JPS63234973A - Apparatus for controlling ultrafiltration quantity - Google Patents

Apparatus for controlling ultrafiltration quantity

Info

Publication number
JPS63234973A
JPS63234973A JP62069060A JP6906087A JPS63234973A JP S63234973 A JPS63234973 A JP S63234973A JP 62069060 A JP62069060 A JP 62069060A JP 6906087 A JP6906087 A JP 6906087A JP S63234973 A JPS63234973 A JP S63234973A
Authority
JP
Japan
Prior art keywords
dialysate
dialyzer
pressure
cutoff valve
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62069060A
Other languages
Japanese (ja)
Other versions
JPH0622610B2 (en
Inventor
成人 原口
杉森 宏
司 青木
広瀬 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62069060A priority Critical patent/JPH0622610B2/en
Publication of JPS63234973A publication Critical patent/JPS63234973A/en
Publication of JPH0622610B2 publication Critical patent/JPH0622610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば、血液等の透析装置において限外濾過
液の重量を精度よく連続的に測定し1ワる装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for continuously and accurately measuring the weight of an ultrafiltrate in, for example, a blood dialysis machine.

〔従来の技術〕[Conventional technology]

一般に医療用透析システムにおいては、血液と透析液と
の間で物質交換が行なわれるが、この中で血液中の過剰
な水分を除去することが重要な目的の一つである。
Generally, in medical dialysis systems, substances are exchanged between blood and dialysate, and one of the important purposes of this exchange is to remove excess water from the blood.

従来、この水分除去に際して透析の効率低下なしに、即
ち排送析液を再循環せずに新鮮透析液を供給しつつ血液
流路から水分除去、すなわち限外濾過液を測定、制御す
る装置、方法として、例えば、特開昭52−72379
号公報、特開昭53−107198号公報、特開昭59
−64059号公報、更には「計測と制御J、22、〔
4〕、昭58−4、p、388などにより知られていた
Conventionally, there has been a device that removes water from the blood flow path, that is, measures and controls the ultrafiltrate, without reducing the efficiency of dialysis, that is, without recirculating the discharged precipitate and supplying fresh dialysate. As a method, for example, JP-A-52-72379
No. 107198/1983, Japanese Patent Application Laid-Open No. 1983-107198
-64059 Publication, and also “Measurement and Control J, 22, [
4], Sho 58-4, p. 388.

このうち特開昭59−64059号公報に記載された透
析装置(以下、従来装置と略称する)は本発明に最も近
いものであり、以下第7図によりこの従来装置を説明す
る。
Among these, the dialysis apparatus described in Japanese Patent Application Laid-open No. 59-64059 (hereinafter referred to as the conventional apparatus) is the one closest to the present invention, and this conventional apparatus will be explained below with reference to FIG.

この従来装置には、準備モード、定常モード、計量モー
ドがあり、順次この順に切換えられることにより限外濾
過量が測定される装置である。
This conventional device has a preparation mode, a steady mode, and a measurement mode, and the amount of ultrafiltration is measured by switching the modes in this order.

見員エニ上 供給装置4から送られた新鮮透析液は、電磁弁v1を経
て計量槽2の左室へ導入される。この計量槽2は、非弾
性II3により左室と右室に2分され、左室内の新鮮透
析液は、膜3を右室へ移動させることにより左室に一部
蓄積されながら、余剰分は左室から排出される。更に、
新鮮透析液は、送液ポンプ5、流量計6、定流量弁v2
を経て透析器1に流入する。
Fresh dialysate sent from the patient's supply device 4 is introduced into the left ventricle of the metering tank 2 via the solenoid valve v1. This metering tank 2 is divided into the left ventricle and the right ventricle by the inelastic II 3, and the fresh dialysate in the left ventricle is partially accumulated in the left ventricle by moving the membrane 3 to the right ventricle, while the surplus is It is expelled from the left ventricle. Furthermore,
Fresh dialysate is supplied by a liquid pump 5, a flow meter 6, and a constant flow valve v2.
It flows into the dialyzer 1 through the .

透析器1から排出された廃透析液は、陰圧ポンプ7で吸
引されることにより、三方電磁弁v5を経てこの装置の
系外へ排出される。
The waste dialysate discharged from the dialyzer 1 is sucked by the negative pressure pump 7 and is discharged to the outside of the system through the three-way solenoid valve v5.

ここでif ffi槽3の右室にあった廃透析液は、膜
3の石室への移動に伴って押出され、電磁弁v4を経て
同様に系外へ排出される。
Here, the waste dialysate that was in the right chamber of the if ffi tank 3 is pushed out as the membrane 3 moves to the stone chamber, and is similarly discharged out of the system via the solenoid valve v4.

この時、血液ライン(図でA、Vで示される)に設けら
れた血液側圧力センサ(図示せず)と、透析器1の透析
液導出路中に接続された透析液側圧力センサ9の信号は
、マイクロプロセッサ8へ共に送られ、両者の膜間差圧
が予め設定された膜間差圧に一致するように、陰圧ポン
°プ7の回転速度、即ち透析器1の透析液側の陰圧力が
調節される。
At this time, a blood side pressure sensor (not shown) provided in the blood line (indicated by A and V in the figure) and a dialysate side pressure sensor 9 connected to the dialysate outlet path of the dialyzer 1 are connected. The signals are sent together to the microprocessor 8, and the rotational speed of the negative pressure pump 7, i.e., the dialysate side of the dialyzer 1, is adjusted so that the transmembrane pressure difference between the two corresponds to a preset transmembrane pressure difference. negative pressure is adjusted.

L室上二重 計量槽2の左室が新鮮透析液で充満、すなわち、非弾性
1I13が右壁に密着した時に定常モードに切り替えら
れ、供給装置4からの送液量に対し、透析器1を通過す
る透析液量は、はぼ等量となって股間差圧が前記設定値
になるように陰圧ポンプ7の回転速度が調節される。
When the left chamber of the double metering tank 2 on the L chamber is filled with fresh dialysate, that is, when the inelastic 1I13 comes into close contact with the right wall, the mode is switched to the steady mode, and the dialyzer 1 The rotational speed of the negative pressure pump 7 is adjusted so that the amount of dialysate passing through the dialysis fluid becomes approximately equal and the crotch pressure difference becomes the set value.

肚員i二重 次に、上記定常モードによる一定の透析時間が経過する
と、限外−過量測定モードに切り換えられる。
Next, after a certain dialysis time in the steady mode has elapsed, the mode is switched to the ultra-overdose measurement mode.

この時、電磁弁v1は閉、三方電磁弁v5は計量槽2側
へ接続され、送液ポンプ5が起動される。
At this time, the solenoid valve v1 is closed, the three-way solenoid valve v5 is connected to the measuring tank 2 side, and the liquid feeding pump 5 is activated.

従って計量槽2の左室、送液ポンプ5、透析器1、陰圧
ポンプ7を経た閉循環回路が形成される。
Therefore, a closed circulation circuit is formed through the left ventricle of the metering tank 2, the liquid pump 5, the dialyzer 1, and the negative pressure pump 7.

よって透析器1の右室には、左室に充満していた等量の
透析液が充満し、陰圧ポンプ7で透析器1内で血液側か
ら限外−過された除水量のみがマノメータ10内に蓄積
される。
Therefore, the right ventricle of the dialyzer 1 is filled with the same amount of dialysate that was filling the left ventricle, and only the amount of water removed from the blood side in the dialyzer 1 by the negative pressure pump 7 is measured by the manometer. It is accumulated within 10.

この一定時間内のマノメータ10の増加分を水頭圧計1
1で検出することにより、前記限外;濾過液量を求める
透析装置であった。
The increase in the manometer 10 during this certain period of time is calculated by the head pressure gauge 1.
This was a dialysis device that determined the amount of filtrate above the limit by detecting the amount of filtrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来装置は、以下に述べる問題点が
あった。
However, the above conventional device has the following problems.

