JPS6323461B2 - - Google Patents

Info

Publication number
JPS6323461B2
JPS6323461B2 JP56045854A JP4585481A JPS6323461B2 JP S6323461 B2 JPS6323461 B2 JP S6323461B2 JP 56045854 A JP56045854 A JP 56045854A JP 4585481 A JP4585481 A JP 4585481A JP S6323461 B2 JPS6323461 B2 JP S6323461B2
Authority
JP
Japan
Prior art keywords
copper
film
selective absorption
solar heat
heat absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56045854A
Other languages
Japanese (ja)
Other versions
JPS5780149A (en
Inventor
Masahiko Hatsushiro
Seishiro Yamakawa
Masaharu Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4585481A priority Critical patent/JPS5780149A/en
Publication of JPS5780149A publication Critical patent/JPS5780149A/en
Publication of JPS6323461B2 publication Critical patent/JPS6323461B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、太陽熱を利用した温水器などに用
いられる太陽熱吸収体に関するものである。 従来、太陽熱吸収体として使用されてきたもの
に、銅や鉄などの金属基材の表面に黒色ペイント
を塗装したものや、プラスチツクスにカーボンブ
ラツクなどの黒色顔料を混入したものなどがあ
る。これら従来の太陽熱吸収体は、太陽エネルギ
ースペクトル域でのエネルギー吸収率は大きい
(黒体の約96%)が、太陽エネルギーを吸収して
温度が上昇した場合における熱放射も大きい(黒
体の95%程度)ので、全体としての吸収効率が悪
く、特に高温の熱水を得たい場合などに問題があ
つた。 これを改良したものとして、基材の表面に、太
陽エネルギースペクトル域(波長0.3〜2.5ミクロ
ン)では高い吸収率を示し、熱放射領域(波長
2.5〜30ミクロン)では低い放射率を示すような
選択吸収膜を形成した太陽熱吸収体が実用されて
いる。このような太陽熱吸収体としては、銅また
は銅合金からなる基材を化成処理することによつ
て、表面に半導体の酸化物または硫化物の層を形
成したもの、ステンレス鋼などの金属表面に光干
渉膜として働く適当な厚みの酸化被膜を形成した
ものなどがある。これらはいずれも太陽エネルギ
ースペクトル域での吸収率が90%程度で、熱放射
率は10〜15%程度であり、総合的な吸収効率が高
いものである。 ところで、前記選択吸収膜では、それを構成す
る酸化物や硫化物の組成、膜厚、微小構造がその
吸収効率に大きな影響を与えるが、太陽熱吸収体
の使用に際して選択吸収膜は、熱的および雰囲気
的にきわめて苛酷な条件にさらされるので前記組
成、膜厚、微小構造を好ましい状態に保つことが
できず、次第に吸収効率が低下してゆくのが普通
であつた。すなわち、例えば、前記のごとく、基
材として銅または銅合金を用い、これに化成処理
を施して酸化銅や硫化銅などの銅化合物からなる
選択吸収膜を形成したものの場合は、使用中に銅
の酸化が進行して選択吸収膜の下側に新たな酸化
銅の層が発達するので、選択吸収膜の膜厚が次第
に増大し、それにつれて熱放射率が増大するとい
う欠点があつた。また、特にSO2ガス、Cl2ガス
などの濃度が高い工業地帯や塩害地域では吸収効
率低下の傾向が強く、この場合はさらに金属の基
材そのものが腐蝕されるようなことも多かつた。 そこで、選択吸収特性を高水準に維持するた
め、選択吸収膜の表面をフツ素樹脂やシリコーン
樹脂で被覆したものもあるが、この場合でも耐熱
性に若干の問題があり、吸収効率はやはり次第に
低下した。 この発明は、以上のような事情に鑑みなされた
もので、基材の材料を選ぶことにより、耐久性に
富むすぐれた太陽熱吸収体を提供することを可能
としたものである。これについて以下に説明す
る。 この発明にかかる太陽熱吸収体は、基材が非銅
系の化学的、熱的に安定な材料でつくられ、この
基材の表面に、銅および銅合金のうち、少なくと
も一方からなる薄層の全体を化成処理することに
よつてつくられた、太陽エネルギースペクトル領
域でのエネルギー吸収率が高くかつ熱放射領域で
の放射率が低い、銅化合物からなる選択吸収膜を
そなえてなることを特徴としている。つぎに、こ
れを詳しく述べる。 基材の材料としては、銅や銅合金以外のもの、
すなわち非銅系のものが選ばれなければならな
い。しかも、基材の材料は化学的および熱的に安
定でなければならない。したがつて、ステンレス
鋼板、ニツケルメツキ鋼板、クロムメツキ鋼板な
どが適当である。 基材の表面には、酸化銅や硫化銅といつた銅化
合物からなる選択吸収膜が形成されている。 選択吸収膜は、太陽エネルギースペクトル域で
のエネルギー吸収率が高く、かつ熱放射領域での
放射率の低いものでありさえすれば、その形成方
法や種類は問わないと言つてよい。しかし、もつ
とも普通には、つぎのようにしてつくられる。す
なわち、前記安定な基材の表面に先ずメツキ法、
真空蒸着法、スパツタリング法などの方法を用い
て銅または銅合金の薄層を形成する。この薄層の
厚みは0.1〜1ミクロン(μm)とするのが適当で
ある。 つぎに、この薄層の全部を化成処理によつて酸
