JPS63234851A - Connection of multiplex winding hexagonal stator coil - Google Patents

Connection of multiplex winding hexagonal stator coil

Info

Publication number
JPS63234851A
JPS63234851A JP6398987A JP6398987A JPS63234851A JP S63234851 A JPS63234851 A JP S63234851A JP 6398987 A JP6398987 A JP 6398987A JP 6398987 A JP6398987 A JP 6398987A JP S63234851 A JPS63234851 A JP S63234851A
Authority
JP
Japan
Prior art keywords
coil
strands
phase
winding
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6398987A
Other languages
Japanese (ja)
Other versions
JPH06101904B2 (en
Inventor
Itaru Sudo
須藤 格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6398987A priority Critical patent/JPH06101904B2/en
Publication of JPS63234851A publication Critical patent/JPS63234851A/en
Publication of JPH06101904B2 publication Critical patent/JPH06101904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

PURPOSE:To facilitate wiring and connection work, by alternately arranging winding units different dislocating direction of strands one after another in a unipolar monophasic groove. CONSTITUTION:A three-phase stator winding is formed by connecting the space of winding units with an interpole connecting line which units are composed of multiple hexagonal coils 2 having multiple steps of strands a-f and arranged and formed one after another in a unipolar monophasic groove of stator core grooves 1. With this winding the abovementioned winding units consist of one that dislocated a strand (f) of lower step at the bottom coil lead wire section 5 of a coil 2 to the upper step and connected and formed respectively to the strands f-a at upper coil lead wire section 6 of the adjacent coil 2 and of the other that dislocated the strand (f) to a lower step in the same way and connected and formed. These winding units different in dislocating direction are alternately arranged one after another. Thus, in case the number of unipolar monophasic grooves is less than that of the steps of the strand, the dislocation can easily by performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多重巻亀甲形固定子コイル(以下、亀甲形コイ
ルと称する)の結線方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of connecting a multi-wound hexagonal stator coil (hereinafter referred to as a hexagonal coil).

〔従来の技術〕[Conventional technology]

同期機および誘導機などの固定子巻線は中、大容量機で
は高電圧、大電流に適した1回巻ハーフコイルが採用さ
れ、小容量機では製作が容易な亀甲形コイルが採用され
ている。また、これらコイルには交流電流が流れるため
、コイル内の渦流損失や表皮効果を減小させる目的と加
工容易な事とを合わせてコイル導体は夫々が絶縁された
数本から数十率の素線で構成されている。更に渦流損失
の減少を目的として1回巻ハーフコイルでは特公昭59
−31039号公報や特公昭5g−14141号公報に
記載のように、固定子鉄心溝内で全素線の転位が行われ
ている。
For the stator windings of synchronous machines and induction machines, single-turn half coils, which are suitable for high voltages and large currents, are used for medium and large capacity machines, and tortoise shell coils, which are easy to manufacture, are used for small capacity machines. There is. In addition, since alternating current flows through these coils, the coil conductors are made from a few insulated conductors to tens of elements, each with the purpose of reducing eddy current loss and skin effect within the coil, and to facilitate processing. It is made up of lines. Furthermore, for the purpose of reducing eddy current loss, a one-turn half-coil was developed using the
As described in Japanese Patent Publication No. 31039 and Japanese Patent Publication No. 5G-14141, all strands are transposed within the stator core groove.