■ 従来装置の除水量は、1分間での実計211!I量
が0.7mlから16.71111と非常に微量である
上にこの実計測量の範囲が広い。このような微量の限外
シ濾過量をマノメータの水頭圧の変化として検出するに
は非常に細いマノメータを必要とし、管壁に付着して排
出されなかった水滴等の誤差をも無視できない。よって
除水量の広範囲の測定範囲を確保するためにはマノメー
タは細長いものにならざるを1qず、透析装置内に収納
することが困難なばかりでなく、上端から溢流した場合
は、付近の電子機器にダメージを与えて誤差の原因とも
なること。
■ The amount of water removed by the conventional device is 211 in 1 minute! The amount of I is very small, ranging from 0.7 ml to 16.71111 ml, and the range of the actual measured amount is wide. Detecting such a small amount of ultrafiltration as a change in the head pressure of the manometer requires a very thin manometer, and errors such as water droplets that adhere to the pipe wall and are not discharged cannot be ignored. Therefore, in order to ensure a wide measurement range for the amount of water removed, the manometer must be long and thin, which not only makes it difficult to store inside the dialysis machine, but also damages nearby electronics if water overflows from the top. It may damage the equipment and cause errors.

■ 従来装置は、以下に述べる急激な圧力変化が生じ、
これを限外−過圧力制御系で充分調整することは甚だ困
難であり、精度の高い限外濾過量制御が困難であること
■ Conventional equipment causes sudden pressure changes as described below.
It is extremely difficult to sufficiently adjust this using an ultra-overpressure control system, and it is difficult to control the amount of ultrafiltration with high precision.

A、供給装置4による透析液の供給圧力に変動があった
場合、これは透析液供給ラインの圧力変化に直結し、膜
3の移動速度の変動となり、更には、三方電磁弁v5以
降の配管圧損変化につながり、ひいては陰圧ポンプ7の
吐出圧力の変動となる。
A. If there is a change in the supply pressure of dialysate by the supply device 4, this will be directly linked to a change in the pressure of the dialysate supply line, resulting in a change in the movement speed of the membrane 3, and furthermore, the piping after the three-way solenoid valve V5 will change. This leads to a change in pressure loss, which in turn causes a fluctuation in the discharge pressure of the negative pressure pump 7.

B、定常モードに切替えられると膜3の移動はなくなる
ため、従来はほぼ大気圧であった槽2の左室内の圧力が
、はぼ供給装置4からの供給圧までに急上昇する。
B. When the mode is switched to the steady mode, the movement of the membrane 3 is stopped, so the pressure in the left chamber of the tank 2, which was conventionally almost atmospheric pressure, suddenly rises to the supply pressure from the feeder supply device 4.

C0更に、計量モードに切替えられた時、電磁弁v3が
開放されるため、槽2の左室内圧力は、瞬間的にほぼ大
気圧になり、ついで昇圧ポンプ5が作動し始めるため、
大きな圧力変化が発生する。
C0 Furthermore, when switching to the metering mode, the solenoid valve v3 is opened, so the pressure in the left chamber of the tank 2 momentarily becomes almost atmospheric pressure, and then the boost pump 5 starts operating.
Large pressure changes occur.

D、定常モード時は昇圧ポンプ5は停止しているが、最
近使用され始めた高限外−過性能の透析器にはこの昇圧
ポンプ5は適用し難い。何故ならこのような透析器では
透析液側の圧力も陰圧になるが、従来装置では昇圧ポン
プ5が停止しているので、透析液流路の管路抵抗となる
うえに透析液を透析液供給源の送液圧力のみで透析器に
供給することになり安定した陰圧が得られないからであ
る。
D. In the steady mode, the boost pump 5 is stopped, but this boost pump 5 is difficult to apply to the high ultra-high performance dialyzers that have recently started to be used. This is because in such a dialyzer, the pressure on the dialysate side is also negative, but in conventional devices, the boost pump 5 is stopped, which causes pipe resistance in the dialysate flow path, and also causes the dialysate to become dialysate. This is because stable negative pressure cannot be obtained because the fluid is supplied to the dialyzer only by the pressure of the supply source.

E、一般に限外濾過圧と限外r過液量の相関関係は、特
開昭60−158865号公報にみられる如く、原点を
通過する一次直線ではなく原点を通らない近似直線であ
る。従って前記従来装置公報にみられる限外−過圧計算
式では、所望する限外−過液量が得られないなどの問題
である。
E. In general, the correlation between ultrafiltration pressure and ultrafiltrate amount is not a linear straight line passing through the origin, but an approximate straight line that does not pass through the origin, as seen in Japanese Patent Laid-Open No. 158865/1983. Therefore, the ultra-overpressure calculation formula found in the prior art device publication has problems such as not being able to obtain the desired ultra-overpressure amount.

■ 限外−過量は正確に制御できるが、複雑な機構によ
る多数の切換弁や定量ポンプを必要とするため、装置の
信頼性に欠けたり、コストが高くなること。
■ Extreme - Excess amount can be controlled accurately, but because it requires a large number of switching valves and metering pumps with complicated mechanisms, the reliability of the device is lacking and the cost is high.

■ 透析液が全量計量槽2を経由するようにはなってい
るが、透析器の透析液側流路は、負圧下で操作されるの
で気体が発生し、透析液の循環中に前記計量槽2の右室
に混入して正確な限外−過量の測定ができないこと。
■ The dialysate is designed to pass through the total volume measuring tank 2, but since the dialysate side flow path of the dialyzer is operated under negative pressure, gas is generated and the dialysate flows through the measuring tank 2 while the dialysate is circulating. No. 2, the ultraviolet-excess amount cannot be accurately measured due to contamination with the right ventricle.

本発明の目的は、上記従来装置の問題点、特に除水量測
定方法の信頼性が低い点、限外ろ過圧力を高精度、安定
に制御することが困難な点、測定機構が複雑である点等
を解消し、限外濾過量の測定精度、信頼性が共に高く、
小型かつ安価な限外−過量制御装置を提供せんとするも
のである。
The purpose of the present invention is to solve the problems of the conventional devices mentioned above, especially the low reliability of the water removal measurement method, the difficulty in controlling the ultrafiltration pressure with high accuracy and stability, and the complicated measurement mechanism. etc., the ultrafiltration rate measurement accuracy and reliability are both high.
It is an object of the present invention to provide a small and inexpensive ultra-overflow control device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、以下の構成からなる。すなわち、(1)(イ
)血液流路と透析液流路とこれら両流路を区別し、血液
流路から透析液流路へと限外)濾過液を導出する透析膜
とからなる透析器と、(ロ)前記血液流路に設けられた
血液側圧力検出器と、 (ハ)透析器への透析液の供給を遮断する供給液遮断弁
と、 (ニ)移動可能な隔膜で一次室と二次空とに2分された
削量槽と、 (ホ)前記供給液遮断弁を経た後、一方は前記n量槽の
一次室へ分岐接続され、他方は前記透析器の導入口に接
続された透析液導入路と、(へ)前記透析器の透析液導
入路又は/および透析液導出路に設けられた透析液側圧
力検出器と、 (ト)前記透析器の透析液流路に陰圧を発生させる陰圧
ポンプと、 (チ)前記血液側圧力検出器と前記透析液側圧力検出器
とで検出した膜間差圧が規定膜間差圧に一致すべく前記
陰圧ポンプを制御する膜間差圧制御手段と、 (す)透析器から排出される排送析液の排出を遮断する
排液遮断弁と、 (ヌ)前記供給液遮断弁及び排液遮断弁を間歇的に切換
える切替手段と、 (ル)前記透析器の導出口に接続され、前記陰圧ポンプ
を経た後、一方は前記計量槽の二次室へ分岐接続され、
他方は排液遮断弁に至る透析液導出路とからなる限外F
VA量制御装置において、(オ)前記透析液導入路に設
けられた定流量弁と、 (ワ)前記透析器と前記排液遮断弁との間に限外濾過重
量を測定する重量測定手段とを具備したことを特徴とす
る限外−過量制御装置。
The present invention consists of the following configuration. That is, (1) (a) a dialyzer consisting of a blood flow path, a dialysate flow path, and a dialysis membrane that distinguishes these two flow paths and leads out the ultrafiltrate from the blood flow path to the dialysate flow path; (b) a blood-side pressure detector provided in the blood flow path; (c) a supply liquid cutoff valve that cuts off the supply of dialysate to the dialyzer; and (d) a movable diaphragm that connects the primary chamber. (e) After passing through the supply liquid cutoff valve, one side is branched and connected to the primary chamber of the n volume tank, and the other side is connected to the inlet of the dialyzer. a connected dialysate introduction path; (f) a dialysate-side pressure detector provided in the dialysate introduction path and/or dialysate outlet path of the dialyzer; and (g) a dialysate flow path of the dialyzer. a negative pressure pump that generates negative pressure; (a) a drain cutoff valve that cuts off the discharge of the drained precipitate discharged from the dialyzer; (l) connected to the outlet of the dialyzer, and after passing through the negative pressure pump, one side is branch-connected to the secondary chamber of the metering tank;
The other side is an extreme F consisting of a dialysate lead-out path leading to a drainage shutoff valve.
In the VA amount control device, (e) a constant flow valve provided in the dialysate introduction path; (w) weight measuring means for measuring an ultrafiltration weight between the dialyzer and the drain cutoff valve; An ultra-overcontrol device characterized by comprising:

