JPS63235840A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPS63235840A
JPS63235840A JP7058487A JP7058487A JPS63235840A JP S63235840 A JPS63235840 A JP S63235840A JP 7058487 A JP7058487 A JP 7058487A JP 7058487 A JP7058487 A JP 7058487A JP S63235840 A JPS63235840 A JP S63235840A
Authority
JP
Japan
Prior art keywords
pressure
magnets
diaphragm
pair
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7058487A
Other languages
Japanese (ja)
Inventor
Tsutomu Nakada
中田 努
Hatahiro Naka
中 秦広
Akira Fuse
布施 昭
Kazumasa Iwaizumi
岩泉 一雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON AREFU KK
Nippon Aleph Corp
Original Assignee
NIPPON AREFU KK
Nippon Aleph Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON AREFU KK, Nippon Aleph Corp filed Critical NIPPON AREFU KK
Priority to JP7058487A priority Critical patent/JPS63235840A/en
Publication of JPS63235840A publication Critical patent/JPS63235840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly reliable measurement of pressure with limited errors, by arranging a diaphragm, a pair of magnets, a magnetosensitive element and the like. CONSTITUTION:When a gas or liquid intended to measure pressure is taken into a pressure detection chamber P at a pressure detection port 31, the center 42 of a diaphragm 4 is displaced vertically according to the size of pressure of the gas or liquid and at the same time, a pair of magnets 7 and 8 are driven. Consequently, relative position between the magnets 7 and 8 and Hall element 9 changes, which causes a change in the intensity of a magnetic field working on the element 9 to vary an output voltage of the element 9. Therefore, pressure can be measured from the output voltage of the element 9 by obtaining relationship between the size of the pressure working on the diaphragm 4 and the output voltage thereof 9 beforehand. With the magnets 7 and 8 magnetized reversely in the polarity to each other, changes in the intensity of a magnetic field roughly vertical to opposed surfaces 71 and 81 becomes smaller than would be when one magnet is used. This enables measurement of pressure with limited errors.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、一対の磁石を取付けたダイヤフラムとホール
素子とを備えて気体又は液体の圧力な検知する圧力セン
サに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a pressure sensor that includes a diaphragm to which a pair of magnets are attached and a Hall element and detects the pressure of gas or liquid.

〈従来の技術〉 気体又は液体の圧力を検知する圧力センサとして、従来
より次の様な構成のものが使用されている。即ち、上記
圧力により中央部が変位するダイヤフラムに一個の磁石
を取付けるとともに、その磁石の近傍に感磁性素子、例
えばホール素子を配置したものである。
<Prior Art> As a pressure sensor for detecting the pressure of gas or liquid, pressure sensors having the following configuration have conventionally been used. That is, a single magnet is attached to a diaphragm whose central portion is displaced by the above pressure, and a magnetically sensitive element, such as a Hall element, is arranged near the magnet.

上記構成により、ダイヤフラムとともに磁石が変位する
ことによって磁石とホール素子との相対位置か変化して
、ホール素子に対する磁界の強さか圧力の大きさに応じ
て変化する。
With the above configuration, as the magnet is displaced together with the diaphragm, the relative position between the magnet and the Hall element changes, depending on the strength of the magnetic field or the magnitude of the pressure applied to the Hall element.

するとホール素子は磁界の強さに応じた電圧を出力する
為、その出力電圧から圧力が測定される。
Then, since the Hall element outputs a voltage according to the strength of the magnetic field, the pressure can be measured from the output voltage.

〈発明が解決しようとする問題点〉 しかしダイヤフラムに取付けられた磁石の変位にはブレ
が伴う為、圧力の大きさと、磁気検知素子に対する磁界
の強さとは正確に対応しない。即ち一定の圧力に対する
ホール素子からの出力が−定の値とならずにバラついて
、圧力測定に大きな誤差が生じる。
<Problems to be Solved by the Invention> However, since the displacement of the magnet attached to the diaphragm is accompanied by vibration, the magnitude of pressure does not correspond accurately to the strength of the magnetic field relative to the magnetic sensing element. That is, the output from the Hall element for a constant pressure does not have a constant value but varies, causing a large error in pressure measurement.

