JPS632360B2 - - Google Patents

Info

Publication number
JPS632360B2
JPS632360B2 JP56002698A JP269881A JPS632360B2 JP S632360 B2 JPS632360 B2 JP S632360B2 JP 56002698 A JP56002698 A JP 56002698A JP 269881 A JP269881 A JP 269881A JP S632360 B2 JPS632360 B2 JP S632360B2
Authority
JP
Japan
Prior art keywords
nickel
coolant
removal device
impurity removal
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56002698A
Other languages
Japanese (ja)
Other versions
JPS57116296A (en
Inventor
Kimichika Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56002698A priority Critical patent/JPS57116296A/en
Publication of JPS57116296A publication Critical patent/JPS57116296A/en
Publication of JPS632360B2 publication Critical patent/JPS632360B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 本発明は原子炉冷却材中の不純物を捕獲し、特
にニツケル及び放射性物質である放射性核種を除
去することのできる不純物除去装置を備えた高速
増殖炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fast breeder reactor equipped with an impurity removal device capable of capturing impurities in the reactor coolant and removing in particular nickel and radionuclides, which are radioactive substances.

液体金属を冷却材とする高速増殖炉において、
一次冷却系機器・配管部に沈着した核分裂生成物
(以下FPと称す)あるいは放射性腐食生成物(以
下CPと称す)等の放射性物質による放射能は、
原子炉停止時に行なう保守・補修等の作業で障害
となる。
In a fast breeder reactor that uses liquid metal as a coolant,
Radioactivity caused by radioactive materials such as fission products (hereinafter referred to as FP) or radioactive corrosion products (hereinafter referred to as CP) deposited on primary cooling system equipment and piping is
It becomes a hindrance in maintenance and repair work that is carried out when the reactor is shut down.

この種のFPは燃料破損によつて冷却材中へ放
出される。また、放射性腐食生成物は主として炉
心構造材の放射化によつて生成され、冷却材によ
る構造材の腐食や拡散によつて冷却材中へ放出さ
れる。冷却材中へ移行した放射性物質はいつたん
一次冷却系高温部のホツトレグに沈着する。しか
し、時間の経過とともにこれらの沈着物は脱着し
て中間熱交換器の低温部や1次冷却系の低温部で
あるコールドレグへ輸送され、機器・配管壁面に
再沈着する。更に、炉心構造材やホツトレグ配管
構造材中のニツケルも冷却材中で移行し、一次冷
却系低温部の機器・配管壁面に沈着する。このニ
ツケルは放射性物質を多量に捕獲する為、一次冷
却系低温部へ沈着する放射性物質の量が更に増加
する。かような放射性核種の沈着に起因する放射
能は、特にポンプ、熱交換器、バルブ、流量計等
の機器や配管の保守・補修の作業に障害を与え
る。特に問題となる放射性核種は半減期の長いも
ので、核分裂生成物としては 95Zr− 95Nb、
140Ba− 140La等があり、放射性腐食生成物とし
54Mn、 60Co、 58Co等がある。
This type of FP is released into the coolant due to fuel failure. Furthermore, radioactive corrosion products are mainly generated by activation of core structural materials, and are released into the coolant as the structural materials are corroded and diffused by the coolant. The radioactive materials that migrate into the coolant are deposited on the hot legs in the high temperature section of the primary cooling system. However, over time, these deposits are desorbed and transported to the low-temperature section of the intermediate heat exchanger or the cold leg, which is the low-temperature section of the primary cooling system, and are redeposited on the walls of equipment and piping. Furthermore, nickel in the core structural materials and hot-reg piping structural materials also migrates into the coolant and is deposited on the walls of equipment and piping in the low-temperature section of the primary cooling system. Since this nickel captures a large amount of radioactive materials, the amount of radioactive materials deposited in the low temperature section of the primary cooling system further increases. The radioactivity caused by the deposition of such radionuclides particularly impairs the maintenance and repair work of equipment and piping, such as pumps, heat exchangers, valves, and flow meters. The radionuclides that are particularly problematic are those with long half-lives, and their fission products include 95 Zr- 95 Nb,
140 Ba- 140 La, etc., and radioactive corrosion products include 54 Mn, 60 Co, 58 Co, etc.