一般に亀甲形コイルは亀甲状の型に素線の束を巻付けて
整形し、製作される。鉄心溝内での素線1本毎の転位は
作業方法が非常に複雑で困雅となリ、多くの製作時間を
必要とする高価格なものとなる。また亀甲形コイルは小
、中容量機に使用されるため、十分な転位効果は必要と
しないので実公昭32−13929号公報に記載されて
いるように、コイル端部で素線の1段を転位させる方法
や実公昭48−17927号公報に記載されているよう
に、コイルには何等の転位も施さず、隣接するコイルと
接続する際に各素線の段を1段ずつずらして接続し、転
位効果を得る方法等がとられていた。
Generally, a hexagonal coil is manufactured by winding a bundle of strands around a hexagonal mold and shaping it. Dislocation of each strand within the core groove requires a very complicated and troublesome working method, requires a lot of manufacturing time, and is expensive. In addition, since the hexagonal coil is used for small and medium capacity machines, sufficient transposition effect is not required, so as described in Japanese Utility Model Publication No. 32-13929, one stage of strands of wire is inserted at the end of the coil. As described in the transposition method and Japanese Utility Model Publication No. 48-17927, the coils are not transposed in any way, and when connecting adjacent coils, the steps of each strand are shifted one step at a time. , methods of obtaining dislocation effects, etc. were used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は一般に実公昭32−13929号公報の
ように、亀甲形コイルの端部で素線の1段を転位し隣接
コイルに接続することでその効果を得ていた。この構造
の欠点は総てのコイルを同一方向に転位するため、1極
1相溝(スロット)数Nが素線段nよりN>nの場合は
効果があるが、Nくnの場合は転位効果がない。これは
3相結線で各相の電気角120°を保持するため、固定
子巻線の1極1相スロツト数毎に電流の方向を逆にして
電気角120°を得ているので、N<nの場合は素線段
のすべての素線に電流が流れて循環するのでなく、素線
段のあるグループ毎の素線に電流が流れて循環するよう
になるからである。このようになるとグループ毎の素線
間に電位差を生じ、過電流が流れるようになるので望ま
しくない。
The above-mentioned conventional technology generally achieves its effect by transposing one stage of strands at the end of a hexagonal coil and connecting it to an adjacent coil, as in Japanese Utility Model Publication No. 32-13929. The disadvantage of this structure is that all the coils are transposed in the same direction, so it is effective when the number N of grooves (slots) per pole and phase is N>n from the wire stage n, but when N has no effect. This is because in order to maintain the electrical angle of 120° for each phase in a three-phase connection, the direction of the current is reversed every number of slots for one pole and one phase of the stator winding to obtain an electrical angle of 120°, so N< This is because in the case of n, the current does not flow through all the wires in the wire stage and circulate, but the current flows through the wires of each group in the wire stage and circulates. This is not desirable because a potential difference occurs between the strands of each group, causing an overcurrent to flow.

また、実公昭48−17927号公報では転位を施さな
い亀甲形コイルを固定子鉄心に組込後、隣接するコイル
と接続する際に素線の1段をずらして接続を行い、転位
効果を出している。しかし全部の接続を同じ方法で行っ
た場合、上述の実公昭32−13929号公報と同様に
効率のよい転位は得られない。これも亀甲形コイルを接
続する際に、電流の方向を確かめてその電流方向と合っ
た接続方法をとればよい。しかし乍ら中、大容量機に素
線段の多い亀甲形コイルが使用される現在、素線段の多
い分だけ接続方法が複雑となり、高度な技術を要する。
In addition, in Japanese Utility Model Publication No. 48-17927, after incorporating a hexagonal coil without transposition into the stator core, when connecting to an adjacent coil, the wires are connected by shifting one step to produce a transposition effect. ing. However, if all connections are made by the same method, efficient transposition cannot be obtained as in the above-mentioned Japanese Utility Model Publication No. 32-13929. When connecting the hexagonal coils, you just need to check the direction of the current and choose a connection method that matches the direction of the current. However, now that large-capacity machines use tortoise-shell coils with many strands of wire, the connection method becomes complicated and requires advanced technology due to the large number of strands of strands.

従って接続作業に従事する者も熟練した者に限られる問
題があった。
Therefore, there was a problem in that the people who engaged in the connection work were limited to skilled people.

本発明は以上の点に鑑みなされたものであり、1極1相
溝数が素線段数より少ない場合であっても容易に、かつ
十分よく転位を施すことを可能とした多重巻亀甲形固定
子コイルの結線方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above points, and is a multi-wound hexagonal fixation that makes it possible to easily and sufficiently perform dislocation even when the number of grooves on one pole and one phase is less than the number of strands. The purpose of this invention is to provide a method for connecting child coils.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、1極1相溝内の巻線単位を、亀甲形コイル
の底コイル口出部の下段の素線を上段に転位して隣接コ
イルの上コイル口出部の素線に夫夫接続して形成したも
のと、亀甲形コイルの上コイル口出部の上段の素線を下
段に転位して隣接コイルの底コイル口出部の素線に夫々
接続して形成したものとで構成し、これら転位方向の異
なる巻線単位を交互に順に配置してなることにより、達
成される。
The above purpose is to transpose the winding unit in the one-pole, one-phase groove from the lower strand of the bottom coil outlet of the hexagonal coil to the upper tier, and to transfer the strands of the lower strand of the bottom coil outlet of the hexagonal coil to the strands of the upper coil outlet of the adjacent coil. One is formed by connecting the upper strands of the upper coil outlet of the hexagonal coil, and the other is formed by transposing the upper strands of the upper coil outlet of the hexagonal coil to the lower tier and connecting them to the strands of the bottom coil outlet of the adjacent coil. However, this can be achieved by alternately arranging winding units having different transposition directions in sequence.