(2)  前記重量測定手段は、 (イ)一定高さの位置に固着されたロードセルと、 (ロ)前記ロードセルに懸架され、上端が大気と連通す
る開孔部を有する可撓性袋状容器と、(ハ)一端が前記
可撓性袋状容器の下端に接続され、他端が前記透析液導
出路に接続された可撓性チューブと、 (ニ)前記ロードセルからの手品検出値を処理し、前記
膜間差圧制御手段に該検出値を伝える重量コントローラ
とからなることを特徴とする特許請求の範囲第1項記載
の限外−過量制御装置である。
(2) The weight measuring means includes: (a) a load cell fixed at a fixed height; and (b) a flexible bag-like container suspended from the load cell and having an opening communicating with the atmosphere at its upper end. (c) a flexible tube whose one end is connected to the lower end of the flexible bag-like container and whose other end is connected to the dialysate outlet path; and (d) to process the magic detection value from the load cell. and a weight controller that transmits the detected value to the transmembrane pressure differential control means.

(作用) この発明の定流量弁は、定流量弁の一次側流路内で生じ
る新鮮透析液の流量変動を一定に調節し、透析器に流入
する新鮮透析液の流量を予め設定された流量に調節する
(Function) The constant flow valve of the present invention constantly adjusts the flow rate fluctuation of fresh dialysate that occurs in the primary flow path of the constant flow valve, and adjusts the flow rate of fresh dialysate flowing into the dialyzer to a preset flow rate. Adjust to

ついで陰圧ポンプにより限外濾過された廃透析液は、透
析液導出路から計量槽の右室に貯留されていた新鮮透析
液と等量の排送析液が左室に流入し、余剰排送析液すな
わち除水量分が重量測定手段に流入し、限外)濾過量(
除水量)のみの重量が測定される。
Next, the waste dialysate ultrafiltered by the negative pressure pump flows from the dialysate lead-out path into the left ventricle with an equal amount of fresh dialysate stored in the right chamber of the metering tank, and excess waste is removed. The sent liquid, that is, the amount of water removed, flows into the weight measuring means, and the ultrafiltration amount (
The weight of only the water removed (amount of water removed) is measured.

〔実施例〕〔Example〕

本発明の一実施例を第1図乃至第5図を用いて詳細に説
明する。
An embodiment of the present invention will be described in detail using FIGS. 1 to 5.

第1図は、この発明の装置のフローろトであり、21は
、透析器で、透析膜(図示せず)を介して血液側流路A
と、供給装置22から透析器21の入口ポート(図示せ
ず)に至る流路である透析液導入路Bと、透析器21の
出口ポート(図示せず)から排液遮断弁32に至る流路
である透析液導出路Cとが接続されている。
FIG. 1 shows a flow filter of the apparatus of the present invention, and 21 is a dialyzer, which passes through a blood side flow path A through a dialysis membrane (not shown).
, a dialysate introduction path B which is a flow path from the supply device 22 to the inlet port (not shown) of the dialyzer 21 , and a flow path from the outlet port (not shown) of the dialyzer 21 to the drain cutoff valve 32 . A dialysate outlet channel C is connected thereto.

前記透析液導入路Bには、以下に述べる機器が接続され
ている。
The dialysate introduction path B is connected to the equipment described below.

すなわち、予め新鮮透析液を調合、準備する前記透析液
供給装置22.23は、切替手段24からの制御信号で
開閉される供給液遮断弁である。
That is, the dialysate supply devices 22 and 23, which prepare and prepare fresh dialysate in advance, are supply liquid cutoff valves that are opened and closed by control signals from the switching means 24.

25は、前記供給Vc置22による新鮮透析液の供給圧
力変動が透析器1へ直接波及するのを防止し、一定にす
るための定圧弁である。この定圧弁25の型式は、透析
液導入流路Bの管内圧力をパイロット圧力として、予め
設定された圧力に基づいて作動する自刃式圧力調整弁で
あるが、コントローラ(図示せず)からの制御で開閉さ
れる自動式圧力調整弁であればより好ましい。26は、
昇圧ポンプで、定圧弁25を出た新鮮透析液を安定供給
するため更に昇圧するためのポンプで、その型式は、例
えば、渦巻ポンプ、ギアポンプなどが好ましく用いられ
る。27は、計量槽で、弾性膜28により新鮮透析液を
一時的に収納する左室と、排送析液を一時的に収納する
石室とに相連通することなく2分されている。更に、こ
の計ff1lf127のち室からは、前記定圧弁25と
昇圧ポンプ26間の透析液導入路Bに連通ずる分岐管H
が接続され、左室からは、後に詳述する排送析液流路C
に連通ずる分岐間Eが接続されている。48は、新鮮透
析液の流量を一定にするための定流量弁で、一般に工業
分野で使用される機械式自刃流ff114@弁と同一構
造のものであり、陰圧ポンプ49の変化にかかわらず、
透析器21への透析液の供給速度(通常は100ml/
min>を一定に制御するものである。29は、流量計
である。
Reference numeral 25 denotes a constant pressure valve for preventing fluctuations in the supply pressure of fresh dialysate by the supply Vc unit 22 from directly affecting the dialyzer 1, and for maintaining the pressure constant. The type of constant pressure valve 25 is a self-cutting pressure regulating valve that operates based on a preset pressure using the internal pressure of the dialysate introduction channel B as a pilot pressure, but it is controlled by a controller (not shown). It is more preferable to use an automatic pressure regulating valve that opens and closes at the same time. 26 is
This pump is a pressure booster pump for further boosting the pressure of the fresh dialysate coming out of the constant pressure valve 25 in order to stably supply it, and its type is preferably a vortex pump, a gear pump, or the like. Reference numeral 27 denotes a measuring tank, which is divided into two by an elastic membrane 28 into a left chamber that temporarily stores fresh dialysate and a stone chamber that temporarily stores discharged analytical solution. Furthermore, after this total ff1lf127, a branch pipe H is connected from the chamber to the dialysate introduction path B between the constant pressure valve 25 and the pressure boost pump 26.
is connected to the left ventricle, and from the left ventricle there is a discharge precipitate flow path C, which will be described in detail later.
A branch E that communicates with is connected. 48 is a constant flow valve for keeping the flow rate of fresh dialysate constant, and has the same structure as the mechanical self-blade flow valve ff114@, which is generally used in the industrial field, regardless of changes in the negative pressure pump 49. ,
The rate of supply of dialysate to the dialyzer 21 (usually 100ml/
min> is controlled to be constant. 29 is a flow meter.

透析液導出路Cは、排送析液と、透析器21で限外−過
された液とを系外に排出する流路で、この流路C内には
以下に述べる機器が接続されている。
The dialysate outlet path C is a flow path for discharging the discharged analysis liquid and the ultrafiltered liquid in the dialyzer 21 to the outside of the system, and the equipment described below is connected to this flow path C. There is.

すなわち、49は、前記透析器21の透析液流路に負圧
を発生させるための陰圧ポンプ、30は、この負圧を検
出する透析液圧センサ、31は、血液圧センサ40と、
透析液圧センサ30とで検出した圧力の差圧(以下、股
間差圧という)を一定にすべく前記陰圧ポンプ49に制
御信号を送るマイクロプロセッサである。
That is, 49 is a negative pressure pump for generating negative pressure in the dialysate flow path of the dialyzer 21, 30 is a dialysate pressure sensor that detects this negative pressure, 31 is a blood pressure sensor 40,
This is a microprocessor that sends a control signal to the negative pressure pump 49 in order to keep the pressure difference detected by the dialysate pressure sensor 30 (hereinafter referred to as crotch pressure difference) constant.

