil resistance and chemical resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体分離膜に関する。更に詳しくは、酸素富
化膜などとして有効に使用される気体分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas separation membrane. More specifically, the present invention relates to a gas separation membrane that is effectively used as an oxygen enrichment membrane.

〔従来の技術〕[Conventional technology]

従来酸素富化膜には、ポリシロキサン、ポリカーボネー
ト、ポリビニルピリジン、ポリエステルなどの高分子材
料が素材として用いられている。
Conventionally, oxygen enrichment membranes have been made of polymeric materials such as polysiloxane, polycarbonate, polyvinylpyridine, and polyester.

ポリシロキサン系材料の場合には、酸素と窒素との分離
率が約2程度と小さいが、酸素透過係数が大きいため、
早くから実用化が進められている。
In the case of polysiloxane-based materials, the separation rate between oxygen and nitrogen is small at about 2, but the oxygen permeability coefficient is large, so
It has been put into practical use from an early stage.

ところで、実用に際しては、十分な酸素透過量を得るた
めに薄膜にする必要があるが、薄膜にすると今度は機械
的強度が小さくなるため、その性能が十分に発揮されな
いという矛盾がみられるようになる。例えば、分離率が
4.5と高く、酸素透過係数も4.5 X 10−’ 
Ql? (STP)cm/ cnf ・秒・cmHgと
かなり良い値を示すポリトリメチルビニルシランも、そ
れ単体では膜強度の大きい薄膜を得ることが国是である
By the way, in practical use, it is necessary to make the film thin in order to obtain a sufficient amount of oxygen permeation, but there is a contradiction that if the film is made thin, the mechanical strength will be reduced, and its performance will not be fully demonstrated. Become. For example, the separation rate is as high as 4.5, and the oxygen permeability coefficient is also 4.5 x 10-'
Ql? Polytrimethylvinylsilane, which exhibits a fairly good value of (STP) cm/cnf·sec·cmHg, is also a national policy to obtain a thin film with high film strength when used alone.

また、シリコン系高分子物質は、一般に有機溶剤やガソ
リンなどに膨潤し易い性質を有しているため、このよう
な雰囲気中にさらされる可能性のある用途、例えば省燃
費、排気ガスの減少を狙った自動車エンジンへの適用を
困難としている。
In addition, silicon-based polymer materials generally have the property of being easily swollen by organic solvents and gasoline, so they are suitable for applications where they may be exposed to such atmospheres, such as fuel efficiency and reduction of exhaust gas. This makes it difficult to apply it to the target automobile engine.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かかる現状に鑑み、シリコン系高分子物質を用いた気体
分離膜であって、−強度が強くしかも耐油・耐薬品性に
すぐれたものを求めて本発明者らは検討を重ねた結果、
シリコン系高分子物質を延伸多孔質高分子支持体に担持
せしめることにより。
In view of the current situation, the present inventors have conducted repeated studies in search of a gas separation membrane using a silicone-based polymer substance that is strong and has excellent oil and chemical resistance.
By supporting a silicon-based polymer substance on a stretched porous polymer support.

かかる課題が効果的に解決されることを見出した。It has been found that this problem can be effectively solved.

〔問題点を解決するための手段〕[Means for solving problems]

従って、本発明は気体分離膜に係り、この気体分離膜は
、延伸多孔質高分子支持体にシリコン系高分子物質を担
持せしめてなる。
Accordingly, the present invention relates to a gas separation membrane, which comprises a stretched porous polymer support supporting a silicon-based polymer material.

延伸多孔質支持体を形成する高分子物質としては、例え
ばポリテトラフルオロエチレンあるいはポリエチレン、
ポリプロピレンなどのポリオレフィンなどが用いられ、
これらの高分子物質から形成された延伸多孔質支持体は
、一般に約10〜数100μmの厚さのものとして用い
られる。
Examples of the polymer material forming the stretched porous support include polytetrafluoroethylene or polyethylene;
Polyolefins such as polypropylene are used,
Stretched porous supports formed from these polymeric materials are generally used with a thickness of about 10 to several 100 μm.

また、シリコン系高分子物質としては、例えばジメチル
シロキサン、トリメチルビニルシラン、トリメチルシリ
ルプロピンなどの重合体が用いられる。
Further, as the silicon-based polymer substance, for example, polymers such as dimethylsiloxane, trimethylvinylsilane, and trimethylsilylpropyne are used.