〔作用〕[Effect]

1極1相溝内の巻線単位を、順に転位方向の異なる亀甲
形コイルで形成したので、3相の固定子巻線の亀甲形コ
イルの各段の素線の電流はいずれも各段の素線を通して
流れ循環するようになって。
Since the winding units in one pole and one phase groove are formed by hexagonal coils with different transposition directions in order, the current in each stage of the strands of the hexagonal coil of the three-phase stator winding is equal to that of each stage. It flows and circulates through the wire.

各段の素線の電流が各段の素線を通して流れず。The current in the strands of each stage does not flow through the strands of each stage.

ある素線間をグループ毎に流れ循環するようなことがな
くなり、1極1相溝数が素線段数より少ない場合でも容
易に、かつ十分よく転位を施すことができる。
The flow and circulation between certain strands in groups is eliminated, and even when the number of grooves per pole and one phase is smaller than the number of strands of strands, dislocation can be easily and sufficiently performed.

すなわち3相結線は各相の電気角が120°の位相が必
要である。N極とS極との電気角は1.80’ 。
In other words, three-phase wiring requires an electrical angle of 120° for each phase. The electrical angle between the north and south poles is 1.80'.

これを3相で割った1相の電気角は180°/3=60
°となる。1相と2相との電気角は60°。
The electrical angle of one phase divided by three phases is 180°/3 = 60
°. The electrical angle between phase 1 and phase 2 is 60°.

1相と3相との電気角は60” +60°=120’と
なり、1相と2相との電気角60°を120゜とするた
めには電気角180°を加えればよい。
The electrical angle between the 1st phase and the 3rd phase is 60'' + 60°=120', and in order to make the 60° electrical angle between the 1st phase and the 2nd phase 120°, an electrical angle of 180° should be added.

1800を加えれば24o0となり、1相0°と240
’との位相差12o°となって3相結線が成立する。こ
の電気角180°を加えるには2相目の電流方向を逆に
するとよい。すなわち1相1極溝数毎に電流の方向を逆
にして結線する。電流の方向を逆にする亀甲形コイルに
転位の異なるコイルを配置すると、十分よい転位が得ら
れるのである。
If you add 1800, it becomes 24o0, which means 1 phase 0° and 240
'The phase difference is 12°, and a three-phase connection is established. In order to add this electrical angle of 180°, it is preferable to reverse the current direction of the second phase. That is, the wires are connected with the direction of current reversed for each number of poles and grooves per phase. By arranging coils with different transpositions in a hexagonal coil in which the current direction is reversed, a sufficiently good transposition can be obtained.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図から第20図には本発明の一実施例が示されている
。複数段の素線a = fを有し、かつ固定子鉄心溝1
の1極1相溝内に順に配置・形成された複数の亀甲形コ
イル2からなる巻線単位の、その巻線単位間を極間接続
線3a、3bで接続して3相の固定子巻線4を形成する
。このように構成された3相の固定子巻線4で本実施例
では1極1相溝内の巻線単位を、亀甲形コイル2の底コ
イル口出部5の下段の素線fを上段に転位して隣接コイ
ル2の上コイル口出部6の素線f = aに夫々接続し
て形成したものと、亀甲形コイル2の上コイル口出部6
の上段の素線fを下段に転位して隣接コイル2の底コイ
ル口出部5の素線a ” fに夫々接続して形成したも
のとで構成し、これら転位方向の異なる巻線単位を交互
に順に配置した。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the present invention is shown in FIGS. 1-20. It has multiple stages of strands a = f, and stator core groove 1
A 3-phase stator winding is created by connecting the winding units with inter-pole connecting wires 3a and 3b, each of which is a winding unit consisting of a plurality of hexagonal coils 2 arranged and formed in order in one pole and one phase groove. Form line 4. In this embodiment, in the three-phase stator winding 4 configured as described above, the winding unit in one pole and one phase groove is connected to the lower strand f of the bottom coil outlet 5 of the hexagonal coil 2 to the upper strand. The upper coil outlet part 6 of the hexagonal coil 2 is connected to the strand f = a of the upper coil outlet part 6 of the adjacent coil 2.
The upper strand f is transposed to the lower tier and connected to the strands a '' f of the bottom coil outlet 5 of the adjacent coil 2, and these winding units with different transposition directions are formed. Arranged in alternating order.

このようにすることにより1極1相溝数が素線段数より
少ない場合であっても容易に、かつ十分よく転位できる
ようになって、1極1相溝数が素線段数より少ない場合
であっても容易に、かつ十分よく転位を施すことを可能
とした多重巻亀甲形固定子コイル2の結線方法を得るこ
とができる。
By doing this, even when the number of one-pole, one-phase grooves is less than the number of strands of strands, the transposition can be easily and sufficiently achieved. It is possible to obtain a method for connecting the multi-wound tortoise-shell stator coil 2, which makes it possible to easily and sufficiently perform dislocation even if there is a wire.