なお、前記透析液圧センサ30は、必要な透析液圧精度
に応じて前記透析液導入路B、透析液導出路Cのいずれ
か一方、または両路に設けても良い。陰圧ポンプ49を
経た排送析液側流路Cは、前記分岐管Eとの分岐点Fで
合流した後、排送析液流路Cを流れる排送析液を遮断す
る排液遮断弁32に接続されている。また、24は、前
記供給液遮断弁23と、排液遮断弁32とに制御信号を
送り、両弁を一定時間毎に開閉するコン1〜ローうであ
る。
Note that the dialysate pressure sensor 30 may be provided in either one or both of the dialysate inlet path B and dialysate outlet path C depending on the required dialysate pressure accuracy. The drained analysis solution side flow path C that has passed through the negative pressure pump 49 joins the branch pipe E at a branch point F, and then a drain cutoff valve that shuts off the drained analysis solution flowing through the drained analysis solution flow path C. 32. Further, reference numeral 24 is a controller 1 to 2 which sends a control signal to the supply liquid cutoff valve 23 and the drained liquid cutoff valve 32, and opens and closes both valves at regular intervals.

33は、前記血液側流路Aから透析膜を経て透析液導出
路Cに限外濾過された除水量を測定する小母測定手段で
、この手段33は、ロードセル34と、計量バック35
と、可撓性チューブ36と、重量コン1〜ローラ37と
からなる。
Reference numeral 33 denotes a small measuring means for measuring the amount of water removed by ultrafiltration from the blood side flow path A to the dialysate outlet path C via the dialysis membrane.
, a flexible tube 36, and a weight controller 1 to a roller 37.

第5図は、前記計量バック35の周辺図で、図(A)は
、このバックに除水された液が収容されていない状態、
図(B)は、バック内に除水された液が下端に接続され
た可撓性チューブ36から流入して収納された状態を示
す。ロードセ34は、特に図示しないが一定高さの位置
に固定されており、下部の可動部にはフック38が固定
されている。このロードセル34は、一般的な限外濾過
量200〜5000ccに対して測定精度が±2〜4%
程度の高精度で除水重量を計測するごとができる。
FIG. 5 is a peripheral view of the measuring bag 35, and FIG.
Figure (B) shows a state in which the water removed liquid flows into the bag from the flexible tube 36 connected to the lower end and is stored therein. Although not particularly shown, the load cell 34 is fixed at a constant height position, and a hook 38 is fixed to the lower movable part. This load cell 34 has a measurement accuracy of ±2 to 4% for a general ultrafiltration amount of 200 to 5000 cc.
It is possible to measure the weight of water removed with moderate accuracy.

計量バック35は、前記ロードセル34のフック38に
懸架され、内部に液が充填されると自由に膨張する、例
えば、シリコンゴム、軟質塩化ビニール樹脂などからな
る可撓性弾性膜で構成された密閉袋である。可撓性チュ
ーブ36は、一端が前記計量バック35の下端に接続さ
れ、他端が前記透析液導出路Cに接続された、例えば、
ナイロンチューブ、シリコンチューブなどの可撓性のチ
ューブである。前記重量コントローラ37は、前記ロー
ドセル34の検出重量を表示し、規定重量以上になれば
警報信号を発信するコントローラである。
The weighing bag 35 is a sealed bag made of a flexible elastic membrane made of silicone rubber, soft vinyl chloride resin, etc., which is suspended from the hook 38 of the load cell 34 and expands freely when the inside is filled with liquid. It's a bag. The flexible tube 36 has one end connected to the lower end of the measuring bag 35 and the other end connected to the dialysate outlet path C, for example.
Flexible tubes such as nylon tubes and silicone tubes. The weight controller 37 is a controller that displays the weight detected by the load cell 34 and issues an alarm signal when the weight exceeds a specified weight.

次に、第2図の(A)〜(C)図に基づいてこの装置の
作用を説明する。
Next, the operation of this device will be explained based on FIGS. 2(A) to 2(C).

(A>図は、通常の限外濾過操作である定常モードに移
行する前の準備段階である準備モード、8図は、定常的
に限外濾過操作をする定常モード、0図は、一定時間経
過後の限外)濾過量を測定する測定モードを示す図であ
る。
(A> Figure is the preparation mode, which is the preparation stage before transitioning to the steady mode, which is normal ultrafiltration operation. Figure 8 is the steady mode, in which ultrafiltration is performed regularly. Figure 0 is the fixed time period. It is a figure which shows the measurement mode which measures the ultra) filtration amount after elapsed time.

なお、図中の太線は、各モードの流路において透析液の
流出入があることを示している。
Note that the thick lines in the figure indicate that the dialysate flows in and out in the flow path of each mode.

東風エニ上 準備モード(A図)では、予め供給液遮断弁23、排液
遮断弁32共に開状態に設定されている。
In the Dongfeng Anyup preparation mode (Fig. A), both the supply liquid cutoff valve 23 and the drain liquid cutoff valve 32 are set to the open state in advance.

透析液供給装置22を出た新鮮透析液は、供給液遮断弁
23を経て、定圧弁25で一定送液圧力に調節された後
、一部は昇圧ポンプ26に流れるが、大半は流路抵抗の
低い計量槽27の右室内に分岐点G、分岐管Hを経て弾
性膜28が計量槽27の左壁に密着するまで流入する。
The fresh dialysate from the dialysate supply device 22 passes through the supply liquid cutoff valve 23 and is adjusted to a constant liquid supply pressure by the constant pressure valve 25, and then a portion flows to the boost pump 26, but most of it flows through the flow path resistance. The elastic membrane 28 flows into the right chamber of the measuring tank 27, which has a low temperature, through the branch point G and the branch pipe H until it comes into close contact with the left wall of the measuring tank 27.

(この場合、計量槽27の左室内の残存排透析液は、弾
性膜28におされて透析液導出路Cへ排出される。)前
記右室が新鮮透析液で充満すると新鮮透析液は、昇圧ポ
ン126で更に供給圧力を昇圧され、ついで定流量弁4
8で透析器21への流入量を調節され、流量計29を経
て透析器21に流入する。
(In this case, the remaining drained dialysate in the left chamber of the metering tank 27 is passed through the elastic membrane 28 and discharged to the dialysate outlet path C.) When the right chamber is filled with fresh dialysate, the fresh dialysate is The supply pressure is further increased by the boost pump 126, and then the constant flow valve 4
The flow rate into the dialyzer 21 is adjusted at step 8, and flows into the dialyzer 21 via a flowmeter 29.

この透析器21中では、陰圧ポンプ49で透析液側流路
Cが規定負圧に維持されるので限外濾過作用が生じ、透
析液に血液側流路からの除水量が更に加えられて共に排
送析液流路Cに流入する。
In this dialyzer 21, the dialysate side flow path C is maintained at a specified negative pressure by the negative pressure pump 49, so an ultrafiltration effect occurs, and the amount of water removed from the blood side flow path is further added to the dialysate. Both flow into the discharged analysis liquid channel C.

この際、前記陰圧ポンプ49は、透析器21での除水能
を一定にすべく、膜間差圧が予め設定された股間差圧に
一致するようにマイクロプロセッサ31により制御され
る。
At this time, the negative pressure pump 49 is controlled by the microprocessor 31 so that the transmembrane pressure difference matches a preset crotch pressure difference in order to keep the water removal ability of the dialyzer 21 constant.

透−折型21、陰圧ポンプ49を経た排送析液は、前記
1tffi槽27の左室から押出された液と合流して排
液遮断弁32を経て系外へ排出される。
The discharged precipitate that has passed through the diaphragm die 21 and the negative pressure pump 49 joins the liquid pushed out from the left chamber of the 1tffi tank 27 and is discharged outside the system through the drain cutoff valve 32.

定ヱエニ上 図(B)の定常モードは、供給液遮断弁23、排液遮断
弁32が共に開、計量槽27内の弾性膜28が左壁に密
着された状態で、新鮮透析液は一定流量、一定の膜間圧
力で定常的に限外;濾過を継続するモードである。
In the steady mode shown in the above figure (B), the supply liquid cutoff valve 23 and the drain liquid cutoff valve 32 are both open, the elastic membrane 28 in the measuring tank 27 is in close contact with the left wall, and the fresh dialysate is kept constant. Constant flow rate and constant transmembrane pressure; this is a mode in which filtration continues.

計量モード 図(B)の定常モードによる限外濾過が一定時間経過す
ると、マイクロプロセッサ31の指示により、供給液遮
断弁23、排液遮断弁32は、閉じられ図(C)の計量
モードに移行する。
Measuring mode When ultrafiltration in the steady mode shown in diagram (B) has elapsed for a certain period of time, the supply liquid cutoff valve 23 and drain liquid cutoff valve 32 are closed according to instructions from the microprocessor 31, and the mode shifts to the metering mode shown in diagram (C). do.