化または硫化処理するのであるが、好ましくは酸
化処理によつて酸化第2銅(CuO)からなる選択
吸収膜とする。この場合、酸化第2銅の結晶形
は、電子顕微鏡(×20000)でみると、繊維状な
いし葉状を呈している。この結晶の長さは0.4〜
2ミクロンとするのが好ましい。 化成処理条件によつては酸化第1銅(Cu2O)
が生成する場合がある。この酸化第1銅は使用
中、高温(200℃程度)にさらされると酸化第2
銅に変わるが、このようにして生成する酸化第2
銅は、電子顕微鏡(×20000)でみると、その結
晶形が前記繊維状ないし葉状ではなく、粒状の結
晶となる。繊維状ないし葉状の結晶は太陽エネル
ギースペクトル域での吸収率が高いが、粒状結晶
ではこれが低いので、実用上あまり好ましくな
い。 酸化第2銅からなる選択吸収膜が得られたら、
必要に応じその表面をシリコーン樹脂、フツ素樹
脂、ビスマレイミド・トリアジン樹脂または無機
シリカ質などの透明な保護被膜で被覆する。 保護被膜としてシリコーン樹脂被膜を形成する
場合は、市販のシリコーン樹脂(例えば信越化学
工業社製、KR―177N)をキシレンで固形分10重
量%程度に稀釈した液に浸漬し、塗膜を形成した
のち、100℃程度で約5分間加熱し、塗膜を硬化
させる。フツ素樹脂の場合はトルエンで稀釈する
のがよい。いずれの場合にも塗膜の形成は2回以
上繰り返すのがよい。 保護被膜としてシリカ質の被膜を形成する場合
は、選択吸収膜の上にケイ酸リチウム、ケイ酸カ
リウム、ケイ酸トリウムの如きケイ酸塩の水溶液
を塗布し、乾燥したのち焼き付ける。 選択吸収膜の表面には、ビスマレイミド・トリ
アジン(BT)樹脂を配合した被膜形成材料から
なる保護被膜が形成されることもある。ビスマレ
イミド・トリアジン樹脂は三菱瓦斯化学株式会社
製BT2170がその市販品として知られている。こ
の場合、被膜形成材料は、このビスマレイミド・
トリアジン樹脂をアクリル樹脂やシリコーン樹脂
など従来普通に用いられている被膜形成材料用配
合原料と混ぜ合わせてつくられるほか、ビスマレ
イミド・トリアジン樹脂単独でつくられることも
ある。その際、塗料化のため溶剤としては公知の
もの、たとえばアセト酢酸エチルなどが用いられ
る。ビスマレイミド・トリアジン樹脂自体は褐色
ないし暗褐色であるが、これが配合された被膜形
成材料からなる上記保護被膜が2.0ミクロン以下
の薄膜の場合はほとんど透明に近い。この保護被
膜の厚みを0.1ミクロンより薄くすると耐蝕性な
どの点で充分な保護性能を期待することができな
くなり、逆に2.0ミクロンより厚くすると赤外域
での吸収が起こり、熱放射率が高くなるという問
題が生じる傾向がある。したがつて、保護被膜の
厚みは0.1〜2ミクロンとするのが好ましい。保
護被膜が他の材料でつくられる場合の厚みも、
0.1〜2ミクロンとするのが好ましい。 このようにして得られる太陽熱吸収体は、基材
が安定な材料で構成され、その表面に形成された
銅または銅合金の薄層の全体が選択吸収膜となつ
ているから、経時的熱変化を受けにくく耐久性に
すぐれている。しかも、選択吸収膜をつくる方法
として、アルカリ性雰囲気下での化成処理により
酸化または硫化すると言う方法によつており、こ
の方法で得らた選択吸収膜は、金属層を電解酸化
してつくる選択吸収膜や、銅よりもイオン化傾向
の大なる金属層を銅化合物を溶解したアンモニア
性溶液で処理してつくる選択吸収膜と膜構造が異
なる。すなわち、この発明の太陽熱吸収体を得る
ための上記化成処理法で得られた選択吸収膜は、
たとえば銅または銅合金の薄膜表面に一旦形成さ
れた酸化銅がCu(OH)2の形で反応液中に溶出し
たあと、溶解度積からくる過飽和状態から再び基
材表面に析出することで形成されるもので、第2
図に模式的にみるような繊維状ないし葉片状結晶
2…が、基材1の表面にそれぞれ独立した塊とし
て林立してなるものである。これに対し、たとえ
ば電解酸化処理で得られる選択吸収膜は、第3図
に模式的にみるように、基材1の表面にまず銅化
合物の連続層3があり、その上に粒状結晶2′…
がそれぞれ独立して生じてなるものである。この
発明の選択吸収膜は、上記のような構造を有し、
その構造自身が一種の選択吸収性を発揮するた
め、太陽エネルギースペクトル領域でのエネルギ
ー吸収率が高く、すぐれたものとなつている。 つぎに、この発明にかかる太陽熱吸収体の実施
例を挙げて、その性能を、比較例と併せて後掲の
第1表に示しておく。 〔実施例 1〕 厚み0.5mmのステンレス鋼板を基材として用い、
その表面にニツケルのストライクメツキを行なつ
たのち、厚み0.6ミクロンの銅メツキを施した。 この表面を脱脂したのち、2%―HNO3水溶液
中に室温で1.5分間浸漬し、表面を活性化した。
そののち、充分に洗滌を行ない、苛性ソーダ50
g、過硫酸カリウム10g、水1からなる処理液
に100℃で2分間浸漬して選択吸収膜を形成した。
これを充分水洗したのち、80℃で10分間熱風乾燥
した。 得られた選択吸収膜の材質はX線回折で調べた
結果CuOであることがわかつた。また、電子顕微
鏡(×20000)で観察した結果では、結晶形は繊
維状なし葉状であつた。 選択吸収面の表面に信越化学工業社製シリコー
ン樹脂KC223をエタノールで5倍に稀釈して2回
浸漬塗布した。塗膜の厚みは0.5ミクロンであつ
た。その後120℃で10分間加熱して太陽熱吸収体
を得た。 〔実施例 2〕 厚み0.5mmのステンレス鋼板の表面に、蒸着法
により厚み0.2ミクロンの銅層を形成した。 この表面を脱脂したのち、1%―HNO3水溶液
中に室温で25秒間浸漬し、表面の活性化を行なつ
た。 これを充分水洗したのち、亜塩素酸ソーダ90
g/、苛性ソーダ15g/からなる処理液に80
℃で6分間浸漬して選択吸収膜を形成した。つい
で、充分水洗したのち、70℃で20分間熱風乾燥し
た。 得られた選択吸収膜は成分がCuO、結晶形が繊
維状ないし葉状であつた。 選択吸収膜の表面に、住友スリーエム社製フツ
