JPS63236261A - Storage battery - Google Patents

Storage battery

Info

Publication number
JPS63236261A
JPS63236261A JP62068308A JP6830887A JPS63236261A JP S63236261 A JPS63236261 A JP S63236261A JP 62068308 A JP62068308 A JP 62068308A JP 6830887 A JP6830887 A JP 6830887A JP S63236261 A JPS63236261 A JP S63236261A
Authority
JP
Japan
Prior art keywords
grid
lattice
active material
storage battery
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62068308A
Other languages
Japanese (ja)
Inventor
Genzo Hosono
細野 源蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP62068308A priority Critical patent/JPS63236261A/en
Publication of JPS63236261A publication Critical patent/JPS63236261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To reduce weight of a whole storage battery and increase its capacity by forming a grid of a metal grid with a low grid density and a resin grid of a high grid density put together to be fixed in deflection. CONSTITUTION:Since a grid 11 is composed by combining a metal grid 9 and a resin grid 10, the grid density of the metal grid 9 of the higher specific gravity can be set low considering its current collecting property only. For the resin grid 10 of the lower specific gravity, its grid density is set high corresponding to the characteristics of active material considering supporting the active material only, so the active material supporting force of the grid 11 can be increased without increasing its weight. Thus more of softened active material can be held in the grid 11 securely, so its utilization factor is improved, and the capacity of a storage battery is improved, while its weight can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は格子体に活物質を支持させた極板を有する水溶
液系の蓄電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an aqueous storage battery having electrode plates in which an active material is supported on a lattice.

(従来技術とその問題点) 一般に、水溶液系の蓄電池は電槽内に、格子体に各々の
活物質を支持させた陽・陰極板を交互に配置してなる。
(Prior Art and its Problems) Generally, an aqueous storage battery is constructed by alternately arranging positive and negative electrode plates in which each active material is supported by a lattice in a battery case.

この陽・陰極板の格子体は、例えば鉛蓄電池の場合、鉛
や鉛合金を鋳造したり、鉛合金板を打ち抜いたり、又、
鉛合金板に多数のスリ・ノドを入れて両端を引張ること
によりエキスバンド格子(特開昭57−158957号
公報参照)とすることにより形成される。
For example, in the case of a lead-acid battery, the lattice body of the anode and cathode plates is made by casting lead or a lead alloy, punching a lead alloy plate, or
It is formed by inserting a large number of grooves into a lead alloy plate and pulling both ends to form an expanded lattice (see Japanese Patent Laid-Open No. 57-158957).

ところで、蓄電池の容量は活物質量×利用率及び電解液
量×利用率で決定される。このため、蓄電池の容量を増
すには格子体に、より多くの活物質を支持させると共に
、活物質を構成する粒子間の空間を多くし且つ粒子自体
を微細化して、すなわち活物質をソフト化(流動化した
状態)して、電解液に接触する活物質の面積を広(して
、上述の活物質及び電解液の利用率を高めることが有用
である。しかしながら、上述の格子体にソフト化した活
物質を多く支持させるためには、格子体の活物質支持力
を高める必要がある。これは格子体の格子密度を高める
ことにより容易に得られるが、これでは格子体の重量が
増加するという問題がある。従って、上述の格子体を使
用した蓄電池は、単位容量あたりの蓄電池の重量及び容
積に限界があるから、それほど容量の増加を図ることは
期待できない。このような事情から、極板の格子体を合
成樹脂にて形成し、この格子体に導電性金属の被膜を設
けて軽量化を図った技術が特開昭57−210569号
公報により公知である。この技術は、合成樹脂の格子体
に導電性金属の被膜を設ける]111に下地処理をしな
ければならない等製作工程が複雑であるという問題点が
あり、又、この技術は蓄電池の容量増加に対し、導電性
金属の被膜の厚みを増加させなければならないから重量
の増加となり、その被膜厚みを調整する技術も高度なも
のが要求される。
By the way, the capacity of a storage battery is determined by the amount of active material x utilization rate and the amount of electrolyte x utilization rate. Therefore, in order to increase the capacity of a storage battery, the lattice must support more active material, increase the spaces between the particles that make up the active material, and make the particles themselves finer, in other words, soften the active material. It is useful to increase the utilization rate of the active material and electrolyte by widening the area of the active material in contact with the electrolyte (in a fluidized state). In order to support more active material, it is necessary to increase the active material supporting capacity of the lattice.This can be easily achieved by increasing the lattice density of the lattice, but this increases the weight of the lattice. Therefore, since the storage battery using the above-mentioned lattice body has a limit in weight and volume per unit capacity, it cannot be expected to increase the capacity to a large extent.Under these circumstances, Japanese Patent Application Laid-Open No. 57-210569 discloses a technique in which the grid of the electrode plate is made of synthetic resin and coated with a conductive metal to reduce the weight. A conductive metal coating is applied to a resin lattice body] There is a problem in that the manufacturing process is complicated, such as the need to perform surface treatment on the resin lattice. Since the thickness of the coating must be increased, the weight increases, and sophisticated technology is required to adjust the coating thickness.