く問題点を解決するための手段〉 本発明は上記問題点を解決すべく提案されたもので、周
縁がケースに取着されて気体又は液体の圧力により中心
部が変位するダイヤフラムと、対向面を前記ダイヤプラ
ムに対して略垂直とした状態て該ダイヤフラムに取付け
られた一対の磁石と、該一対の磁石の対向面の間に遊挿
された状態て前記ケースに支持された感磁性素子とから
成る圧力センサである。更に前記一対の磁石は、前記ダ
イヤフラムに対して略垂直な方向で前記対向面に着磁さ
れるとともに互いに極性を逆にして対向されたことを特
徴とするものである。
Means for Solving the Problems> The present invention was proposed to solve the above problems, and consists of a diaphragm whose peripheral edge is attached to a case and whose central portion is displaced by the pressure of gas or liquid, and an opposing surface. a pair of magnets attached to the diaphragm with the magnets substantially perpendicular to the diaphragm; and a magnetically sensitive element supported by the case and loosely inserted between opposing surfaces of the pair of magnets. It is a pressure sensor consisting of. Furthermore, the pair of magnets are magnetized on the opposing surfaces in a direction substantially perpendicular to the diaphragm, and are opposed to each other with opposite polarities.

く作用〉 上記構成により、着磁された対向面と略垂直な方向にお
ける磁界の強さの変化が非常に小さくなる。よって一対
の磁石か対向面と略垂直な方向にブしても、ホール素子
の出力電圧の変動は非常に小さく、一定の圧力に対して
常に殆ど一定の出力電圧が得られる。即ち圧力測定の誤
差が非常に小さくなる。
Effect> With the above configuration, the change in the strength of the magnetic field in the direction substantially perpendicular to the magnetized opposing surface becomes extremely small. Therefore, even if the pair of magnets is moved in a direction substantially perpendicular to the facing surfaces, the variation in the output voltage of the Hall element is very small, and an almost constant output voltage is always obtained for a constant pressure. That is, the error in pressure measurement becomes extremely small.

〈実施例〉 以下1図面に基づいて本発明の一実施例を説明する。<Example> An embodiment of the present invention will be described below based on one drawing.

第1図は圧力センサの側断面概略図である。FIG. 1 is a schematic side sectional view of the pressure sensor.

図で示す様に圧力センサlは、略円筒状のケース2と、
そのケース2の上端に気密に取着される」二差3とによ
り覆われている。上蓋3の上面には略円筒状の圧力検知
口31が形成されている。
As shown in the figure, the pressure sensor l includes a substantially cylindrical case 2,
The case 2 is covered by a two-piece 3 which is airtightly attached to the upper end of the case 2. A substantially cylindrical pressure detection port 31 is formed on the top surface of the top lid 3 .

上記ケース2の上縁にはダイヤフラム4の周縁41か気
密に取着されて、上蓋3との間に圧力検知室Pが形成さ
れている。ダイヤフラム4はゴム等の弾性に富む材料か
ら成り、中心部42は厚く、又周辺部43は弾性を増す
為に薄く且つ下方に膨出された状態に形成されている。
A peripheral edge 41 of a diaphragm 4 is airtightly attached to the upper edge of the case 2, and a pressure detection chamber P is formed between it and the upper lid 3. The diaphragm 4 is made of a highly elastic material such as rubber, and has a thick central portion 42 and a peripheral portion 43 that is thin and bulges downward to increase elasticity.

又ダイヤフラム4の中心部42下面にはマグネットケー
ス6の上端が、中心部42を挟着板5とマグネットケー
ス6とで挟んだ状態でネジTにより取付けられている。
Further, the upper end of the magnet case 6 is attached to the lower surface of the center portion 42 of the diaphragm 4 with screws T, with the center portion 42 being sandwiched between the sandwiching plate 5 and the magnet case 6.