透析液供給装置22からの新鮮透析液の供給が前記供給
液遮断弁23の閉止によって絶たれるのに対し、陰圧ポ
ンプ49による陰圧が透析液導出路Cに加えられるので
、計量槽27の右室に一時的に貯留された新鮮透析液は
、分岐管H1透析液導入路Bを経て透析器21へ供給さ
れて限外濾過がなされる。血液側流路Aから透析液流路
に限外濾過された除水量と、排送析液は、排液遮断弁3
2が閉止されているので計量槽27の弾性膜28を右方
向へ押しやりつつ、右室に貯留されていた新鮮透析液と
等量の排送析液が左室に流入し、余剰排送析液すなわち
除水量分が可撓性チューブ36を経て計量バック35に
流入する。
While the supply of fresh dialysate from the dialysate supply device 22 is cut off by closing the supply liquid cutoff valve 23, negative pressure from the negative pressure pump 49 is applied to the dialysate outlet path C, so that the metering tank 27 is The fresh dialysate temporarily stored in the right ventricle is supplied to the dialyzer 21 through the branch pipe H1 and the dialysate introduction path B, where it undergoes ultrafiltration. The amount of water removed ultrafiltered from the blood side flow path A to the dialysate flow path and the discharged analytical solution are determined by the drain cutoff valve 3.
2 is closed, the elastic membrane 28 of the measuring tank 27 is pushed to the right, and the drained analyte equal to the fresh dialysate stored in the right ventricle flows into the left ventricle, causing the excess to be drained. The separated solution, ie, the amount of water removed, flows into the measuring bag 35 through the flexible tube 36.

ここで、計量モードに移行した直後からのロードセル3
4の小母出力値と、透析液圧セン9−30による透析液
導出路Cの排送析液の圧力状態を第3図(A>および(
B)に基づいて詳細に説明する。
Here, load cell 3 immediately after transitioning to weighing mode
Figure 3 (A> and (
This will be explained in detail based on B).

第3図(8)の(イ)点は、定常モードから計量モード
に切換えられた瞬間に、陰圧ポンプ49の吐出圧が下降
するため透析液圧力が瞬間的に低下することを示してい
る。
Point (a) in Figure 3 (8) shows that the dialysate pressure drops instantaneously because the discharge pressure of the negative pressure pump 49 drops the moment the steady mode is switched to the metering mode. .

(理由は、定常モード時は大気圧+排液遮断弁32を含
むいくらかの透析液導出路Cの流路抵抗があるに対し、
計量モード時は、陰圧ポンプ49の一次側、二次側共に
遮断はされるが計量槽27と計量バック35内に排送析
液収納スペースがあるので、流路抵抗が低く瞬間的に大
気圧に下がるからである。) そのため、限外−過液間は、図(A>の(イ)点に示す
如く増加するが、数秒経過すると圧力制御系が追従する
ので図(B)の(ロ)点に示す如く規定圧力Pに復帰す
る。
(The reason is that in the steady mode, there is atmospheric pressure + some flow path resistance of the dialysate lead-out path C including the drain cutoff valve 32,
In the measurement mode, both the primary and secondary sides of the negative pressure pump 49 are shut off, but since there is storage space for the discharged analysis solution in the measurement tank 27 and the measurement bag 35, the flow path resistance is low and the flow resistance increases instantly. This is because the atmospheric pressure drops. ) Therefore, the limit-excess liquid range increases as shown at point (a) in Figure (A>), but the pressure control system follows after a few seconds, so the limit is increased as shown at point (b) in Figure (B). The pressure returns to P.

ついで計量槽27の右室が完全に廃透析液で充満された
図(A)の(ハ)点では、陰圧ポンプ49の吸引側は締
め切り状態となるため、透析器21には過度の陰圧がか
かり、図(A>の(ハ)点の如く過度の限外;濾過が行
なわれる共に、透析液圧も図(B)の(ハ)点に示す如
く瞬間的に低下する。
Then, at point (C) in Figure (A), when the right chamber of the metering tank 27 is completely filled with waste dialysate, the suction side of the negative pressure pump 49 is closed, so there is no excessive negative pressure on the dialyzer 21. Pressure is applied, and excessive ultrafiltration is performed as shown at point (c) in Figure (A>). At the same time, the dialysate pressure also drops instantaneously as shown at point (c) in Figure (B).

従って計量モードに入ってから数秒経過した後の図(A
)の(ロ)点から計量を始め、計量槽27が完全に廃透
析液で充填される以前の図(A>の(ニ)点までのロー
ドセル340重量変化を測定すれば無用な透析液圧変動
を回避した精度の高い除水量の期間が図れる。
Therefore, the figure (A) after several seconds have passed after entering the weighing mode.
If you start measuring from point (b) in ) and measure the weight change of the load cell 340 up to point (d) in figure (A>) before the measuring tank 27 is completely filled with waste dialysate, you will find unnecessary dialysate pressure. It is possible to plan the period for highly accurate water removal while avoiding fluctuations.

この第3図(口〉から(ニ)までのロードセル34によ
る検出重量を、この間の時間で除したものが単位時間当
りの限外−過液量である。
The weight detected by the load cell 34 from FIG.

次に、ロードセル34で検出された計量バッグ35の重
■は、重量コントローラ37に送られる。
Next, the weight of the weighing bag 35 detected by the load cell 34 is sent to the weight controller 37.

重量コントローラ37は、予め設定された計量バック3
5と、可撓性チューブ36自体の風袋量Mを除いた実除
水量を積算表示すると共にマイクロプロセッサ31にこ
の重量信号を伝える。この重量信号を受けたマイクロプ
ロセッサ31は、単位時間当りの除水間、即ち、限外濾
過量が異常値であれば、規定陰圧を変更する。なお−透
析器21からの除水量は、計量槽27の右室と在室が等
容積なので、定常モード前に計量槽27の右室に貯留さ
れていた新鮮透析液は、相当分のIJE液が左室内に流
入し、同時に除水量に相当する排送析液が計量バック3
5内に流入する。この計量モードでの膜間差圧も準備、
定常モードと同一差圧になるようにマイクロプロセッサ
31で調節されているので、透析器21の膜性能及び股
間差圧に対応した限外−過液量が、透析液導出路Cに移
行する。
The weight controller 37 controls the weighing bag 3 set in advance.
5 and the actual amount of water removed excluding the tare amount M of the flexible tube 36 itself, and transmits this weight signal to the microprocessor 31. Upon receiving this weight signal, the microprocessor 31 changes the specified negative pressure if the amount of water removed per unit time, that is, the amount of ultrafiltration is an abnormal value. Note that the amount of water removed from the dialyzer 21 is the same volume as that of the right ventricle of the measuring tank 27, so the fresh dialysate stored in the right ventricle of the measuring tank 27 before the steady mode is equivalent to the IJE fluid. flows into the left ventricle, and at the same time, the discharged precipitate equivalent to the amount of water removed flows into the measuring bag 3.
5. Also prepare the transmembrane pressure in this measurement mode.
Since the microprocessor 31 adjusts the differential pressure to be the same as in the steady mode, the amount of ultra-extreme fluid corresponding to the membrane performance of the dialyzer 21 and the crotch differential pressure is transferred to the dialysate outlet path C.

計量モードが終了すると供給液遮断弁23と、排液遮断
弁32とが開かれて前記準備モードに移行し、供給液遮
断弁23を通過した新鮮透析液は、計量槽27の右室内
に流入するので弾性膜28の左室内に充満した排送析液
を排送析液導出路Cに押し流すと共に、計量バック35
内に溜められた除水も計量バック35の内部圧力が大気
圧より高くなっているので排送析液導出路Cに自然落下
して系外に排出される。
When the metering mode ends, the supply liquid cutoff valve 23 and the drain liquid cutoff valve 32 are opened to shift to the preparation mode, and the fresh dialysate that has passed through the supply liquid cutoff valve 23 flows into the right chamber of the metering tank 27. Therefore, the discharged precipitate filled in the left chamber of the elastic membrane 28 is swept away to the discharged precipitate outlet path C, and the weighing bag 35
Since the internal pressure of the weighing bag 35 is higher than the atmospheric pressure, the removed water stored therein naturally falls into the discharged precipitate outlet path C and is discharged to the outside of the system.

