JPS63236161A - Planning expert system - Google Patents

Planning expert system

Info

Publication number
JPS63236161A
JPS63236161A JP62069466A JP6946687A JPS63236161A JP S63236161 A JPS63236161 A JP S63236161A JP 62069466 A JP62069466 A JP 62069466A JP 6946687 A JP6946687 A JP 6946687A JP S63236161 A JPS63236161 A JP S63236161A
Authority
JP
Japan
Prior art keywords
production process
human
planning
experiences
plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62069466A
Other languages
Japanese (ja)
Inventor
Yasuaki Takeuchi
康晃 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62069466A priority Critical patent/JPS63236161A/en
Publication of JPS63236161A publication Critical patent/JPS63236161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To extremely decrease the number of solution candidates and at the same time to facilitate program correction in response to the system change, by making use of the human experiential and theoretical knowledge to decide a planning order. CONSTITUTION:The superiority relation existing between processes of a production process plan is known to some extent by a human being owing to its conventional experiences. In this respect, the knowledges obtained by the experiences of human begins are described in a declarative language and stored in a system. Based on this storage contents, a production process plan is effectively decided. In other words, the number of solutions can be limited by means of the superiority relation obtained from experiences of human beings. Thus it is possible to prevent an extraordinarily large number of combinations of solutions produced by a linear planning method only. Furthermore the program correction is facilitated when the system is changed thanks to the description in a declarative language.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえば線型計画法を用いて計画する場合
のシステムに関するものであシ、特に、計画すべきデー
タが多数存在し、それらデータの相互間の優越関係が従
来の経験によっである程度知られているとき、この相互
間の優越関係を利用して計画決定に要する時間を短縮す
る計画エキスパート・システムに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a system for planning using, for example, linear programming. The present invention relates to a planning expert system that utilizes the mutual superiority relationship, when the mutual superiority relationship is known to some extent through conventional experience, to shorten the time required for planning decisions.

この明細書で言う計画とは資源の配分計画、人材の配置
計画、生産工程計画等、計画一般を含むものであるが、
以下説明の便宜のため、生産工程計画について説明する
The plans referred to in this specification include general plans such as resource allocation plans, personnel allocation plans, production process plans, etc.
For convenience of explanation, the production process plan will be explained below.

〔従来の技術〕[Conventional technology]

生産工程計画では、与えられた生産量を限られた処理能
力によって、たとえばなるべく少ない日数で生産するよ
う計画を決定しなければならず、その目的のため線型計
画法が用いられていることはよく知られている所である
。然し、大規模かつ複雑な生産工程計画では、線型計画
法の目的関数の中の決定変数が多種類となり、制約条件
との関係から解の数が極めて多くなり、線型計画法だけ
に依存して大規模な生産工程計画を決定することが困難
であることも従来よく知られている。そこで生産工程計
画を計算機で決定することを目的として、分子限定法な
どを適用することが従来から試みられている。分子限定
法は優越関係と上下界値の2つに分けることができる。
In production process planning, a plan must be determined to produce a given production amount using limited processing capacity, for example, in as few days as possible, and linear programming is often used for this purpose. It is a known place. However, in large-scale and complex production process planning, there are many types of decision variables in the objective function of linear programming, and the number of solutions becomes extremely large due to the relationship with constraints, making it difficult to rely solely on linear programming. It is also well known that it is difficult to determine large-scale production process plans. Therefore, attempts have been made to apply molecular restriction methods and the like in order to determine production process plans using computers. The molecular restriction method can be divided into two types: dominance relationships and upper and lower bounds.

優越関係は、処理する仕事の順序関係を示すもので、こ
れにより解の候補を減らすことができる。また、上下界
値は解の評価値の上界値、下界値であシ、これらの値を
もとに同様に解の候補を減らすことができる。
The dominance relationship indicates the order of tasks to be processed, and can reduce the number of solution candidates. Further, the upper and lower bounds are the upper and lower bounds of the evaluation value of the solution, and the number of solution candidates can be similarly reduced based on these values.