本発明は上記事情に鑑みてなされたもので、重量を増加
することなく、格子体の活物質支持力を向上させて、ソ
フト化した活物質をより多く支持することが可能で、し
かも製作容易で全体の軽量化と容量の向上とを図った蓄
電池を提供することを目的とする。
The present invention was made in view of the above circumstances, and it is possible to improve the active material supporting capacity of the lattice body without increasing the weight, support more of the softened active material, and is easy to manufacture. The purpose of the present invention is to provide a storage battery that is lighter overall and has increased capacity.

(問題点を解決するための手段) 上記問題点を解決するため、本発明においては、電解液
を貯溜した電槽内に、格子体に活物質を支持させた極板
を配置してなる蓄電池において、前記格子体を、格子密
度の低い金属製格子体と格子密度の高い樹脂製格子体と
をずらした状態で重合固定して形成したものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a storage battery in which an electrode plate in which an active material is supported by a lattice body is disposed in a battery container storing an electrolytic solution. The lattice body is formed by overlapping and fixing a metal lattice body with a low lattice density and a resin lattice body with a high lattice density in a shifted state.

(作用) 金属製格子体の格子密度を可能な限り粗とすることによ
り軽量になり、金属製格子体と樹脂製格子体によって活
物質の支持力を保てる。
(Function) By making the lattice density of the metal lattice body as coarse as possible, it becomes lightweight, and the supporting force of the active material can be maintained by the metal lattice body and the resin lattice body.

(実施例) 以下、本発明の実施例を添附図面に基づいて詳述する。(Example) Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明の一実施例に係る蓄電池(鉛蓄電池)の
1部を切欠した側面図である。同図において、1は蓄電
池を示し、該蓄電池1は電槽2と、該電槽2の上部カバ
ー3と、該電槽2内に貯溜された電解液4と、該電槽2
内に、1枚宛交互に配置される、例えば7枚の陽極板5
及び例えば6枚の陰極板6と、該陽極板5及び陰極板6
の接触を防止するためこれらの間に介在される隔離板7
とにより構成されている。
FIG. 1 is a partially cutaway side view of a storage battery (lead storage battery) according to an embodiment of the present invention. In the figure, 1 indicates a storage battery, and the storage battery 1 includes a battery case 2, an upper cover 3 of the battery case 2, an electrolyte 4 stored in the battery case 2, and a battery case 2.
For example, seven anode plates 5 are arranged alternately one by one within the
and, for example, six cathode plates 6, the anode plate 5 and the cathode plate 6.
A separator plate 7 interposed between these to prevent contact between the
It is composed of.

前記電槽2は段載的衝撃及び温度の高低に耐え、耐酸性
の強い合成樹脂により略長方形をなした箱体に形成され
ている。電槽2の底板8には、前記陽極板5及び陰極板
6と離隔材7とが夫々載置される鞍8a・・・が突没さ
れている。
The battery case 2 is formed into a substantially rectangular box made of a synthetic resin that is strong in acid resistance and can withstand shock caused by loading and high and low temperatures. In the bottom plate 8 of the battery case 2, saddles 8a, on which the anode plate 5, the cathode plate 6, and the separating material 7 are respectively placed, are protruded and recessed.