すなわち亀甲形コイル2は上コイル7、底コイル8から
なり、複数段の素線a −fを有し、固定子鉄心溝1内
に収納されている(第3図参照)。
That is, the hexagonal coil 2 consists of an upper coil 7 and a bottom coil 8, has multiple stages of strands a to f, and is housed in the stator core groove 1 (see FIG. 3).

このように構成された亀甲形コイル2の底コイル口出部
5の位置で下段の素線fを上段へ転位部9をもって転位
を施したものをコイルAとする(第8図〜第11図参照
)。また上コイル口出部6の位置で上段の素線fを下段
へ転位部10をもって転位を施したものをコイルBとす
る(第12図〜第15図参照)。このようにすることに
よりコイルAの隣接々続は第1図に示されているように
、隣接々枝部11をもって次のように接続される。
A coil A is obtained by transposing the lower strand f to the upper tier at the position of the bottom coil outlet 5 of the tortoise-shell shaped coil 2 constructed in this way with the transposition part 9 (Figs. 8 to 11). reference). Further, a coil B is obtained by transposing the upper strand f to the lower tier at the position of the upper coil outlet 6 with the transposition part 10 (see FIGS. 12 to 15). By doing so, adjacent series of coils A are connected by adjacent branches 11 as shown in FIG. 1 as follows.

底コイル口出部5の素線aは隣接するコイルの上コイル
口出部6の素線すに接続される。同様にして底コイル口
出部5の素線すは隣接コイルの上コイル口出部6の素線
Cに、素線Cは素線dに、素線dは素線eに、素線eは
素線fに、素線fは素線aに夫々接続される。これに対
しコイルBの隣接々続は第2図に示されているように、
隣接々枝部12をもって次のように接続される。上コイ
ル口出部6の素線fは隣接コイルの底コイル口出部5の
素線aに、素線aは素線すに、素線すは素線Cに、素線
Cは素線dに、素線dは素線eに、素線eは素線fに夫
々接続される。
The strand a of the bottom coil outlet 5 is connected to the strand a of the upper coil outlet 6 of the adjacent coil. Similarly, the strands of the bottom coil outlet 5 are connected to the strands C of the upper coil outlet 6 of the adjacent coil, the strands C to strands d, the strands d to strands e, and the strands e is connected to the strand f, and the strand f is connected to the strand a, respectively. On the other hand, as shown in Fig. 2, the adjacent coil B is connected as follows.
Adjacent branches 12 are connected as follows. The strand f of the upper coil outlet 6 is connected to the strand a of the bottom coil outlet 5 of the adjacent coil, the strand a is connected to the strand A, the strand C is connected to the strand C, and the strand C is connected to the strand C. d, the wire d is connected to the wire e, and the wire e is connected to the wire f.

このコイルA、Bを1極1相溝毎に交互に順に配置する
。すなわち3相の固定子巻線4の結線図が示されている
第16図および第17図に示されているように、電流の
方向が図中右側(→)の部分にコイルAを、図中左側(
←)の部分にコイルBを配置する。このようにするとラ
イン側V相より入った電流はコイルNαIAの底コイル
よりスロットNα8SのコイルNαIAの上コイルへ、
スロットNα8SのコイルNαIAの上コイルより上述
の隣接々枝部11を経てコイルNα2A、3Aと順に流
れ、コイルAを配置した1極1相溝内の巻線単位が形成
される。スロットNαIO3のコイルNα3Aの上コイ
ル口出部からは第4図、第5図にも示されていたように
、極間接続線3aを経てコイルNα6Bに接続される。
The coils A and B are arranged alternately in order for each pole and each phase groove. That is, as shown in FIGS. 16 and 17, which show the wiring diagrams of the three-phase stator winding 4, the coil A is placed on the right side (→) in the figure, and the direction of the current is on the right side (→) in the figure. Middle left (
Place coil B in the part ←). In this way, the current entering from the line side V phase will flow from the bottom coil of coil NαIA to the upper coil of coil NαIA in slot Nα8S.
The coil flows from the upper coil of the coil NαIA in the slot Nα8S to the coils Nα2A and 3A through the above-mentioned adjacent branch portions 11, forming a winding unit in the one-pole, one-phase groove in which the coil A is arranged. As shown in FIGS. 4 and 5, the upper coil outlet of the coil Nα3A of the slot NαIO3 is connected to the coil Nα6B via the inter-electrode connecting wire 3a.