その結果、多数の解の中から有効であると考えられる解
をとり出して計画を行う方法が考えられ公表されている
As a result, a method has been devised and published for planning by selecting solutions considered to be effective from a large number of solutions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

生産工程計画を決定する従来の方法は以上に説明したと
おりであるが、生産工程計画の規模が大きく々るにつれ
て処理が複雑になり、実用的な時間内に゛適当な解を得
られない場合が多くなるという問題点があった。
The conventional method for determining the production process plan is as explained above, but as the scale of the production process plan increases, the processing becomes more complex, and there are cases where it is not possible to obtain an appropriate solution within a practical time. There was a problem that there were many.

また、従来は生産工程計画を決定するためのプログラム
に手続型言語を用いている場合があり、このような場合
にはシステムの変更にともなうプログラムの修正が困難
になるという問題があった。
Furthermore, in the past, a procedural language was sometimes used in a program for determining a production process plan, and in such a case, there was a problem in that it was difficult to modify the program in response to changes in the system.

この発明は上記のような問題点を解決するためになされ
たもので、生産工程計画が比較的短時間の間に決定され
、かつシステムが変更された場合、これに対応してプロ
グラムを変更することが容易な計画決定システム(この
明細書では計画エキスパート・システムという)を得る
ことを目的としている。
This invention was made to solve the above problems, and when the production process plan is determined in a relatively short period of time and the system is changed, the program is changed accordingly. The purpose of this invention is to obtain a planning decision system (referred to as a planning expert system in this specification) that is easy to use.

〔問題点を解決するための手段〕[Means for solving problems]

生産工程計画の各工程間には優越関係が存在し、この優
越関係は従来の経験によシ人間にはある程度知られてい
るので、この発明ではこの点に着目し、人間が経験によ
つて得た知識を宣言的言語で記述してシステム内に記憶
しこの記憶を利用して生産工程計画の決定を効率よく行
うことにした。
There is a superiority relationship between each process in a production process plan, and this superiority relationship is known to some extent to humans based on conventional experience.This invention focuses on this point and allows humans to understand it based on experience. We decided to write the acquired knowledge in a declarative language and store it in the system, and use this memory to efficiently determine the production process plan.

・ 〔作用〕 人間が経験によって知り得た優越関係を利用して解の数
を制限することができるので、線型計画法忙だけ依存し
た場合に得られる異常に多数の解の組合せの発生を防止
することができ、また、宣言的言語で記述されているた
めシステムの変更に際しプログラムの修正が容易になる
・ [Effect] The number of solutions can be limited by using the dominance relationships that humans have learned through experience, which prevents the occurrence of an abnormally large number of combinations of solutions that would be obtained if only the linear programming method was relied upon. Moreover, since it is written in a declarative language, it is easy to modify the program when changing the system.

〔実施例〕〔Example〕

以下この発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明のシステム構成の一実施例を示すブロ
ック図であり、(1)は処理装置、(2)は記憶装置、
(3)は入力装置である。主記憶装置(図示せず)は処
理装置(1)に含まれ、記憶装置(2)はディスク等か
ら構成される補助記憶装置であって、記憶装置 (2)
の記憶内容は処理装f(1)の動作中は処理装置(1)
内の主記憶装置に移されて利用される。入力装f(3)
はキーボードとプ2ウン管表示装瞳とを備え、対話的入
力が可能であるとする。
FIG. 1 is a block diagram showing an embodiment of the system configuration of the present invention, in which (1) is a processing device, (2) is a storage device,
(3) is an input device. A main storage device (not shown) is included in the processing device (1), and a storage device (2) is an auxiliary storage device consisting of a disk or the like.
The memory contents of processing unit f(1) are stored in processing unit f(1) during operation.
It is moved to the main memory within the computer and used. Input device f (3)
It is assumed that the computer is equipped with a keyboard and a display pupil, allowing for interactive input.