延伸多孔質高分子支持体へのシリコン系高分子物質の担
持は、一般に前者の約5〜80重量部に対し後者が約9
5〜20重量部の割合で、例えば次のような方法によっ
て行なうことができる。
The silicone-based polymer material is generally supported on the stretched porous polymer support in an amount of about 5 to 80 parts by weight for the former and about 9 parts by weight for the latter.
It can be carried out at a ratio of 5 to 20 parts by weight, for example, by the following method.

(1)予め延伸多孔質化させた高分子支持体へ。(1) To a polymer support that has been made porous by stretching in advance.

シリコン系高分子物質をトルエン、ジメチルホルムアミ
ド、メチルエチルケトン、塩化メチレン。
Silicon-based polymer substances include toluene, dimethylformamide, methyl ethyl ketone, and methylene chloride.

トリクロルエチレン、n−ヘキサン、キシレンなどに溶
解させた有機溶剤溶液として含浸させ、有機溶剤を除去
することによって担持させる方法(2)支持体形成用高
分子物質粉末にシリコン系高分子物質または上記の如き
その有機溶剤溶液を密封条件下で混合し、押出し、引抜
き、ロール圧延、焼成などの方法を単独または組合せて
適用し、適当な段階で用いられた有機溶剤を除去するこ
とにより・延伸多孔質化すると共にそこにシリコン系高
分子物質を担持させる方法 支持体として延伸多孔質体を用いるのは、この多孔質体
が他の方法によって得られた多孔質体よりも1機械的強
度の点においてすぐれているためである。一般には、多
孔質化することにより、その材料の強度が低下するのが
普通であるが、延伸法による多孔質化では強度低下がみ
られず、また柔軟性をも有するため、モジュール化する
際その形状に応じて組み込む場合に有効である。
A method of impregnating it as an organic solvent solution dissolved in trichloroethylene, n-hexane, xylene, etc., and then supporting it by removing the organic solvent. By mixing the organic solvent solution under sealed conditions, applying methods such as extrusion, drawing, rolling, calcination, etc. alone or in combination, and removing the organic solvent used at an appropriate stage, a stretched porous structure is formed. The reason why a stretched porous material is used as a support is that this porous material has a higher mechanical strength than porous materials obtained by other methods. This is because it is excellent. Generally, when the material is made porous, the strength of the material decreases, but when the material is made porous by stretching, there is no decrease in strength, and it also has flexibility, so it is useful for making it into modules. This is effective when incorporating it according to its shape.

延伸多孔質体を用いることの他の利点としては。Other advantages of using a stretched porous body include:

加工方法によって高空隙率のものが得られることがtげ
られる。即ち、最高で98%の高空隙率のもの迄得られ
るため、膜の実質的透過面積が大きくとれ、rIX材の
物性および気体分離性能によって空隙を調整することで
、適切な膜を得ることができる。
It is possible to obtain a material with a high porosity depending on the processing method. In other words, since a high porosity of up to 98% can be obtained, the effective permeation area of the membrane can be large, and by adjusting the porosity depending on the physical properties and gas separation performance of the rIX material, an appropriate membrane can be obtained. can.

〔発明の効果〕〔Effect of the invention〕

本発明に係る複合化された気体分離膜は、従来の多孔質
体の複合化方法である単なるコーティング方法あるいは
積層方法とは異なり、多孔質体の空隙部分に膜材を一体
化させる構造をとっているため、従来の複合化多孔質体
にみられた膜材の剥離あるいは剥離防止用接着処理によ
る膜機能の低下などがみられない。
The composite gas separation membrane according to the present invention has a structure in which the membrane material is integrated into the voids of the porous body, unlike the conventional method of composite porous bodies, which is a simple coating method or a lamination method. Therefore, there is no deterioration in membrane function due to peeling of the membrane material or adhesive treatment to prevent peeling, which was observed in conventional composite porous materials.

また、支持体の多孔質化構造は、そこに担持させた膜材
の架橋的な役割をも果たしているため、膜材の流出防止
、形状保持などにも有効である。
In addition, the porous structure of the support also plays a role of crosslinking the membrane material supported thereon, and is therefore effective in preventing the membrane material from flowing out and maintaining its shape.