コイルNα6B、5B、4BはコイルBが配置されてい
るので、このコイルNα6B、5B、4Bの間は上述の
隣接々枝部12をもって接続され、コイルBを配置した
1極1相溝内の巻線単位が形成される。すなわちスロッ
トNa19SのコイルNa6Bの上コイルよりスロット
Nα12SのコイルNα6Bの底コイルへ、スロットN
α12SのコイルN16Bの底コイルより隣接々枝部1
2を経て、コイルN(15B、4Bと順に接続される。
Since the coil B is arranged in the coils Nα6B, 5B, and 4B, the coils Nα6B, 5B, and 4B are connected by the above-mentioned adjacent branch parts 12, and the windings in the one-pole, one-phase groove in which the coil B is arranged are connected. A line unit is formed. That is, from the upper coil of coil Na6B of slot Na19S to the bottom coil of coil Nα6B of slot Nα12S, slot N
Adjacent branch 1 from the bottom coil of α12S coil N16B
2, and is connected to coil N (15B and 4B in this order).

スロットNn1O8のコイルNc4Bの底コイル口出部
からは第6図、第7図にも示されているように、極間接
続線3bを経てコイルAを配置しであるコイルNα7A
へと接続される。以後、隣接々枝部11と相間接続線3
a、隣接々枝部12と極間接続線3bとの隣接々続、極
間接続を交互に繰り返し、スロットNa1OO8より端
子Yへと接続される。U、W相も上述の場合と同様にし
て形成される。
As shown in FIGS. 6 and 7, from the bottom coil outlet of the coil Nc4B in the slot Nn1O8, the coil A is arranged through the inter-electrode connecting wire 3b, and the coil Nα7A is connected to the coil A.
connected to. Hereinafter, the adjacent branches 11 and the interphase connection line 3
a, the adjacent branch portions 12 and the inter-electrode connection line 3b are connected to the terminal Y through the slot Na1OO8 by repeating the adjacent connection and inter-electrode connection alternately. The U and W phases are also formed in the same manner as in the above case.

この場合の素線の移動すなわち素線を流れる電流を第1
8図から第20図により説明する。ライン側V相より入
った電流はコイルAが配置された1極1相溝内のコイル
&LAの複数段の各素線f。
In this case, the movement of the wire, that is, the current flowing through the wire, is
This will be explained with reference to FIGS. 8 to 20. The current entering from the V phase on the line side flows through each strand f of multiple stages of the coil &LA in the 1-pole 1-phase groove where the coil A is placed.

at by Q、a、eに分かれるが、コイルNa I
 Aの素線fに流れた電流は図中矢印表示のように上述
の隣接々枝部11によりコイルNα2Aの素11Aeに
流れ、更にコイルNα3Aの素線dに隣接々枝部11を
経て流れる。コイルN113Aの素線dからは極間接続
線3aを経て、コイルBが配置された1極1相溝内のコ
イルNα6Bの素線Cに流れる。コイルNα6Bの素線
Cから隣接々枝部12を経てコイルNα5Bの素線すに
流れる。同様に隣接々枝部12を経て素線すからコイル
&4Bの素線aに流れる。コイルNα4Bの素線aから
は極間接続線3bを経て次のコイルAが配置された1極
1相溝内のコイルNα7Aの素I!fに流れる。すなわ
ちV相よりコイル&LAの素線fに入った電流は素線e
It is divided into at by Q, a, and e, but the coil Na I
The current flowing through the wire f of A flows through the adjacent branch portion 11 to the wire 11Ae of the coil Nα2A as indicated by the arrow in the figure, and further flows to the wire d of the coil Nα3A via the adjacent branch portion 11. The flow flows from the strand d of the coil N113A to the strand C of the coil Nα6B in the one-pole, one-phase groove in which the coil B is arranged, via the inter-electrode connecting wire 3a. It flows from the strand C of the coil Nα6B to the strand of the coil Nα5B via the adjacent branch portions 12. Similarly, the strands flow through the adjacent branch portions 12 to the strands a of the coil &4B. From the wire a of the coil Nα4B, the wire I of the coil Nα7A is connected to the wire A of the coil Nα7A in the one-pole, one-phase groove where the next coil A is placed via the interpole connecting wire 3b! flows to f. In other words, the current that enters the wire f of the coil & LA from the V phase is the wire e.
.

d、C,b、a、fと一段ずつ移動して全素線間を循環
して流れ、これを繰り返す。
It moves step by step to d, C, b, a, and f, circulates between all the wires, and repeats this process.

同様にして矢印表示はしてないがV相よりコイルNci
lAの素線at br Op d、eに入った電流は、
夫々隣接々枝部11を経てコイルNa2A。
Similarly, although the arrow is not displayed, the coil Nci is lower than the V phase.
The current flowing into the lA wire at br Op d, e is
Coil Na2A passes through adjacent branches 11, respectively.