そして下方に開口したマグネットケース6の内部には、
互いに対向された一対の棒状の磁石7,8が、対向面7
1.81を上記ダイヤフラム4に対して略垂直とした状
態で取着されている。この一対の磁石7.8は、上記ダ
イヤフラム4に対して略垂直な方向で対向面71.81
に着磁されるとともに互いに極性を逆にして対向されて
いる。即ち、例えば一方の対向面71の上方をN極、下
方をS極とした場合には、他方の対向面81の上方をS
極、下方をN極としである。
And inside the magnet case 6 that opens downward,
A pair of rod-shaped magnets 7 and 8 facing each other are placed on the facing surface 7.
1.81 is attached substantially perpendicular to the diaphragm 4. The pair of magnets 7.8 are arranged on opposing surfaces 71.81 in a direction substantially perpendicular to the diaphragm 4.
They are magnetized and are opposed to each other with opposite polarities. That is, for example, if the upper part of one opposing surface 71 is set as the N pole and the lower part is set as the S pole, the upper part of the other opposing surface 81 is set as the S pole.
The pole is the north pole at the bottom.

尚、上記一対の磁石7,8は、第2図の側面概略図で示
す様に、対向面71.81と略垂直な方向で着磁された
二つの磁石72.73及び82.8:lを互いに極性を
逆にした状態で金属板74.84により連結し、更に極
性を逆にして対向されたものでもよい。
Note that the pair of magnets 7, 8 are two magnets 72.73 and 82.8:l magnetized in a direction substantially perpendicular to the opposing surface 71.81, as shown in the schematic side view of FIG. They may be connected by metal plates 74 and 84 with their polarities reversed, and may also be opposed to each other with their polarities reversed.

一方ケース2内の底面には支持台Gが固定されており、
その支持台Gの上面に立設された支持棒gの先端に感磁
性素子、例えばホール素子9が、上記対向面71.81
の間に遊挿された状態で取付けられている。ホール素子
9は、そのホール素/−9にかかる磁界の強さに応じた
電圧を出力するものである。
On the other hand, a support stand G is fixed to the bottom of the case 2.
A magnetically sensitive element, for example, a Hall element 9 is attached to the tip of the support rod g erected on the upper surface of the support base G, and the opposing surface 71.81
It is installed loosely inserted between the two. The Hall element 9 outputs a voltage corresponding to the strength of the magnetic field applied to the Hall element /-9.

次に上記構成の圧力センサlの作用を説明する。Next, the operation of the pressure sensor I having the above configuration will be explained.

即ち、圧力を測定すべき気体又は液体を圧力検知r+3
1から圧力検知室Pに取入れると、その気体又は液体の
圧力の大きさに応じて、ダイヤフラム4の中心部42が
上下方向つまりダイヤフラム4と略垂直な方向に変位し
、同時に一対の磁石7.8か従動する。すると一対の磁
石7,8とホール素子9との相対位置が変化して、ホー
ル素子9にかかる磁界の強さが変化する。それに応じて
ホール素子9の出力電圧が変化する。よって予めダイヤ
フラム4にかかる圧力の大きさとホール素子9の出力電
圧との関係を求めておけば、その出力電圧から圧力を測
定することができる。
That is, the pressure of the gas or liquid whose pressure is to be measured is detected by pressure r+3.
1 into the pressure detection chamber P, the center 42 of the diaphragm 4 is displaced in the vertical direction, that is, in a direction substantially perpendicular to the diaphragm 4, depending on the magnitude of the pressure of the gas or liquid, and at the same time, the pair of magnets 7 .8 or follow. Then, the relative position between the pair of magnets 7 and 8 and the Hall element 9 changes, and the strength of the magnetic field applied to the Hall element 9 changes. The output voltage of the Hall element 9 changes accordingly. Therefore, if the relationship between the magnitude of the pressure applied to the diaphragm 4 and the output voltage of the Hall element 9 is determined in advance, the pressure can be measured from the output voltage.

又、上述の様に着磁した一対の磁石7.8を互いに極性
を逆にして設けたことにより、対向面71、81と略垂
直な方向における磁界の強さの変化か、−個の磁石を用
いた場合より非常に小さくなる。
In addition, by providing the pair of magnets 7.8 magnetized as described above with opposite polarities, the change in the strength of the magnetic field in the direction approximately perpendicular to the facing surfaces 71, 81, - magnets It is much smaller than when using .