この発明は、このような事情に鑑みてなされた
もので、一次冷却系高温部から一次冷却系低温部
へ移行するニツケル及び放射性物質を捕獲するこ
とによつて、一次系低温側の保守・補修を容易に
することを目的とする。
This invention was made in view of these circumstances, and by capturing nickel and radioactive materials that migrate from the high temperature part of the primary cooling system to the low temperature part of the primary cooling system, it is possible to maintain and repair the low temperature side of the primary cooling system. The purpose is to facilitate.

以下、この発明の実施例について詳細に説明す
る。本発明の不純物除去装置は、第1図のに示す
ように、例えばホツトレグ出口部分に設置する。
Examples of the present invention will be described in detail below. The impurity removal device of the present invention is installed, for example, at the outlet of a hot leg, as shown in FIG.

第2図は本発明による不純物除去装置を示すも
のである。この装置は、高温冷却材たとえば液体
金属ナトリウムLの流通する流路8,9,10,
11と流路内に設置され、ナトリウムを冷却する
ためのたとえば冷却水の流通するニツケルもしく
はニツケル合金の材料からなる円管とから構成さ
れている。
FIG. 2 shows an impurity removal device according to the present invention. This device includes channels 8, 9, 10, through which a high-temperature coolant such as liquid metal sodium L flows.
11, and a circular tube made of a material such as nickel or nickel alloy, which is installed in the flow path and through which cooling water flows for cooling the sodium.

炉心構造材やホツトレグ構造材から放出された
ニツケルや放射性物質を含んだナトリウムが不純
物除去装置の入口7から流入すると、円管12,
13,14内を流れる冷却水により冷却される。
このとき、ナトリウム中のニツケルは円管12,
13,14の外壁に沈着する。このニツケルは放
射性物質を多量に捕獲する性質があるため、円管
12,13,14の外壁に沈着したニツケルに放
射性物質が沈着する。このようにして浄化された
ナトリウムは不純物除去装置の出口15から再び
ホツトレグ出口部へ流入する。
When sodium containing nickel and radioactive substances released from the core structural materials and hot leg structural materials flows into the impurity removal device through the inlet 7, the circular pipe 12,
It is cooled by cooling water flowing through the insides of the tubes 13 and 14.
At this time, nickel in sodium is in circular tube 12,
It is deposited on the outer walls of 13 and 14. Since this nickel has the property of capturing a large amount of radioactive substances, radioactive substances are deposited on the nickel deposited on the outer walls of the circular tubes 12, 13, and 14. The sodium purified in this way flows back into the hot leg outlet from the outlet 15 of the impurity removal device.