3A、更に極間接続線3aを経てコイルBが配置された
コイルNα6B、隣接々枝部12を経てコイルNα5B
、4B、更に極間接続線3bを経て次のコイルAが配置
されたコイルNn 7 Aの素線へと順に流れる。すな
わちコイルNa I Aの素線a、b。
3A, further through the inter-electrode connecting wire 3a, the coil Nα6B where the coil B is arranged, and the coil Nα5B through the adjacent branch portions 12.
, 4B, and further flows in order to the wire of the coil Nn 7 A where the next coil A is arranged via the inter-electrode connecting wire 3b. That is, the strands a and b of the coil Na I A.

c、d、eに入った電流はコイルBを配置したコイルN
α4Bに夫々 a−+ f −+ e−+ d →C−+ bl) −
+ a−+ f −+ 6−+ d −) OC−+ 
l) 4 a−+f −+ 6−+ dd−+c −+
 b 4 B −+ f −+ 6e→f−+a−+b
→c→d と流れ、これを夫々繰り返す。このようにどの段の素線
をとっても素線a ” fの同数の素線間を電流が流れ
るようになり、あるグループ毎の素線間にわかれて流れ
ることがなくなり、その転位の効果を十分よく奏するこ
とができる。すなわち各段の素線は1段ずつ移動する。
The currents flowing into c, d, and e flow through coil N where coil B is placed.
α4B respectively a−+ f −+ e−+ d →C−+ bl) −
+ a−+ f −+ 6−+ d −) OC−+
l) 4 a-+f −+ 6-+ dd-+c −+
b 4 B −+ f −+ 6e→f−+a−+b
→ c → d, and this process is repeated each time. In this way, current flows between the same number of strands of strands a"f, no matter which stage of strands are taken, and the current does not flow between the strands of each group, and the effect of the dislocation can be fully absorbed. It can be played well, that is, the strands of each stage move one stage at a time.

このように極間接続線3a、3bで転位方向が逆のコイ
ルA、Bを組合せることにより、極間接続部で1段の転
位を施したのと同じ結果が得られる。
By combining the coils A and B whose transposition directions are opposite to each other in the inter-electrode connecting lines 3a and 3b in this manner, the same result as applying one stage of transposition at the inter-electrode connecting portion can be obtained.

このように本実施例によれば亀甲形コイルを固定子鉄心
溝に組込む際に1極1相溝数毎に転位方向の異るコイル
を交互に配置し、それを順序よく接続するだけで十分よ
く転位の効果を奏することができる。すなわち固定子鉄
心溝に亀甲形コイルを配置する際に電流の方向を確認し
てその電流に合った亀甲形コイルを配置する事は容易な
作業で。
According to this embodiment, when the hexagonal coils are assembled into the stator core grooves, it is sufficient to alternately arrange coils with different transposition directions for each number of grooves per pole and one phase, and connect them in order. It can produce the effect of dislocation. In other words, when placing a hexagonal coil in the stator core groove, it is an easy task to check the direction of the current and place the hexagonal coil that matches the current.