このようにして1本発明に係る気体分離膜は、シリコン
系高分子物質が本来有する膜機能を実質的に損なうこと
なく、膜強度の著しい向上および耐油・耐溶剤性の改善
を達成せしめており、従って用途上の拡大が図れるなど
それによって得られる効果は大なるものがある。
In this way, the gas separation membrane according to the present invention achieves a significant improvement in membrane strength and oil and solvent resistance without substantially impairing the membrane functions inherent to silicone-based polymer substances. Therefore, there are great effects that can be obtained, such as the ability to expand the range of applications.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例1 予め延伸多孔質化した厚さ25μm、重さ5gのポリプ
ロピレンシート(セラニーズ社製品シェラガード)を、
ポリトリメチルシリルプロピンの10重ジメチルホルム
アミド溶液500g中に12時間浸漬した後、48時間
自然乾燥させ、更に減圧乾燥してジメチルホルムアミド
を除去した。
Example 1 A polypropylene sheet (Shelagard, a Celanese product) with a thickness of 25 μm and a weight of 5 g that had been stretched and made porous in advance was
The sample was immersed in 500 g of a 10-fold dimethylformamide solution of polytrimethylsilylpropyne for 12 hours, air-dried for 48 hours, and further dried under reduced pressure to remove dimethylformamide.

このポリトリメチルシリルプロピン含浸ポリプロピレン
シート(シート強度415kg/co?)について、圧
力法による気体分離膜としての評価を行ない。
This polytrimethylsilylpropyne-impregnated polypropylene sheet (sheet strength: 415 kg/co?) was evaluated as a gas separation membrane by a pressure method.

酸素と窒素とをそれぞれ単独で通過させたときの透過速
度から換算される透過係数を求め、その比から分離率を
算出した。
The permeability coefficient was calculated from the permeation rate when oxygen and nitrogen were passed through each separately, and the separation rate was calculated from the ratio.

酸素の透過係数: 3,7X10−”Cm’(STP)
cm/cj・秒・cmHg窒素との分離率:1.7 比較例1 ポリトリメチルシリルプロピンの10重量%ジメチルホ
ルムアミド溶液を平滑なガラス板に流延し、48時間自
然乾燥して得られた厚さ50μmのポリトリメチルシリ
ルプロピンシート(シート強度36kg/d)について
、実施例1と同様の膜性能の評価を行ない、次のような
結果を得た。
Oxygen permeability coefficient: 3,7X10-"Cm' (STP)
cm/cj・sec・cmHg Separation rate from nitrogen: 1.7 Comparative Example 1 A 10% by weight dimethylformamide solution of polytrimethylsilylpropyne was cast onto a smooth glass plate, and the thickness obtained by air drying for 48 hours. The membrane performance of a polytrimethylsilylpropyne sheet (sheet strength 36 kg/d) having a diameter of 50 μm was evaluated in the same manner as in Example 1, and the following results were obtained.

酸素の透過係数ニア、7X10−1cm’ (STP)
cm/Ci6秒・cmHg窒素との分離率:1.6 実施例2 ポリテトラフルオロエチレン粉末(三井・デュポン フ
ロロケミカル製品テフロン6−J) 100gに、第3
ブチルパーオキサイド0.15gを加えたポリジメチル
シロキサン(東しシリコン製品5)1410.シリコン
ガム)の10重景%塩化メチレン溶液300gを密封容
器中で混合し、この混合物を全重量が160gになる迄
自然乾燥させた後、20kg/cn?の圧力で押し固め
た。
Oxygen permeability coefficient near, 7X10-1cm' (STP)
cm/Ci 6 seconds/cmHg Separation rate from nitrogen: 1.6 Example 2 To 100 g of polytetrafluoroethylene powder (Mitsui DuPont fluorochemical product Teflon 6-J), the third
Polydimethylsiloxane containing 0.15 g of butyl peroxide (Toshi Silicone Product 5) 1410. 300 g of a 10% methylene chloride solution of silicone gum) was mixed in a sealed container, and the mixture was air-dried until the total weight became 160 g, and then 20 kg/cn? It was compacted with pressure.

この押し固めたものを、150kg/a+fの圧力下で
厚さIIIIQIのシート状物に押し出し、押出方向お
よびそれと直角方向にそれぞれ50%宛2軸延伸してか
ら40°Cで12時間減圧乾燥し、塩化メチレンを完全
に除去した。これを、180℃、60kg/cl、10
分間の条件下でプレス加硫し、金型に入れたまま、昇温
速度4℃/分で340℃迄昇温し、そのまま10分間加
熱した後急冷した。
This compacted material was extruded into a sheet with a thickness of IIIQI under a pressure of 150 kg/a+f, biaxially stretched by 50% in the extrusion direction and in a direction perpendicular to it, and then dried under reduced pressure at 40°C for 12 hours. , methylene chloride was completely removed. This was heated at 180℃, 60kg/cl, 10
Press vulcanization was carried out under conditions of 10 minutes, and the temperature was raised to 340°C at a temperature increase rate of 4°C/minute while in the mold, and after heating for 10 minutes, it was rapidly cooled.