第3図はト記効果を説明する為の図で、図中実線A及び
Bは、一対の磁石7.8の下端から夫々一定量だけ対向
面71.81の間に挿入したホール素子9を、対向面7
1.81と略垂直な方向に移動させた時の、ホール素子
9の出力電圧Eの変化を表す。横軸は一方の対向面71
又は81からの距離し、縦軸はホール素子9の出力電圧
Eである。又図中破線a及びbは、何れか一方の磁石7
又は8たけを設け、上記と同様にホール素子9を移動さ
せた時の出力電圧Eの変化を表している。
FIG. 3 is a diagram for explaining the above effect, and solid lines A and B in the diagram indicate the Hall elements 9 inserted between the opposing surfaces 71.81 by a certain amount from the lower ends of the pair of magnets 7.8. , facing surface 7
1.81, which represents the change in the output voltage E of the Hall element 9 when it is moved in a substantially perpendicular direction. The horizontal axis is one opposing surface 71
or distance from 81, and the vertical axis is the output voltage E of the Hall element 9. Also, broken lines a and b in the figure indicate either one of the magnets 7.
Or, 8 times are provided, and the changes in the output voltage E are shown when the Hall element 9 is moved in the same manner as above.

図で示す様に実線A、Bの縦軸方向の変化は、破線a、
bの同方向の変化に比べて非常に小さい。即ち上述の如
くに一対の磁石7,8を設けた場合には、対向面71.
81と略垂直な方向における磁界の強さの変化が非常に
小さい為に、同方向にホール素子9を移動させた時のホ
ール素子9の出力電圧Eの変化は一個の磁石を用いた場
合より非常に小さくなる。
As shown in the figure, the changes in the vertical axis direction of solid lines A and B are broken lines a,
This is very small compared to the change in b in the same direction. That is, when the pair of magnets 7 and 8 are provided as described above, the opposing surfaces 71 .
Since the change in the strength of the magnetic field in the direction approximately perpendicular to 81 is very small, the change in the output voltage E of the Hall element 9 when the Hall element 9 is moved in the same direction is smaller than when using a single magnet. becomes very small.

従って、一対の磁石7,8か対向面71.81と略+’
l直な方向にツしても、ホール素子9の出力電圧の変動
は非常に小さく、一定の圧力に対して常に殆ど一定の出
力電圧が得られる。換言すれば、上記構成により圧力測
定の誤差を非常に小さくすることができる。
Therefore, the pair of magnets 7, 8 and the opposing surfaces 71.81 and approximately +'
Even when turned in the vertical direction, the variation in the output voltage of the Hall element 9 is very small, and an almost constant output voltage is always obtained for a constant pressure. In other words, the above configuration can greatly reduce errors in pressure measurement.

尚、対向面71.81と略平行でしかも着磁方向と略垂
直な方向における一対の磁石7,8のブレに対しては、
対向面71.81の同方向の長さをある程度大きくする
ことにより、同方向における磁界の強さの変化を小さく
してホール素子9の出力電圧の変動を小さく抑えること
ができる。
Furthermore, regarding the vibration of the pair of magnets 7 and 8 in a direction substantially parallel to the opposing surfaces 71 and 81 and substantially perpendicular to the magnetization direction,
By increasing the length of the facing surfaces 71, 81 in the same direction to a certain extent, it is possible to reduce changes in the strength of the magnetic field in the same direction, thereby suppressing fluctuations in the output voltage of the Hall element 9.