前記陽極板5は、第2図〜第4図に示すようにエキスバ
ンド格子の鉛合金等の金属製格子体9と、格子状のポリ
プロピレン等の樹脂製格子体10とによって構成される
格子体11に陽極活物質を支持してなる。この金M”A
格子体9の上端部9aには集電部9bが突出し、且つ上
端部93及び下端部9Cには所定の間隔を存して孔9d
・・・が夫々穿設されている。金属製格子体9のエキス
バンド格子の格子密度及びその断面積は、蓄電池の容量
、すなわち集電特性のみから決定され、従って、金属製
格子体9は活物質を支持する必要がないから、樹脂製格
子体10の格子密度よりも低く、又、格子を構成する棧
の断面積も小さくできる。前記樹脂製格子体10の下端
部10aには、前記底板8の鞍8aに乗る足10bが設
けられ、且つ下端部10a及び上端部10cには、前記
金属製格子体9の孔9d・・・に嵌合される凸部10d
・・・が突設されている。樹脂製格子体10の格子密度
及びその断面積は、過酸他船(PbO2)の微細な粒子
を含むソフト化した陽極活物質を支持することのみから
決定される。従って、樹脂製格子体1oは集電特性を考
慮する必要がなく、活物質を支持するため、金属製格子
体9の格子密度よりも高く出来る。
As shown in FIGS. 2 to 4, the anode plate 5 is a lattice body composed of an expanded lattice lattice body 9 made of metal such as lead alloy, and a lattice-shaped lattice body 10 made of resin such as polypropylene. 11 supports an anode active material. This money M”A
A current collector 9b projects from the upper end 9a of the grid body 9, and holes 9d are formed at a predetermined interval from the upper end 93 and the lower end 9C.
... are drilled respectively. The lattice density and cross-sectional area of the extended lattice of the metal lattice body 9 are determined only from the capacity of the storage battery, that is, the current collection characteristics, and therefore the metal lattice body 9 does not need to support the active material. The lattice density is lower than that of the lattice body 10, and the cross-sectional area of the lattices constituting the lattice can also be made smaller. The lower end 10a of the resin grid 10 is provided with a foot 10b that rides on the saddle 8a of the bottom plate 8, and the lower end 10a and the upper end 10c are provided with holes 9d of the metal grid 9... The convex portion 10d that is fitted into the
...is installed protrudingly. The lattice density and cross-sectional area of the resin lattice body 10 are determined solely by supporting the softened anode active material containing fine particles of peracid (PbO2). Therefore, the resin lattice 1o does not need to take into account current collecting properties and can have a higher lattice density than the metal lattice 9 since it supports the active material.

前記金属製格子体9と樹脂製格子体1oとは、第4図に
示すように金属製格子体9の孔9d・・・に樹脂製格子
体10の凸部10d・・・を嵌めて、第5図に示すよう
に孔9d・・・がら突出した凸部10dを加熱してつぶ
すことにより1友は止めされる。
The metal lattice body 9 and the resin lattice body 1o are constructed by fitting the protrusions 10d of the resin lattice body 10 into the holes 9d of the metal lattice body 9, as shown in FIG. As shown in FIG. 5, one member is stopped by heating and crushing the convex portion 10d protruding from the hole 9d.

前記陰極板6は前述の陽極板5の中心線をはさんで対角
線に位置にあり、他の構成は同様であるから同一構成部
分については、対応する符号に「′」をつけてその説明
を省略する。
The cathode plate 6 is located diagonally across the center line of the anode plate 5, and the other configurations are the same, so the same components will be explained by adding "'" to the corresponding reference numerals. Omitted.

前記各陽極板5の各集電部9bは、一方のボールストラ
ップ12によって相互に接続されている。
The current collectors 9b of each anode plate 5 are connected to each other by one ball strap 12.

また、前記各陰極板6の集電部9b’は、他方のボール
ストラップ13によって相互に接続されている。
Further, the current collecting portions 9b' of each of the cathode plates 6 are connected to each other by the other ball strap 13.

尚、本実施例では金属製格子体9をエキスバンド格子と
したが、鋳造によって形成しても良い。
In this embodiment, the metal lattice body 9 is an expanded lattice, but it may also be formed by casting.

又、本実施例では樹脂製格子体10に集電機能を付与し
ないものとして説明したが、これに限定されるものでな
く、樹脂製格子体10に集電機能を付与したものでもよ
く、この場合にはより高容量の蓄電池とすることが期待
出来るものである。
Further, in this embodiment, the resin lattice body 10 is described as having no current collecting function, but the present invention is not limited to this, and the resin lattice body 10 may be provided with a current collecting function. In some cases, higher capacity storage batteries can be expected.