このようにして順次上述の3サイクルが繰り返えされ、
正常な透析作用がなされる。
In this way, the above three cycles are repeated one after another,
Normal dialysis occurs.

上記のように構成されたこの発明の装置では、測定した
限外濾過ffi (Qn )から次の演算式により、設
定膜間差圧(TMPs )を求めることができる。
In the apparatus of the present invention configured as described above, the set transmembrane pressure (TMPs) can be determined from the measured ultrafiltration ffi (Qn) using the following calculation formula.

TMPN =P8n −PDn −A QV =f  (Qn ) TMPs = (QS /QV )XTMPN但し、T
MPN :現在の膜間差圧 TMPS :設定股間差圧 PBn  :現在の血液側圧力 PDn  :現在の透析液側圧力 A   :透析液側圧力の補正定数 Qn  :測定した限外濾過量 Qv   :Qnの補正値 QS  :目的限外濾過液量   □ この実施例装置によればこの発明は、以下の顕著なる効
果を層する。
TMPN =P8n -PDn -A QV =f (Qn) TMPs = (QS /QV)XTMPNHowever, T
MPN: Current transmembrane differential pressure TMPS: Set crotch differential pressure PBn: Current blood side pressure PDn: Current dialysate side pressure A: Dialysate side pressure correction constant Qn: Measured ultrafiltration rate Qv: Qn Correction value QS: Target ultrafiltrate volume □ According to the device of this embodiment, the present invention has the following remarkable effects.

■ 定圧弁25を設けたことにより、透析液供給装置2
2から透析器21に波及する圧力変動、モード切換えに
伴なう透析流路内への圧力変動等の外乱を阻止し、膜間
圧力を精度良く制御できる。
■ By providing the constant pressure valve 25, the dialysate supply device 2
Disturbances such as pressure fluctuations that spread from the dialyzer 2 to the dialyzer 21 and pressure fluctuations in the dialysis flow path due to mode switching can be prevented, and the intermembrane pressure can be controlled with high precision.

■ 定流量弁48を設けたことにより、透析液導出路C
に流入する排送析液量がほぼ一定であるため、陰圧ポン
プ49の一定陰圧による安定運転に好結果をもたらす。
■ By providing the constant flow valve 48, the dialysate lead-out path C
Since the amount of discharged precipitate flowing into the pump 49 is approximately constant, stable operation of the negative pressure pump 49 with a constant negative pressure is achieved.

■ 陰圧ポンプ49を設けたことにより、透析液圧を大
気圧に対して陰圧とする透析も可能である。これは中分
子除去性能を向上させるため必然的に限外−過性能が大
きくなった(従って微少な股間差圧で大量の限外濾過液
最が得られる)ことに伴なう問題を解消できる。
(2) By providing the negative pressure pump 49, it is also possible to perform dialysis in which the dialysate pressure is made negative with respect to atmospheric pressure. This improves the medium molecule removal performance, which inevitably increases the ultrafiltration performance (therefore, a large amount of ultrafiltrate can be obtained with a small pressure difference between the legs), which can solve the problem. .

■ また透析液流路を切換える電磁弁も従来装置の4個
から、本発明ではわずか2個(供給液連断弁23と、排
液遮断弁32)に減少することができる。したがって装
置の簡略化が達成できる。
(2) Furthermore, the number of solenoid valves for switching the dialysate flow path can be reduced from four in the conventional device to only two (supply fluid connection valve 23 and drain fluid cutoff valve 32) in the present invention. Therefore, the device can be simplified.

■ 除水量測定をロードセル34による重量検出とした
ため、従来装置の透析、装置に比し、測定精度の高い微
少量の計測ができる。更に透析液導出路Cからの分岐管
Eと、可撓性チューブ36の分岐を第4図の如く計量槽
27への分岐管Eを先に、計量バック35への分岐を侵
に接続することにより、しかも分岐管Eの分岐を透析液
導出路Cの下方から分岐することにより、混入ガスは計
量槽27に流入せずに計量バッグ35へ優先的に導入さ
れるようにすることができる。
- Since the amount of water removed is measured by weight detection using the load cell 34, it is possible to measure minute amounts with higher measurement accuracy than conventional dialysis devices. Further, connect the branch pipe E from the dialysate lead-out path C and the branch of the flexible tube 36 to the measuring tank 27 first, and then connect the branch pipe to the measuring bag 35 as shown in FIG. In addition, by branching the branch pipe E from below the dialysate outlet path C, the mixed gas can be preferentially introduced into the metering bag 35 without flowing into the metering tank 27.

■ 旧刊バッグ35は、容積ではなく重量を測定してい
るため、液面測定などの容積法に伴なう前述した精度窓
下はない。水頭圧の液面測定を採る従来装置は、予め最
大限外シ濾過液聞に対応できる細長い細管を準偏しなC
プればならないのに比し、この実施例装置は、単に可撓
性フィルムで構成するので取扱いが簡単であり、更に調
量バッグ35は伸縮自在であるため、第5図(A>、(
B)図に示すごとく限外−過液量により自由に形状をか
えられ、広範囲の液量をコンパクトに収納できる。
■ Since the old issue bag 35 measures weight rather than volume, there is no accuracy window as described above associated with volumetric methods such as liquid level measurement. Conventional devices that measure the liquid level of water head pressure are designed to measure the liquid level by pre-setting a long thin tube that can accommodate the maximum amount of filtration liquid.
In contrast, the apparatus of this embodiment is simply constructed of a flexible film and is therefore easy to handle.Furthermore, the metering bag 35 is expandable and retractable.
B) As shown in the figure, the shape can be freely changed depending on the amount of ultra-extra liquid, and a wide range of liquid amounts can be stored compactly.

次に、第6図は、本発明に係る他の実施例を示すフロー
ろトで、第1図に示す実施例装置と異なる点は、透析液
を一旦、計量槽27の右室を経由して昇圧ポンプ26に
供給する点と、前記昇圧ポンプ26の二次側に設置プら
れた温度調整装置41と、前記定流量弁48の二次側に
設けられたフロースイッチ42と、透析液導出路Cから
の分岐管Eの分岐点に設けられた気液分離槽43と、排
液遮断弁32のバイパス路Iに設けられた三方電磁片4
4と、計量筒50の上部を開孔して筒状とした点であり
、その他の第1図と同一番号の機器は第1図と同一のも
のである。
Next, FIG. 6 shows a flow filter showing another embodiment of the present invention, which differs from the embodiment shown in FIG. a temperature adjustment device 41 installed on the secondary side of the booster pump 26, a flow switch 42 installed on the secondary side of the constant flow valve 48, and a dialysate outlet point. A gas-liquid separation tank 43 provided at the branch point of the branch pipe E from the path C, and a three-way electromagnetic piece 4 provided in the bypass path I of the drain cutoff valve 32.
4, the upper part of the measuring cylinder 50 is made into a cylindrical shape, and the other devices with the same numbers as in FIG. 1 are the same as in FIG. 1.

温度調整装置41は、ヒータ45と、温度検知端46と
、温度コントローラ47とからなり、新鮮透析液の温度
を人体温度にまで昇温の上、維持するだめのもので、新
鮮透析液は、前記温度検知端46による検出温度に基づ
いて温度コントローラ47で常時、制御されている。フ
ロースイッチ42は、新鮮透析液の流量を表示すると共
に、規定流量の上限または下限を外れた場合に警報を発
するものである。気液分離槽43は、第1図と第4図で
説明した排送析液の気液分離の性能を更に向上したもの
で、上下に長い円筒状をしており、その側部には陰圧ポ
ンプ49からの透析液導出路Cが、頂部からは計量筒5
0への透析液導出路Cが、更に底部からは計量槽27に
連通する分岐管Eが接続されている。また、計量筒50
は、上部で大気解放しており、透析液中に含まれている
ガスを外部に放出し、排液を更に確実に行なうものであ
る。
The temperature adjustment device 41 includes a heater 45, a temperature detection end 46, and a temperature controller 47, and is used to raise and maintain the temperature of fresh dialysate up to the human body temperature. It is constantly controlled by a temperature controller 47 based on the temperature detected by the temperature detection end 46. The flow switch 42 displays the flow rate of fresh dialysate and issues an alarm if the flow rate exceeds the upper or lower limit of the specified flow rate. The gas-liquid separation tank 43 further improves the performance of gas-liquid separation of the discharged precipitate explained in FIGS. 1 and 4, and has a vertically long cylindrical shape with shadows on the sides. A dialysate lead-out path C from the pressure pump 49 is connected to the measuring cylinder 5 from the top.
A dialysate lead-out path C to 0 is further connected to a branch pipe E that communicates with a measuring tank 27 from the bottom. In addition, the measuring cylinder 50
The upper part of the dialysate is open to the atmosphere, and the gas contained in the dialysate is released to the outside to ensure more reliable drainage.