対項となる生産工程計画に関する諸種のデータは入力装
置(3)から構成される装置(2)に格納される。また
、この生産工程計画を決定するため有用な知識として人
間が経験によって得た知識を論理式として入力装置(3
)から入力し記憶装置(2)に格納する。また、生産工
程計画に用いる#J型型面画法プログラムは記憶fcf
(2)に格納されている。
Various data related to the production process plan, which is the counterpart, are stored in a device (2) comprising an input device (3). In addition, in order to determine this production process plan, the input device (3
) and stores it in the storage device (2). In addition, the #J type surface drawing method program used for production process planning is stored in fcf.
(2).

処理装置(1)は記憶装置(2)内に格納されているデ
ータとプログラムとにより生産工程計画を決定する。第
2図は第1図の処理装置(1)内で実行される機能を示
す説明図で、(11)は順序決定機能、(12)は計画
決定機能、(13)は評価機能、(14)は順序修正機
能である。処理装置(1)内では機能(11) ’→(
12)→(13)→(14)の頴に実行され、機能(1
4)の実行後には機能(12)の実行にもどる。
A processing device (1) determines a production process plan based on data and programs stored in a storage device (2). FIG. 2 is an explanatory diagram showing the functions executed in the processing device (1) of FIG. ) is an order correction function. In the processing device (1), the function (11) '→(
12) → (13) → (14) is executed, and the function (1
After execution of 4), the process returns to execution of function (12).

順序決定機能(11)の実行に当っては、記憶装置(2
)内に格納されている知識が用いられる。この知識を用
い、効率よく計画を作成する順序を決定する。記憶装置
(2)に格納されている知識には順序を定量的に決定で
きるものと、定性的だ決定できるものとがある。このう
ち順序を定量的に決定できるものは宣言型言語で記述し
て格納されており、定性的に決定できるものはif −
then のルールの形で記述して格納されている。こ
のような知識の例として「工程Aは常にネックになる。
In executing the order determining function (11), the storage device (2
) is used. Use this knowledge to determine the order in which to create plans efficiently. The knowledge stored in the storage device (2) includes those whose order can be determined quantitatively and those whose order can be determined qualitatively. Among these, those whose order can be determined quantitatively are written and stored in a declarative language, and those whose order can be determined qualitatively are if −
It is written and stored in the form of then rules. An example of this kind of knowledge is ``Process A is always a bottleneck.

ならば工程Aを先に実行する」などがある。If so, execute process A first.''

順序決定機能(11)により生産工程計画の各工程の順
序が決定されれば、計画決定機能(12)により生産工
程計画を決定し、この決定した計画について評価機能(
13)により評価を行う。この評価は、たとえば線型計
画法における目的関数の数値計算だよる。
Once the order of each process in the production process plan is determined by the sequence determination function (11), the production process plan is determined by the plan determination function (12), and the evaluation function (
13). This evaluation is based on, for example, numerical calculation of the objective function in linear programming.

評価機能(13)Icよる評価が行なわれた後は、順序
修正機能(14)により順序を修正する。この修正にお
いても記憶装置(2)内に記憶されている経験的・理論
的知識を用い、この知識に反する修正は実行しない。修
正した順序について計画決定機能(12)による計画決
定、評価機能(13)による評価を繰り返し、最高の評
価を得られた計画決定を、求める生産工程計画として決
定する。
After the evaluation by the evaluation function (13) Ic is performed, the order is corrected by the order correction function (14). In this modification as well, the empirical and theoretical knowledge stored in the storage device (2) is used, and modifications that are contrary to this knowledge are not performed. Plan determination by the plan determination function (12) and evaluation by the evaluation function (13) are repeated for the revised order, and the plan determination with the highest evaluation is determined as the desired production process plan.