以上詳述したように、ホツトレグ出口部におい
て、ニツケル及び放射性物質が冷却材から除去さ
れる為に、これより下流側の中間熱交換器、ポン
プ、流量計、バルブ等の放射能が低くなり、保
守・補修が容易となつてその工業的価値は大なる
ものがある。
As detailed above, since nickel and radioactive substances are removed from the coolant at the outlet of the hot leg, the radioactivity of intermediate heat exchangers, pumps, flow meters, valves, etc. downstream from this becomes low. It is easy to maintain and repair, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による不純物除去装置の設置場
所を示す高速増殖炉1次系の概略図、第2図は不
純物除去装置を示す縦断面図である。 1……原子炉容器、2……原子炉炉心、3……
ホツトレグ、4……不純物除去装置、5……中間
熱交換器、6……コールドレグ、7……冷却材入
口、8〜11……冷却材流路、12〜14……円
管、15……冷却材出口。
FIG. 1 is a schematic diagram of a primary system of a fast breeder reactor showing the installation location of an impurity removal device according to the present invention, and FIG. 2 is a longitudinal sectional view showing the impurity removal device. 1...Reactor vessel, 2...Reactor core, 3...
Hot leg, 4... Impurity removal device, 5... Intermediate heat exchanger, 6... Cold leg, 7... Coolant inlet, 8-11... Coolant channel, 12-14... Circular tube, 15... Coolant outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 液体金属の流路と、これを冷却する冷却液を
流通させる流路をニツケルもしくはニツケル合金
からなる円筒で構成してなる不純物除去装置をホ
ツトレグ出口部分に液体金属の主流路に対して副
流路を形成するように設置したことを特徴とする
高速増殖炉。
1. An impurity removal device consisting of a cylinder made of nickel or nickel alloy, in which a liquid metal flow path and a flow path through which a cooling liquid cools the liquid metal flows, is installed at the outlet of the hot leg to provide a side flow to the liquid metal main flow path. A fast breeder reactor characterized by being installed so as to form a channel.
JP56002698A 1981-01-13 1981-01-13 Impurity removing device Granted JPS57116296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56002698A JPS57116296A (en) 1981-01-13 1981-01-13 Impurity removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002698A JPS57116296A (en) 1981-01-13 1981-01-13 Impurity removing device

Publications (2)

Publication Number Publication Date
JPS57116296A JPS57116296A (en) 1982-07-20
JPS632360B2 true JPS632360B2 (en) 1988-01-18

Family

ID=11536492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002698A Granted JPS57116296A (en) 1981-01-13 1981-01-13 Impurity removing device

Country Status (1)

Country Link
JP (1) JPS57116296A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950398A (en) * 1972-06-15 1974-05-16
JPS5390600A (en) * 1977-01-18 1978-08-09 Us Government Method of controlling deposition of radioactive nuclide
JPS5464300A (en) * 1977-11-01 1979-05-23 Toshiba Corp Device for removing impurities from cooling material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950398A (en) * 1972-06-15 1974-05-16
JPS5390600A (en) * 1977-01-18 1978-08-09 Us Government Method of controlling deposition of radioactive nuclide
JPS5464300A (en) * 1977-11-01 1979-05-23 Toshiba Corp Device for removing impurities from cooling material

Also Published As

Publication number Publication date
JPS57116296A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
US4075060A (en) Method for removing fission products from a nuclear reactor coolant
JPS632360B2 (en)
US4204911A (en) Method and apparatus for removing iodine from a nuclear reactor coolant
US20110075787A1 (en) Heat exchanger, methods therefor and a nuclear fission reactor system
Jonas Control erosion/corrosion of steels in wet steam
Burrill et al. Control of reactor inlet header temperature (RIHT) rise in CANDU
JP2895267B2 (en) Reactor water purification system
JPH01140094A (en) Getter trap for removing hydrogen and oxygen from liquid metal
Taylor Heat exchanger tubing materials for CANDU nuclear generating stations
Alexander et al. Conceptual Design of a Power Reactor
JPS629296A (en) Structural material of nuclear-reactor primary cooling system
Arbeau et al. Kinetics of corrosion product release from carbon steel corroding in high-temperature, lithiated water
Kveton ITER cooling system
PIU'U THE BABCOCK & WILCOX CO. BOILER DIVISION
Lewis et al. Canadian operating experience with heavy water power reactors
LeSurf et al. Material selection and corrosion control methods for CANDU nuclear power reactors
Vandeth et al. Materials in CANDU steam generators from the designer's point of view
Slaughter et al. Welding and Brazing of High-Temperature Radiators and Heat Exchangers
Rautenberg Design of steam generators for process heat plants: Requirements, design concepts, status and further development
JPS5921991A (en) Condenser
Montford Cyclic decointamination techniques at Douglas Point Generating Station, their evolution and recommended practice
Hallinan et al. Hockey-stick steam generator for LMFBR
Takahashi et al. Regeneration of a large cold trap
Matyas et al. Problems of a sodium loop designed to operate at temperatures up to 800
Hitchin Energy storage apparatus