三方電磁弁44は、排液遮断弁32のバイパス路I中に
設けられており、準備モード及び定常モードでは、排液
遮断弁32と共にポート(イ)は閉となり、ポート(ロ
)とポート(ハ)が開となって前回の計量モードでバッ
グ35内に貯留された廃透析液をバイパス路Gを経て系
外に確実に排出する。計量モード時はポート(イ)とポ
ート(ロ)が開となり、ポート(ハ)は閉となって透析
器21から限外−過された液量に相当する分がバッグ3
5内に蓄積される。なお、定常モードから計量モードに
切換えるに際しては、切換える直前に三方電磁弁44の
ポート(ハ)を開、(イ)(ロ)を開とし、気液分離槽
34から三7i電磁弁44に至るバイパス路I内に滞留
していた空気を計量筒50に追い出してやることが好ま
しい。三方電磁弁44は準備、定常モード時では語母筒
50のポートが排出側に接続されているため、吐出圧力
が大気圧より高くなっても、排送析液が計量筒50内に
流入するのを防ぐ。
The three-way solenoid valve 44 is provided in the bypass path I of the drain cutoff valve 32, and in the preparation mode and steady mode, the port (a) is closed together with the drain cutoff valve 32, and the port (b) and the port (b) are closed. C) is opened to ensure that the waste dialysate stored in the bag 35 in the previous measurement mode is discharged out of the system via the bypass path G. In the metering mode, ports (a) and (b) are open, port (c) is closed, and the amount of fluid that is ultrafiltered from the dialyzer 21 is transferred to the bag 3.
It is accumulated within 5. In addition, when switching from the steady mode to the metering mode, immediately before switching, open ports (c), (a) and (b) of the three-way solenoid valve 44, and open the ports (a) and (b) of the three-way solenoid valve 44 from the gas-liquid separation tank 34 to the three-way solenoid valve 44. It is preferable to expel the air stagnant in the bypass path I to the measuring tube 50. Since the three-way solenoid valve 44 is in preparation and in the steady mode, the port of the master cylinder 50 is connected to the discharge side, so even if the discharge pressure becomes higher than atmospheric pressure, the discharged precipitate flows into the measuring cylinder 50. prevent

第6図で説明した実施例装置によれば、第1図乃至第5
図で説明した実施例装置に加えて、更に次の顕著なる効
果を層する。
According to the embodiment device explained in FIG.
In addition to the embodiment device explained in the figures, the following remarkable effects are further layered.

計量槽27の右室を新鮮透析液が一旦、経由する流路と
することにより、通常透析完了後、透析液供給装置22
のかわりに、一時的に洗浄液供給装置を配置すれば水洗
浄、薬液洗浄等により計量槽27内の洗浄効率を上げる
ことができる。
By using the right chamber of the measuring tank 27 as a flow path through which fresh dialysate temporarily passes, the dialysate supply device 22 is normally used after dialysis is completed.
Instead, if a cleaning liquid supply device is temporarily installed, cleaning efficiency in the metering tank 27 can be increased by water cleaning, chemical cleaning, etc.

温度調整装@41は、新鮮透析液の温度を人体温度にま
で調整でき、フロースイッチ42は、定常モード時にお
ける透析液導入路B、弾性膜28などの破裂による流■
低下の他、供給液遮断弁23の洩れにより、弾性膜28
が計量槽27の右壁に密着し、訓■モードが完全に終了
した状態でもなお、新鮮透析液が流れているなどの新鮮
透析液の異常流量を知ることができる。
The temperature adjustment device @ 41 can adjust the temperature of the fresh dialysate to the human body temperature, and the flow switch 42 controls the flow caused by the rupture of the dialysate introduction path B, elastic membrane 28, etc. in the steady mode.
In addition to the decrease, the elastic membrane 28
is in close contact with the right wall of the measuring tank 27, and an abnormal flow rate of fresh dialysate can be detected, such as when fresh dialysate is still flowing even when the training mode is completely completed.

更に、気液分離槽43に透析液導出路Cから廃透析液と
共に混入したガスは、比重差によりガスは上方に浮上し
、比重の大きい廃透析液のみが下方に溜まる。この廃透
析液は、陰圧ポンプ49の吐出圧力により計量槽27に
分岐管Eを経て貯留される。一方、気液分離4I43上
部のガスは、バイパス路Iを経て三方電磁弁44のポー
ト(イ)、(ロ)を経て計量筒50に流入し、該計量筒
頂部の開孔部から外部に放出される。
Furthermore, the gas mixed into the gas-liquid separation tank 43 from the dialysate outlet path C along with the waste dialysate floats upward due to the difference in specific gravity, and only the waste dialysate with a higher specific gravity accumulates below. This waste dialysate is stored in the metering tank 27 via the branch pipe E by the discharge pressure of the negative pressure pump 49. On the other hand, the gas in the upper part of the gas-liquid separation 4I43 flows into the measuring cylinder 50 through the bypass path I, ports (a) and (b) of the three-way solenoid valve 44, and is discharged to the outside from the opening at the top of the measuring cylinder. be done.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記構成としたので以下の効果を秦する。 Since the present invention has the above configuration, the following effects are achieved.

■、除水量測定を測定精度の高い重量検出としたので、
従来装置の液位検出に比べて高精度で信頼性の高い限外
−過量制御装置が得られる。
■Since the amount of water removed is measured by weight detection with high measurement accuracy,
A highly accurate and reliable ultra-overflow control device can be obtained compared to the liquid level detection of conventional devices.

よって、従来装置のような細長いマノメータの準備、該
マノメータ内の液滴の付着による除水■測定精度の低下
、上端からの溢流、折損事故などの心配が無用になる。
Therefore, there is no need to worry about preparing a long and thin manometer, deteriorating measurement accuracy due to droplets adhering to the manometer, overflowing from the upper end, breakage, etc. as in the conventional device.

■、透析液流路に定流量弁を設けたので、透析器に供給
される新鮮透析液の流量が安定する。
(2) Since a constant flow valve is provided in the dialysate flow path, the flow rate of fresh dialysate supplied to the dialyzer is stabilized.

その結果、透析液側流路の圧力変動が減少して陰圧ポン
プの作動が静粛になり、精度の高い限外濾過■測定が可
能になる。
As a result, pressure fluctuations in the dialysate side flow path are reduced, the operation of the negative pressure pump becomes quieter, and highly accurate ultrafiltration measurement becomes possible.

■ 定常モードから計量モードへの切替え、計量モード
から単価モードへの切換え時に発生する透析液流路の圧
力変動による異常除水量を、重量測定手段のImコント
ローラの作用により、除水量測定対象から外したので、
状来装置に比べてより正確な限外;濾過量測定精度が得
られる。
■ Abnormal amounts of water removed due to pressure fluctuations in the dialysate flow path that occur when switching from steady mode to metering mode or from metering mode to unit price mode are excluded from the water removal amount measurement target by the action of the Im controller of the weight measuring means. So,
More accurate ultraviolet and filtration rate measurement accuracy can be obtained compared to current devices.