(発明の効果) 以上説明したように本発明によれば、電解液を貯溜した
電槽内に、格子体に活物質を支持させた極板を配置して
なる蓄電池において、前記格子体を、格子密度の低い金
属製格子体と格子密度の高い樹脂製格子体とをずらした
状態で重合固定して形成したものである。
(Effects of the Invention) As explained above, according to the present invention, in a storage battery in which an electrode plate in which an active material is supported by a grid body is arranged in a battery container storing an electrolytic solution, the grid body is It is formed by overlapping and fixing a metal lattice body with a low lattice density and a resin lattice body with a high lattice density in a shifted state.

従って、金属製格子体と樹脂製格子体とを組み合せるこ
とにより格子体を構成したから、比重の高い金属製格子
体は、集電特性のみを考慮して、その格子密度を低く出
来、比重の低い樹脂製格子体は、活物質を支持すること
のみを考慮してその活物質の性状に応じて格子密度を高
くしたから、重量を増すことなく、格子体の活物質支持
力を高めることが出来る、このため、ソフト化した活物
質をより多く確実に格子体に保持することが出来、利用
率が向上して蓄電池の容量が向上する。又、比重の高い
金属製格子体は集電特性のみを考慮すれば良いから格子
密度を低くすることが出来るので軽く出来、比重の低い
樹脂製格子体はソフト化した活物質を多く支持して、活
物質の利用率を上げるために格子密度を高めても比重が
低いから重くならず、従って格子体は軽量となり、その
分蓄電池を軽量とすることが出来る。更に、樹脂製格子
体及び全ff1iJ格子体をづらして構成したので、格
子密度がより高くなり、活物質をより一石ソフト化して
も活物質を格子体に支持させることが出来るから、利用
率を高めることが出来、大容量高能率の蓄電池を得るこ
とが可能となる。又、蓄電池の容量を一定にした場合は
、その容量の向上に応じて活物質量を減らすことが出来
、これに伴って格子体も小さくて済むから、その分蓄電
池の重量を軽量化出来る。
Therefore, since the lattice body was constructed by combining a metal lattice body and a resin lattice body, the lattice density of a metal lattice body with a high specific gravity can be made low by considering only the current collection property. The resin lattice with a low lattice density has a high lattice density according to the properties of the active material with only support for the active material in mind, so the lattice's ability to support the active material can be increased without increasing the weight. Therefore, more of the softened active material can be reliably held in the lattice, improving the utilization rate and increasing the capacity of the storage battery. In addition, metal lattice bodies with high specific gravity only need to be considered for current collection characteristics, so the lattice density can be lowered, making them lighter, while resin lattice bodies with low specific gravity support a large amount of softened active material. Even if the lattice density is increased in order to increase the utilization rate of the active material, the specific gravity is low, so the lattice body does not become heavy, so the lattice body becomes lightweight, and the storage battery can be made lighter accordingly. Furthermore, since the resin lattice body and all ff1iJ lattice bodies are arranged in a staggered manner, the lattice density is higher, and even if the active material is made softer, the active material can be supported by the lattice body, which increases the utilization rate. This makes it possible to obtain a storage battery with a large capacity and high efficiency. In addition, when the capacity of the storage battery is kept constant, the amount of active material can be reduced as the capacity increases, and the grid body can also be made smaller, so the weight of the storage battery can be reduced accordingly.

又、別体に形成した金属製格子体と樹脂製格子体とを単
に組み合わせることにより格子体を構成するので、その
装作が容易である等の効果を奏する。
Further, since the grid body is constructed by simply combining the metal grid body and the resin grid body which are formed separately, it is easy to assemble the grid body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る蓄電池の1部を切欠し
た側面図、第2図は本発明の一実施例の金属製格子体の
側面図、第3図は本発明の一実施例の樹脂製格子体の側
面図、第4図は本発明の一実施例の格子体の側面図、第
5図は第4図の■−■線に沿う断面図である。 1・・・蓄電池、2・・・電槽、4・・・電解液、5・
・・陽極板(極板)、6・・・陰極板(極板)、9・・
・金属製格子体、10・・・樹脂製格子体、11・・・
格子体。 第30
FIG. 1 is a partially cutaway side view of a storage battery according to an embodiment of the present invention, FIG. 2 is a side view of a metal grid according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a side view of a grid made of resin according to an example of the present invention. FIG. 5 is a cross-sectional view taken along the line ■-■ in FIG. 4. 1... Storage battery, 2... Battery container, 4... Electrolyte, 5...
... Anode plate (electrode plate), 6... Cathode plate (electrode plate), 9...
・Metal lattice body, 10...Resin lattice body, 11...
Lattice. 30th