得られたポリジメチルシロキサン担持ポリテトラフルオ
ロエチレンシート(シート強度300kg/al)につ
いて、実施例1と同様の膜性能評価を行ない、次のよう
な結果を得た。
The obtained polydimethylsiloxane-supported polytetrafluoroethylene sheet (sheet strength: 300 kg/al) was evaluated for membrane performance in the same manner as in Example 1, and the following results were obtained.

酸素の透過係数: 1.5X10−’cm3(STP)
cm/J・秒・ClllHg窒素との分離率:2.5 また、この含浸シートをガソリン中に24時間浸漬した
ときの体積変化率を測定すると、+5%の値が得られた
Oxygen permeability coefficient: 1.5X10-'cm3 (STP)
cm/J·sec·ClllHg Separation rate from nitrogen: 2.5 Further, when the volume change rate when this impregnated sheet was immersed in gasoline for 24 hours was measured, a value of +5% was obtained.

比較例2 ポリジメチルシロキサン(SH410) 100gに第
3ブチルパーオキサイド0.5gを加え、この混合物を
180℃、60kg/aJ、15分間の条件下で加硫成
形した。
Comparative Example 2 0.5 g of tertiary butyl peroxide was added to 100 g of polydimethylsiloxane (SH410), and the mixture was vulcanized and molded at 180° C., 60 kg/aJ, and 15 minutes.

得られた厚さ100μmのポリジメチルシロキサンシー
ト(シート強度58kg/aJ)について、実施例2と
同様の膜性能評価を行ない、次のような結果を得た。
The obtained polydimethylsiloxane sheet with a thickness of 100 μm (sheet strength: 58 kg/aJ) was evaluated for membrane performance in the same manner as in Example 2, and the following results were obtained.

酸素の透過係数ニア、2X10−am3(STP)am
/ ryl ・秒・cmHg窒素との分離率:2.2 体積変化率  : +114% 実施例3 ポリエチレン粉末(三井石油化学製品ハイゼックスミペ
ロンXM−220) 120gに、ポリジメチルシロキ
サンを5重量%、ポリトリメチルビニルシランを5重量
%それぞれ溶解させたトルエン溶液1200gを添加し
、密封容器中で130℃に加熱して混合し、次いで減圧
下でトルエンを完全に蒸発除去した後、185℃、 6
0kg/cdの条件下で厚さ2mmのシート状に一旦成
形し、急冷した。次に、このシート状物を、140℃に
加熱した間隔0.0511Iffiのロール間を通して
引き出し、徐冷した後、30℃の雰囲気中で50%延伸
し、105℃で20kg/airの圧力をかけてシート
状にプレスした。
Oxygen permeability coefficient near, 2X10-am3(STP)am
/ryl・sec・cmHg Separation rate from nitrogen: 2.2 Volume change rate: +114% Example 3 120 g of polyethylene powder (Mitsui Petrochemicals Hyzex Miperon XM-220) was mixed with 5% by weight of polydimethylsiloxane and Add 1200 g of a toluene solution in which 5% by weight of trimethylvinylsilane is dissolved, mix by heating to 130°C in a sealed container, then completely evaporate the toluene under reduced pressure, and then heat to 185°C.
It was once formed into a sheet with a thickness of 2 mm under conditions of 0 kg/cd, and then rapidly cooled. Next, this sheet-like material was pulled out through rolls heated to 140°C with a spacing of 0.0511 Iffi, slowly cooled, and then stretched by 50% in an atmosphere of 30°C, and a pressure of 20 kg/air was applied at 105°C. and pressed into a sheet.

このようにして得られたポリジメチルシロキサンおよび
ポリトリメチルビニルシラン担持ポリエチレンシート(
シート強度421kg/aJ)について、実施例1と同
様の膜性能評価を行ない5次のような結果を得た。
The thus obtained polydimethylsiloxane and polytrimethylvinylsilane supported polyethylene sheet (
Regarding the sheet strength (421 kg/aJ), the membrane performance was evaluated in the same manner as in Example 1, and the following results were obtained.