また、@量測定手段をロードセルと、可撓性袋状容器と
、可撓性チューブとの組合せとしたので測定精度の高い
重量測定手段が簡易、かつ安価に得られる。
Further, since the weight measuring means is a combination of a load cell, a flexible bag-like container, and a flexible tube, a weight measuring means with high measurement accuracy can be obtained simply and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一実施例を示すフローろト
、第2図はその動作説明図、第3図(A>はロードセル
のlff1出力値を示す図、同(B)図は透析圧変化を
示す図、第4図および第5図は重量測定手段の構成を説
明する図、第6図は本発明に係る装置の別の実施例を示
すフローろトである。 第7図は従来装置の動作説明図である。 図面の簡単な説明 2に透析器      22:透析液供給装置23:供
給液遮断弁   24:切替え手段25:定圧弁   
   26:昇圧ポンプ27 : if足槽     
 28:非弾性膜29:流母計      30=透析
液圧セン丈31:マイクロプロセッサ32:排液遮断弁
33:重量測定手段   34:ロードセル35:計量
バック    36:可撓性チューブ37:重量コント
ローラ 38:フック39:欠  番     40:
血液圧センサ41:温度調製装置   42:フロース
イッチ43:気液分離器    44:三方電磁弁45
:ヒータ       46:温度検知端47:温度コ
ントローラ 48:定流量弁49:陰圧ポンプ    
50:計量筒特許出願人  東 し 株 式 会 社(
A)         (s) 第5図
Fig. 1 is a flow rotor showing an embodiment of the device according to the present invention, Fig. 2 is an explanatory diagram of its operation, Fig. 3 (A> is a diagram showing the lff1 output value of the load cell, and Fig. 3 (B) is a diagram showing the lff1 output value of the load cell. Figures 4 and 5 are diagrams showing changes in dialysis pressure, Figures 4 and 5 are diagrams explaining the configuration of the weight measuring means, and Figure 6 is a flow filter showing another embodiment of the apparatus according to the present invention. is an explanatory diagram of the operation of a conventional device. Brief explanation of the drawing 2 shows a dialyzer 22: dialysate supply device 23: supply fluid cutoff valve 24: switching means 25: constant pressure valve
26: Boost pump 27: if foot tank
28: Inelastic membrane 29: Flowmeter 30 = Dialysis fluid pressure sensor height 31: Microprocessor 32: Drainage cutoff valve 33: Weight measuring means 34: Load cell 35: Weighing bag 36: Flexible tube 37: Weight controller 38 :Hook 39: Missing number 40:
Blood pressure sensor 41: Temperature adjustment device 42: Flow switch 43: Gas-liquid separator 44: Three-way solenoid valve 45
: Heater 46: Temperature detection end 47: Temperature controller 48: Constant flow valve 49: Negative pressure pump
50: Measuring tube patent applicant Toshi Co., Ltd. (
A) (s) Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)(イ)血液流路と透析液流路とこれら両流路を区
別し、血液流路から透析液流路へと限外ろ過液を導出す
る透析膜とからなる透析器と、 (ロ)前記血液流路に設けられた血液側圧力検出器と、 (ハ)透析器への透析液の供給を遮断する供給液遮断弁
と、 (ニ)移動可能な隔膜で一次室と二次室とに2分された
計量槽と、 (ホ)前記供給液遮断弁を経た後、一方は前記計量槽の
一次室へ分岐接続され、他方は前記透析器の導入口に接
続された透析液導入路と、(ヘ)前記透析器の透析液導
入路又は/および透析液導出路に設けられた透析液側圧
力検出器と、 (ト)前記透析器の透析液流路に陰圧を発生させる陰圧
ポンプと、 (チ)前記血液側圧力検出器と前記透析液側圧力検出器
とで検出した膜間差圧が規定膜間差圧に一致すべく前記
陰圧ポンプを制御する膜間差圧制御手段と、 (リ)透析器から排出される排透析液の排出を遮断する
排液遮断弁と、 (ヌ)前記供給液遮断弁及び排液遮断弁を間歇的に切換
える切替手段と、 (ル)前記透析器の導出口に接続され、前記陰圧ポンプ
を経た後、一方は前記計量槽の二次室へ分岐接続され、
他方は排液遮断弁に至る透析液導出路とからなる限外ろ
過量制御装置において、(オ)前記透析液導入路に設け
られた定流量弁と、 (ワ)前記透析器と前記排液遮断弁との間に限外ろ過重
量を測定する重量測定手段とを具備したことを特徴とす
る限外ろ過量制御装置。
(1) (a) A dialyzer consisting of a blood flow path, a dialysate flow path, and a dialysis membrane that distinguishes these two flow paths and leads out the ultrafiltrate from the blood flow path to the dialysate flow path; (b) A blood-side pressure detector provided in the blood flow path; (c) A supply liquid cutoff valve that cuts off the supply of dialysate to the dialyzer; (d) A movable diaphragm that connects the primary chamber and the secondary chamber. (e) After passing through the supply liquid cutoff valve, one side is branched and connected to the primary chamber of the metering tank, and the other side is connected to the inlet of the dialyzer. (f) a dialysate-side pressure detector provided in the dialysate introduction path and/or dialysate outlet path of the dialyzer; and (g) generating negative pressure in the dialysate flow path of the dialyzer. (h) an intermembrane pump that controls the negative pressure pump so that the transmembrane pressure difference detected by the blood side pressure detector and the dialysate side pressure detector matches a specified transmembrane pressure difference; differential pressure control means; (l) a drain cutoff valve that blocks discharge of waste dialysate discharged from the dialyzer; (v) switching means that intermittently switches the supply liquid cutoff valve and the drain cutoff valve. (l) connected to the outlet of the dialyzer, and after passing through the negative pressure pump, one side is branch-connected to the secondary chamber of the metering tank;
The other is an ultrafiltration rate control device consisting of a dialysate lead-out path leading to a drain cutoff valve, (E) a constant flow valve provided in the dialysate introduction path, and (W) the dialyzer and the drain fluid. 1. An ultrafiltration rate control device comprising: a weight measuring means for measuring an ultrafiltration weight between the cutoff valve and the cutoff valve.
(2)前記重量測定手段は、 (イ)一定高さの位置に固着されたロードセルと、 (ロ)前記ロードセルに懸架され、上端が大気と連通す
る開孔部を有する可撓性袋状容器と、(ハ)一端が前記
可撓性袋状容器の下端に接続され、他端が前記透析液導
出路に接続された可撓性チューブと、 (ニ)前記ロードセルからの重量検出値を処理し、前記
膜間差圧制御手段に該検出値を伝える重量コントローラ
とからなることを特徴とする特許請求の範囲第1項記載
の限外ろ過量制御装置。
(2) The weight measuring means includes: (a) a load cell fixed at a constant height; and (b) a flexible bag-like container suspended from the load cell and having an opening communicating with the atmosphere at its upper end. (c) a flexible tube whose one end is connected to the lower end of the flexible bag-like container and whose other end is connected to the dialysate outlet path; and (d) to process the detected weight value from the load cell. 2. The ultrafiltration amount control device according to claim 1, further comprising a weight controller that transmits the detected value to the transmembrane pressure differential control means.
JP62069060A 1987-03-25 1987-03-25 Ultra ▲ Overload control device Expired - Lifetime JPH0622610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069060A JPH0622610B2 (en) 1987-03-25 1987-03-25 Ultra ▲ Overload control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069060A JPH0622610B2 (en) 1987-03-25 1987-03-25 Ultra ▲ Overload control device

Publications (2)

Publication Number Publication Date
JPS63234973A true JPS63234973A (en) 1988-09-30
JPH0622610B2 JPH0622610B2 (en) 1994-03-30

Family

ID=13391645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069060A Expired - Lifetime JPH0622610B2 (en) 1987-03-25 1987-03-25 Ultra ▲ Overload control device

Country Status (1)

Country Link
JP (1) JPH0622610B2 (en)

Also Published As

Publication number Publication date
JPH0622610B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
EP1543853B1 (en) Blood purifying device
EP1434646B2 (en) Apparatus for controlling a dialysis apparatus
US5643201A (en) Continuous peritoneal dialysis apparatus
US4728433A (en) Ultrafiltration regulation by differential weighing
US8235931B2 (en) Waste balancing for extracorporeal blood treatment systems
US3990973A (en) Apparatus for measuring ultrafiltration rate
US4889635A (en) Method and apparatus for controlling the quantities of liquid circulating in the dialysis liquid circuit of an artificial kidney
JPH0455075B2 (en)
JPH0152026B2 (en)
EP0188451A1 (en) Blood extraction and reinfusion flow control system and method.
JPH01119262A (en) Apparatus for dialyzing blood and extracting ultrafiltrate
US4735727A (en) Dialysis equipment
US4334988A (en) Control of dialysis and ultrafiltration
CA1103589A (en) Hemodialysis ultrafiltration system with controlled liquid extraction from blood
SU581843A3 (en) Artificial kidney
US20110036768A1 (en) Continuous blood purification system provided with syringe pumps
JP4337981B2 (en) Blood purification equipment
JPS63234973A (en) Apparatus for controlling ultrafiltration quantity
JPH01201263A (en) Ultrafiltration control device
JPS6341603B2 (en)
JPH0470909B2 (en)
JPS6226804B2 (en)
SU1055517A1 (en) "artificial kidney" apparatus
JPS6366543B2 (en)
JPH06134031A (en) Blood dialyzing and filtering device