以上は生産工程計画を例にとってこの発明を説明したが
、この発明が生産工程計画だけでなく、一般の計画決定
に適用できることは申すまでもない。
Although this invention has been explained above using production process planning as an example, it goes without saying that this invention is applicable not only to production process planning but also to general planning decisions.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、人間の経験的、理論的
知識を用いて計画を立てる順序を決定するので、解の候
補を大幅に減少し、計画決定作業の効率を向上し、かつ
システム変更に対応するプログラムの修正が容易になる
As described above, according to the present invention, since the order of planning is determined using human experience and theoretical knowledge, the number of solution candidates is greatly reduced, the efficiency of planning decision work is improved, and the system It becomes easier to modify programs to accommodate changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のシステム構成の一実施例を示すブロ
ック図、第2図は第1図の処理装置内で実行される機能
を示す説明図、 (1) Vi処理装置、(2)は記憶装置、(11)t
i順序決定機能、(12)は計画決定機能、(13)は
評価機能、(14) Fi順序修正機能。
FIG. 1 is a block diagram showing an embodiment of the system configuration of the present invention, FIG. 2 is an explanatory diagram showing functions executed within the processing device of FIG. 1, (1) Vi processing device, (2) storage device, (11)t
i order determination function, (12) plan determination function, (13) evaluation function, (14) Fi order correction function.

Claims (1)

【特許請求の範囲】[Claims] 計画に関し人間が経験により得た知識を宣言的言語で記
述して格納する第1の手段と、上記計画に関連してあら
かじめ与えられるデータを入力して格納する第2の手段
と、上記第2の手段に格納されているデータを用い上記
第1の手段に格納されている知識に従って計画を決定す
る第3の手段とを備えた計画エキスパート・システム。
a first means for describing and storing knowledge acquired by humans through experience regarding the plan in a declarative language; a second means for inputting and storing data given in advance related to the plan; and third means for determining a plan according to the knowledge stored in the first means using the data stored in the means.
JP62069466A 1987-03-24 1987-03-24 Planning expert system Pending JPS63236161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069466A JPS63236161A (en) 1987-03-24 1987-03-24 Planning expert system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069466A JPS63236161A (en) 1987-03-24 1987-03-24 Planning expert system

Publications (1)

Publication Number Publication Date
JPS63236161A true JPS63236161A (en) 1988-10-03

Family

ID=13403462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069466A Pending JPS63236161A (en) 1987-03-24 1987-03-24 Planning expert system

Country Status (1)

Country Link
JP (1) JPS63236161A (en)

Similar Documents

Publication Publication Date Title
Li et al. An improved artificial bee colony algorithm with Q-learning for solving permutation flow-shop scheduling problems
US5053970A (en) Work scheduling method
O'GRADY et al. An intelligent cell control system for automated manufacturing
US5212768A (en) Method and apparatus for processing knowledge
Shaw et al. Automatic planning and flexible scheduling: a knowledge-based approach
US8572551B2 (en) Difference log production for model merging
US5319739A (en) Method for retrieving case for problem and inferring solution of the problem and system thereof
Bánhelyi et al. The Global Optimization Algorithm: Newly Updated with Java Implementation and Parallelization
JPS63236161A (en) Planning expert system
Iklassov et al. Self-Guiding Exploration for Combinatorial Problems
Beysolow II et al. Custom openai reinforcement learning environments
Pflughoeft et al. Intelligent decision support for flexible manufacturing: Design and implementation of a knowledge-based simulator
Mannino et al. Knowledge representation for model libraries
Spieker et al. Rotational diversity in multi-cycle assignment problems
Corbett Automate or innervate? The role of knowledge in advanced manufacturing systems
Valencia et al. A multiagents approach for the job shop scheduling problem with earliness and tardiness
JPS63318605A (en) Nc part program generating device
Faust et al. A distributed block approach to solving near-block-diagonal systems with an application to a large macroeconometric model
JPH0337201B2 (en)
JP4474631B2 (en) Monitoring system
Chalabine Invasive interactive parallelization
Miyata et al. A study on model reference adaptive control in economic development (VI): model reference adaptive Turnpike theorem (II)
Prangishvili et al. Problem Orientation of Computer Systems Through Associative Learning
JPH0229867A (en) Design execution control system
Shaw et al. A knowledge-based approach to flexible planning and scheduling