素樹脂JX900をトルエンで固形分4重量%に稀釈
したものを塗布(浸漬塗布)した。この塗布は3
回繰り返した。塗膜の厚みは1.1ミクロンであつ
た。これを100℃で10分間加熱して太陽熱吸収体
を得た。 〔実施例 3〕 厚み0.8mmのニツケルメツキ鋼板(ニツケル層
の厚み15ミクロン)の表面にスパツタリング法で
銅を厚み1ミクロンに付着させた。 これを脱脂したのち、3%―HCl水溶液中に室
温で1分間浸漬し、表面の活性化を行なつた。 充分に水洗したのち、過硫酸カリウム15g、苛
性ソーダ40g、水1からなる処理液に100℃で
4分間浸漬し、選択吸収膜を形成した。 選択吸収膜の材質はCuO、その結晶形は繊維状
ないし葉状であつた。 得られた選択吸収膜の表面に、前記実施例1で
使用したものと同じシリコーン樹脂液を3回塗布
した。塗膜の厚みは1.4ミクロンであつた。 これを120℃で10分間加熱し、太陽熱吸収体を
得た。 〔比較例 1〕 0.5mmの厚みの銅板を基上として用いるように
したほかは、実施例1と同様にした。 〔比較例 2〕 前記実施例1において、化成処理によつて酸化
銅を形成するかわりに、250℃で100時間加熱する
ことにより酸化銅からなる選択吸収膜を形成し
た。 得られた選択吸収膜の材質は、X線回折結果か
ら酸化第2銅であることを確認した。また、結晶
形は電子顕微鏡による観察では粒状結晶であつ
た。 〔比較例 3〕 ポリエチレン製容器に水酸化ナトリウムの1重
量%水溶液を入れ、このポリエチレン製容器を35
℃に温度制御した温水浴中に入れて、前記水酸化
ナトリウム水溶液の液温を35±1℃に保つた。つ
ぎに、この水酸化ナトリウム水溶液中で、厚み
0.5mmの金属銅を陽極、白金板を陰極にし、この
両電極間に定電圧電源より25Vの電圧を60秒間印
加して、電解酸化処理を行つた。このとき、両電
極間の距離は1.5cmであつた。この電解酸化処理
によつて、前記金属銅の表面に黒色を呈する膜が
形成された。処理後、80℃、10分間の熱風乾燥を
行い、試料を得た。 試料表面に形成された選択吸収膜の材質は、X
線回折結果から酸化第2銅であることを確認し
た。またその構造は、電子顕微鏡(×20000)に
よる観察では、表面こそ、実施例1〜3と同じ繊
維状または葉状であるが、実施例のものが3〜
5μm以上であるのに対し、0.5μm程度で非常に短
いものであつた。 また、選択吸収膜の厚みは、試料の一部を切り
出し、定電流還元法で測定したところ、繊維状あ
るいは葉状のものの間の空隙を完全に埋めた場合
の平均値で、0.4μmであつた。この値から逆算す
ると、この試料における選択吸収膜は、酸化銅の
薄い連続膜上に、前記短い繊維状または葉状の結
晶が形成された構造であることが考えられた。 以上の試料表面に、実施例2と同様にしてフツ
素樹脂(住友スリーエム社製、JX―900)の塗膜
を形成し、太陽熱吸収体を得た。 このようにして得られた太陽熱吸収体を、前記
実施例1〜3の太陽熱吸収体とともに、その光学
特性を測定した。結果を第1図に示す。 図にみるように、この発明の太陽熱吸収体であ
る実施例1〜3(図中実線)では近赤外領域にお
いて均一な吸収率を示したが、比較例3(図中破
線)のものでは、波長0.6μm以上の近赤外領域で
の吸収率が悪くなつてしまつた。
The present invention relates to a solar heat absorber used in water heaters and the like that utilize solar heat. Conventionally, materials used as solar heat absorbers include those made of metal base materials such as copper or iron coated with black paint, and those made of plastic mixed with black pigments such as carbon black. These conventional solar heat absorbers have a high energy absorption rate in the solar energy spectrum (approximately 96% of a black body), but they also emit a large amount of heat when the temperature increases by absorbing solar energy (95% of a black body). %), the overall absorption efficiency was poor, which caused problems especially when it was desired to obtain hot water at a high temperature. As an improvement on this, the surface of the base material exhibits high absorption in the solar energy spectrum range (wavelengths of 0.3 to 2.5 microns) and thermal radiation range (wavelengths of 0.3 to 2.5 microns).