接続作業では一般の接続作業と同じく順序よく接続する
だけでよい。亀甲形コイルの配置、接続共に高度な技術
を必要としないので、誰でも作業ができ、十分な転位効
果を奏することができる。
In connection work, just connect in the same order as in general connection work. Since the arrangement and connection of the hexagonal coil do not require advanced techniques, anyone can do the work and achieve a sufficient transposition effect.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は1極1相溝数が素線段数より少な
い場合であっても容易に、かつ十分よく転位されるよう
になって、1極1相溝数が素線段数より少ない場合であ
っても容易に、かつ十分よく転位を施すことを可能とし
た多重巻亀甲形固定子コイルの結線方法を得ることがで
きる。
As described above, in the present invention, even when the number of one-pole one-phase grooves is less than the number of strands of strands, the transposition can be easily and satisfactorily achieved. Therefore, it is possible to obtain a method for connecting a multi-wound tortoise-shell stator coil, which makes it possible to easily and sufficiently perform dislocation even in cases where the stator coil is wound in a hexagonal manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多重巻亀甲形固定子コイルの結線方法
の一実施例による底コイル口出部に施された転位の隣接
々枝部を示す側面図、第2図は同じく上コイル口出部に
施された転位の隣接々枝部を示す側面図、第3図は同じ
く固定子鉄心溝に収納された多重巻亀甲形固定子コイル
の縦断側面図、第4図は同じく上日出極間接続を示す上
面図、第5図は第4図の側面図、第6図は同じく底日出
極間接続を示す上面図、第7図は第6図の側面図。 第8図は同じく底コイル口出部で転位を施した多重巻亀
甲形固定子コイルの正面図、第9図は第8図の下面図、
第10図は第8図の側面図、第11図は第8図のP枠部
の拡大側面図、第12図は同じく上コイル口出部で転位
を施した多重巻亀甲形固定子コイルの正面図、第13図
は第12図の下面図、第14図は第12図の側面図、第
15図は第12図のQ枠部の拡大側面図、第16図は同
じく3相の固定子巻線の3相結線図、第17図は同じく
3相の固定子巻線のV相の結線を示す説明図、第18図
は第10図の頭部詳細を示す側面図、第19図は第14
図の頭部詳細を示す側面図、第20図は同じく各段の素
線の移動状態を示す説明図である。 1・・・固定子鉄心溝、2・・・多重巻亀甲形固定子コ
イル、3a、3b・・・極間接続線、4・・・3相の固
定子巻線、5・・・底コイル目出部、6・・・上コイル
口出部、7・・・上コイル、8・・・底コイル、9,1
0・・・転位部、11.12・・・隣接々枝部、A・・
・底コイル口出部に転位を施したコイル、B・・・上コ
イル口出部に転位を施したコイル、a = f・・・素
線。 第13図 S ′1 g/4$     第15図 第76図
FIG. 1 is a side view showing adjacent branches of transposition applied to the bottom coil outlet according to an embodiment of the multi-wound hexagonal stator coil connection method of the present invention, and FIG. A side view showing the adjacent branches of the dislocation applied to the exit part, Figure 3 is a vertical side view of the multi-wound hexagonal stator coil housed in the stator core groove, and Figure 4 is the same as above. FIG. 5 is a side view of FIG. 4, FIG. 6 is a top view of the bottom electrode connection, and FIG. 7 is a side view of FIG. 6. FIG. 8 is a front view of a multi-wound tortoise-shell stator coil that is also transposed at the bottom coil outlet, FIG. 9 is a bottom view of the one shown in FIG. 8,
Fig. 10 is a side view of Fig. 8, Fig. 11 is an enlarged side view of the P frame part of Fig. 8, and Fig. 12 is a multi-wound hexagonal stator coil with transposition at the upper coil outlet. Front view, Fig. 13 is a bottom view of Fig. 12, Fig. 14 is a side view of Fig. 12, Fig. 15 is an enlarged side view of the Q frame part of Fig. 12, and Fig. 16 is the same three-phase fixing. 3-phase wiring diagram of the child winding, Fig. 17 is an explanatory diagram showing the V-phase wiring of the stator winding, which is also 3-phase, Fig. 18 is a side view showing details of the head of Fig. 10, Fig. 19 is the 14th
FIG. 20 is a side view showing details of the head shown in the figure, and FIG. 20 is an explanatory view showing the moving state of the strands in each stage. 1... Stator core groove, 2... Multi-wound hexagonal stator coil, 3a, 3b... Connection wire between poles, 4... 3-phase stator winding, 5... Bottom coil Eye opening, 6... Upper coil outlet, 7... Upper coil, 8... Bottom coil, 9, 1
0...Dislocation part, 11.12...Adjacent branch part, A...
・Coil with transposition applied to the bottom coil outlet, B... Coil with transposition applied to the top coil outlet, a = f... Plain wire. Figure 13 S'1 g/4$ Figure 15 Figure 76

Claims (1)

【特許請求の範囲】[Claims] 1、複数段の素線を有し、かつ固定子鉄心溝の1極1相
溝内毎に順に配置・形成された複数の多重巻亀甲形固定
子コイルからなる巻線単位の、その巻線単位間を極間接
続線で接続して3相の固定子巻線を形成する多重巻亀甲
形固定子コイルの結線方法において、前記1極1相溝内
の巻線単位を、前記亀甲形固定子コイルの底コイル口出
部の下段の素線を上段に転位して隣接コイルの上コイル
口出部の素線に夫々接続して形成したものと、亀甲形固
定子コイルの上コイル口出部の上段の素線を下段に転位
して隣接コイルの底コイル口出部の素線に夫々接続して
形成したものとで構成し、これら転位方向の異なる巻線
単位を交互に順に配置してなることを特徴とする多重巻
亀甲形固定子コイルの結線方法。
1. The winding of a winding unit consisting of a plurality of multi-wound hexagonal stator coils having multiple stages of strands and arranged and formed in order in each pole and one phase groove of the stator core groove. In a method for connecting a multi-wound hexagonal stator coil in which units are connected by pole-to-pole connecting wires to form a three-phase stator winding, the winding units within the one-pole and one-phase groove are fixed in the hexagonal shape. One is formed by transposing the lower strand of the bottom coil outlet of the child coil to the upper stage and connecting it to the strands of the upper coil outlet of the adjacent coil, and the other is the upper coil outlet of the hexagonal stator coil. The winding units with different transposition directions are arranged alternately in order. A method of wiring a multi-wound tortoise-shell stator coil characterized by the following characteristics:
JP6398987A 1987-03-20 1987-03-20 Wiring method for multi-turn turtle-shaped stator coil Expired - Lifetime JPH06101904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6398987A JPH06101904B2 (en) 1987-03-20 1987-03-20 Wiring method for multi-turn turtle-shaped stator coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6398987A JPH06101904B2 (en) 1987-03-20 1987-03-20 Wiring method for multi-turn turtle-shaped stator coil