酸素の透過係数: 8.3X10−”cm’(STP)
am/a#・秒・cmHg窒素との分離率:3.5
Oxygen permeability coefficient: 8.3X10-"cm" (STP)
am/a#・sec・cmHg Separation rate from nitrogen: 3.5

Claims (1)

【特許請求の範囲】 1、延伸多孔質高分子支持体にシリコン系高分子物質を
担持せしめてなる気体分離膜。 2、延伸多孔質高分子支持体がポリテトラフルオロエチ
レン製である特許請求の範囲第1項記載の気体分離膜。 3、延伸多孔質高分子支持体がポリオレフィン製である
特許請求の範囲第1項記載の気体分離膜。 4、約5〜80重量部の延伸多孔質高分子支持体に対し
約95〜20重量部の割合でシリコン系高分子物質を担
持させた特許請求の範囲第1項記載の気体分離膜。 5、酸素富化膜として用いられる特許請求の範囲第1項
記載の気体分離膜。
[Claims] 1. A gas separation membrane comprising a stretched porous polymer support supporting a silicon-based polymer substance. 2. The gas separation membrane according to claim 1, wherein the stretched porous polymer support is made of polytetrafluoroethylene. 3. The gas separation membrane according to claim 1, wherein the stretched porous polymer support is made of polyolefin. 4. The gas separation membrane according to claim 1, wherein about 95 to 20 parts by weight of a silicon-based polymer material is supported on about 5 to 80 parts by weight of a stretched porous polymer support. 5. The gas separation membrane according to claim 1, which is used as an oxygen enrichment membrane.
JP62072836A 1987-03-25 1987-03-25 Gas separation membrane manufacturing method Expired - Lifetime JP2504041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072836A JP2504041B2 (en) 1987-03-25 1987-03-25 Gas separation membrane manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072836A JP2504041B2 (en) 1987-03-25 1987-03-25 Gas separation membrane manufacturing method

Publications (2)

Publication Number Publication Date
JPS63236516A true JPS63236516A (en) 1988-10-03
JP2504041B2 JP2504041B2 (en) 1996-06-05

Family

ID=13500892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072836A Expired - Lifetime JP2504041B2 (en) 1987-03-25 1987-03-25 Gas separation membrane manufacturing method

Country Status (1)

Country Link
JP (1) JP2504041B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123937A (en) * 1989-02-03 1992-06-23 Japan Gore-Tex Inc. Deaerating film and deaerating method
WO2004027916A1 (en) * 2002-09-20 2004-04-01 Nec Corporation Liquid fuel supply type of fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855005A (en) * 1981-09-28 1983-04-01 Mitsubishi Chem Ind Ltd Separating membrane for gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855005A (en) * 1981-09-28 1983-04-01 Mitsubishi Chem Ind Ltd Separating membrane for gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123937A (en) * 1989-02-03 1992-06-23 Japan Gore-Tex Inc. Deaerating film and deaerating method
WO2004027916A1 (en) * 2002-09-20 2004-04-01 Nec Corporation Liquid fuel supply type of fuel cell
CN100334767C (en) * 2002-09-20 2007-08-29 日本电气株式会社 Liquid fuel supply type of fuel cell
US7655343B2 (en) 2002-09-20 2010-02-02 Nec Corporation Liquid fuel supply type fuel cell

Also Published As

Publication number Publication date
JP2504041B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JP2622225B2 (en) Filtration membrane and method for producing the membrane
JPH07304887A (en) Composite membrane and its preparation
Yanagishita et al. Separation performance of polyimide composite membrane prepared by dip coating process
JPS6094106A (en) Manufacture of compound membrane
US20230415101A1 (en) Metal-organic framework material separation membrane, preparation method therefor, and use thereof
KR900002095B1 (en) Production of porous membrane
US4919694A (en) Selective gas permeation membranes and method of manufacturing them
JPS63236516A (en) Gas separating membrane
JPH02290230A (en) Composite polymer membrane for separating gas mixture and manufacture thereof
JPH0157614B2 (en)
EP0242069A2 (en) Semipermeable composite membranes produced from silicone water based emulsions applied to porous substrates
JPS58180206A (en) Production of selective permeable membrane
JPS61129008A (en) Composite membrane for separating gas and its preparation
JPS59199001A (en) Composite membrane for gas separation and its manufacture
JPS62183837A (en) Gas permeable membrane
Kononova et al. New polymer multilayer pervaporation membrane
JPH0262294B2 (en)
JPS586207A (en) Production of gas permselective composite membrane
JPS63278525A (en) Production of vapor-liquid separation membrane
JPS6256775B2 (en)
CN112691552A (en) Method for preparing high-performance organic gas separation membrane
JPH0419891B2 (en)
Suzuki et al. Grafting of siloxane on poly (styrene-co-maleic acid) and application of this grafting technique to a porous membrane for gas separation
JPH0453575B2 (en)
JPS60102901A (en) Permselective membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term