Claims (1)

【特許請求の範囲】[Claims] 1、電解液を貯溜した電槽内に、格子体に活物質を支持
させた極板を配置してなる蓄電池において、前記格子体
を、格子密度の低い金属製格子体と格子密度の高い樹脂
製格子体とをずらした状態で重合固定して形成したこと
を特徴とする蓄電池。
1. In a storage battery in which an electrode plate with an active material supported by a lattice body is arranged in a battery container storing an electrolytic solution, the lattice body is replaced by a metal lattice body with a low lattice density and a resin with a high lattice density. A storage battery characterized by being formed by polymerizing and fixing a grid body in a shifted state.
JP62068308A 1987-03-23 1987-03-23 Storage battery Pending JPS63236261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068308A JPS63236261A (en) 1987-03-23 1987-03-23 Storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068308A JPS63236261A (en) 1987-03-23 1987-03-23 Storage battery

Publications (1)

Publication Number Publication Date
JPS63236261A true JPS63236261A (en) 1988-10-03

Family

ID=13370043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068308A Pending JPS63236261A (en) 1987-03-23 1987-03-23 Storage battery

Country Status (1)

Country Link
JP (1) JPS63236261A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533627A (en) * 1976-06-30 1978-01-13 Shin Kobe Electric Machinery Lattice for lead battery
JPS5314334A (en) * 1976-07-27 1978-02-08 Shin Kobe Electric Machinery Lead battery plate lattice
JPS57101348A (en) * 1981-04-28 1982-06-23 Shin Kobe Electric Mach Co Ltd Manufacture of grid for lead-acid storage battery electrode plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533627A (en) * 1976-06-30 1978-01-13 Shin Kobe Electric Machinery Lattice for lead battery
JPS5314334A (en) * 1976-07-27 1978-02-08 Shin Kobe Electric Machinery Lead battery plate lattice
JPS57101348A (en) * 1981-04-28 1982-06-23 Shin Kobe Electric Mach Co Ltd Manufacture of grid for lead-acid storage battery electrode plate

Similar Documents

Publication Publication Date Title
US4113921A (en) Secondary cells
US5047300A (en) Ultra-thin plate electrochemical cell
US6949313B2 (en) Battery with a microcorrugated, microthin sheet of highly porous corroded metal
KR100687273B1 (en) Electrode unit for rechargeable electrochemical cells
US5576116A (en) Sealed storage cell operating at low pressure
US20080107958A1 (en) Chargeable Electrochemical Cell
US5993494A (en) Method of manufacturing modular components for a bipolar battery and the resulting bipolar battery
JPH07105929A (en) Lead-acid storage battery
CA2419248A1 (en) Lead-acid batteries and positive plate and alloys therefor
US4383015A (en) Iron-silver battery having a shunt electrode
US20240106055A1 (en) Structural Battery for Electric Vehicle
US20100239899A1 (en) Gauntlet motive battery
JPS63236261A (en) Storage battery
US20160344017A1 (en) Gauntlet motive battery
JPH031455A (en) Sealed square alkaline storage battery
RU2264004C2 (en) Rechargeable electrochemical cell
JPH02168555A (en) Lead storage battery
JP2001126735A (en) Lead accumulator
KR100362431B1 (en) Secondary battery
US20200214874A1 (en) Gauntlet motive battery
JP3146438B2 (en) Sealed lead-acid battery
US5837396A (en) Negative electrode construction for a secondary battery
HU196533B (en) Lead accumulator, preferably for long-lasting uniform employment
JPH08329951A (en) Manufacture of secondary battery and current collecting bodyfor pole plate and current collecting body for pole plate
JPH0696795A (en) Sealed nickel-zinc battery