〈発明の効果〉 以」−述べた様に本発明の圧力センサによれば、誤差の
非常に小さい、即ち信頼性の高い圧力測定か可能となる
<Effects of the Invention> As described above, according to the pressure sensor of the present invention, highly reliable pressure measurement with very small errors is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、圧力センサの側断面概略図、第2図は、一対
の磁石の他の例を示す側面概略図、 第3図は、ホール素子を対向面と略垂直な方向に移動さ
せた時の、該ホール素子の出力電圧の変化を示す図であ
る。 l・・・圧力センサ、  2・・・ケース。 4・・・ダイヤフラム、  41・・・周縁。 42・・・中心部、   7.8・・・磁石。 71、81・・・対向面。 9・・・ホール素子(感磁性素子)。 特許出願人  株式会社日本アレフ 代理人     弁理士  船 橋國則第1図 第2図
Fig. 1 is a schematic side cross-sectional view of a pressure sensor, Fig. 2 is a schematic side view showing another example of a pair of magnets, and Fig. 3 is a side view schematically showing another example of a pair of magnets. FIG. 3 is a diagram showing changes in the output voltage of the Hall element over time. l...pressure sensor, 2...case. 4...Diaphragm, 41...Periphery. 42...Center, 7.8...Magnet. 71, 81... Opposite surface. 9...Hall element (magnetically sensitive element). Patent applicant Nippon Aleph Co., Ltd. Patent attorney Kuninori Funa Hashi Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 周縁がケースに取着されて気体又は液体の圧力により中
心部が変位するダイヤフラムと、対向面を前記ダイヤフ
ラムに対して略垂直とした状態で該ダイヤフラムに取付
けられた一対の磁石と、該一対の磁石の対向面の間に遊
挿された状態で前記ケースに支持された感磁性素子とか
ら成る圧力センサであって、前記一対の磁石は、前記ダ
イヤフラムに対して略垂直な方向で前記対向面に着磁さ
れると共に互いに極性を逆にして対向されたことを特徴
とする圧力センサ。
a diaphragm whose peripheral edge is attached to a case and whose center is displaced by the pressure of gas or liquid; a pair of magnets attached to the diaphragm with opposing surfaces substantially perpendicular to the diaphragm; and a magnetically sensitive element supported by the case while being loosely inserted between the opposing surfaces of magnets, the pair of magnets being inserted between the opposing surfaces in a direction substantially perpendicular to the diaphragm. 1. A pressure sensor characterized in that the pressure sensors are magnetized and faced to each other with opposite polarities.
JP7058487A 1987-03-25 1987-03-25 Pressure sensor Pending JPS63235840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7058487A JPS63235840A (en) 1987-03-25 1987-03-25 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7058487A JPS63235840A (en) 1987-03-25 1987-03-25 Pressure sensor

Publications (1)

Publication Number Publication Date
JPS63235840A true JPS63235840A (en) 1988-09-30

Family

ID=13435750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7058487A Pending JPS63235840A (en) 1987-03-25 1987-03-25 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS63235840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650041A2 (en) * 1993-10-20 1995-04-26 CTS Corporation Hall effect sensor pressure transducer
JP2009136521A (en) * 2007-12-07 2009-06-25 Shigematsu Works Co Ltd Breathing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650041A2 (en) * 1993-10-20 1995-04-26 CTS Corporation Hall effect sensor pressure transducer
EP0650041A3 (en) * 1993-10-20 1995-07-19 Cts Corp Hall effect sensor pressure transducer.
JP2009136521A (en) * 2007-12-07 2009-06-25 Shigematsu Works Co Ltd Breathing device
EP2236174A4 (en) * 2007-12-07 2015-07-01 Shigematsu Works Breathing device

Similar Documents

Publication Publication Date Title
US5774996A (en) Biaxial inclination sensor
JP2002022403A (en) Displacement detector and displacement detecting method
US4738325A (en) Hall effect weight transducer
JPS62137537A (en) Sample temperature measuring apparatus for viscosity measuring device
CN110243394A (en) Resonant transducer based on intellectual material
JPS63235840A (en) Pressure sensor
Johnson et al. An acoustically driven Kelvin probe for work‐function measurements in gas ambient
JP2518814B2 (en) Vacuum gauge
JPH0339720Y2 (en)
JPS5850404A (en) Device for measuring minute displacement
JPS6410141A (en) Pressure sensor
JPH0365850B2 (en)
JPS5882139A (en) Atmospheric pressure sensor
JPH01307615A (en) Inclination angle sensor
CN1217156C (en) Angle sensor
JPH01110210A (en) Angle of inclination sensor
SU607123A1 (en) Soil pressure sensor calibrating apparatus
RU2017101C1 (en) Pressure transducer
JPS6011454Y2 (en) displacement detection device
SU723468A1 (en) Astatic magnetometer
JP2587844B2 (en) Capacitive tilt sensor
JPS63167238A (en) Adjusting device for insertion depth of sensing plate for viscosity measuring instrument
SU1151842A1 (en) Pressure measuring device and method of calibrating thereof
Siegle et al. Electrostatic Torsion Balance for Magnetic Film Measurements
JPS6162870A (en) Acceleration sensor