Publications (2)

Publication Number Publication Date
JPS63234851A true JPS63234851A (en) 1988-09-30
JPH06101904B2 JPH06101904B2 (en) 1994-12-12

Family

ID=13245201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6398987A Expired - Lifetime JPH06101904B2 (en) 1987-03-20 1987-03-20 Wiring method for multi-turn turtle-shaped stator coil

Country Status (1)

Country Link
JP (1) JPH06101904B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690281A1 (en) * 1992-04-15 1993-10-22 Westinghouse Electric Corp Solid connector for stator phase winding and mounting method.
JP2008035687A (en) * 2006-07-06 2008-02-14 Nippon Soken Inc Electromagnetic equipment
JP2008109769A (en) * 2006-10-25 2008-05-08 Nishishiba Electric Co Ltd Stator coil of multiple winding motor
JP5855318B2 (en) * 2013-05-17 2016-02-09 三菱電機株式会社 Stator manufacturing method
US20160056696A1 (en) * 2013-05-28 2016-02-25 Mitsubishi Electric Corporation Rotary electric machine and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690281A1 (en) * 1992-04-15 1993-10-22 Westinghouse Electric Corp Solid connector for stator phase winding and mounting method.
JP2008035687A (en) * 2006-07-06 2008-02-14 Nippon Soken Inc Electromagnetic equipment
JP2008109769A (en) * 2006-10-25 2008-05-08 Nishishiba Electric Co Ltd Stator coil of multiple winding motor
JP4609412B2 (en) * 2006-10-25 2011-01-12 西芝電機株式会社 Multi-winding motor stator coil
JP5855318B2 (en) * 2013-05-17 2016-02-09 三菱電機株式会社 Stator manufacturing method
JPWO2014184951A1 (en) * 2013-05-17 2017-02-23 三菱電機株式会社 Stator manufacturing method
US20160056696A1 (en) * 2013-05-28 2016-02-25 Mitsubishi Electric Corporation Rotary electric machine and manufacturing method therefor
US9923438B2 (en) * 2013-05-28 2018-03-20 Mitsubishi Electric Corporation Method for manufacturing a rotary electric machine

Also Published As

Publication number Publication date
JPH06101904B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US4138619A (en) Alternating current electric motors and generators
JPS63234851A (en) Connection of multiplex winding hexagonal stator coil
Dudley et al. Connecting induction motors
CN111478476A (en) Motor stator and motor
JPS5936123Y2 (en) Lebel transition coil for rotating electrical machines
SU1429224A1 (en) Combination three-phase/two-phase winding of dynamoelectric machine
CN117175821B (en) 72-slot 6-pole 3-branch hairpin type flat wire armature winding and motor
CN212462920U (en) Motor stator and motor
SU1552299A1 (en) Three-phase two-speed winding
SU1092659A1 (en) Armature combination winding
RU2159982C1 (en) Six/four pole-changing winding
SU1104615A1 (en) Combined stator winding
SU851649A1 (en) Synchronous electric machine stator two-layer symmetric rod three-phase winding
SU924793A1 (en) Asummetric lap winding with number of slots for pole and phase y,equal 7,5
SU1495915A1 (en) Armature three-phase-one-phase combined winding
SU1330709A1 (en) Pole-commutated winding
SU1112492A1 (en) Combined stator winding
SU1476568A1 (en) Three-phase-single-phase combined electric machine winding
SU1210179A1 (en) Combined winding for electric machine
SU1577000A1 (en) Three-phase pole-switchable winding with number of pole pairs
SU1372489A1 (en) Three-phase combination electric machine winding
SU1457096A1 (en) Three-phase pole-switchable winding
SU1203642A1 (en) Combined winding for electric machine
JPH0550219B2 (en)
SU955392A1 (en) Three-phase pole-switching winding for two-speed ac machines