(2.5 to 30 microns), solar heat absorbers with selective absorption films that exhibit low emissivity are in practical use. Such solar heat absorbers include those in which a semiconductor oxide or sulfide layer is formed on the surface by chemical conversion treatment of a base material made of copper or copper alloy, and those in which a layer of semiconductor oxide or sulfide is formed on the surface of a metal such as stainless steel. There are some that have an oxide film of an appropriate thickness that acts as an interference film. All of these have an absorption rate of about 90% in the solar energy spectrum range and a thermal emissivity of about 10 to 15%, so they have a high overall absorption efficiency. By the way, in the selective absorption film, the composition, film thickness, and microstructure of the oxides and sulfides that make up the film have a great influence on its absorption efficiency, but when using a solar heat absorber, the selective absorption film is Since it is exposed to extremely harsh atmospheric conditions, it is not possible to maintain the composition, film thickness, and microstructure in a desirable state, and it is common for the absorption efficiency to gradually decrease. That is, for example, as mentioned above, if copper or copper alloy is used as the base material and a selective absorption film made of copper compounds such as copper oxide or copper sulfide is formed by chemical conversion treatment, copper will be removed during use. As the oxidation of copper oxide progresses, a new layer of copper oxide develops under the selective absorption film, which has the disadvantage that the thickness of the selective absorption film gradually increases, and the thermal emissivity increases accordingly. In addition, there is a strong tendency for the absorption efficiency to decrease particularly in industrial areas and salt-affected areas where concentrations of SO 2 gas, Cl 2 gas, etc. are high, and in these cases, the metal base material itself is often corroded. Therefore, in order to maintain the selective absorption characteristics at a high level, the surface of the selective absorption membrane is sometimes coated with fluorine resin or silicone resin, but even in this case, there are some problems with heat resistance, and the absorption efficiency gradually decreases. decreased. This invention was made in view of the above circumstances, and by selecting the material of the base material, it is possible to provide a highly durable solar heat absorber. This will be explained below. The solar heat absorber according to the present invention has a base material made of a non-copper-based chemically and thermally stable material, and a thin layer made of at least one of copper and a copper alloy on the surface of the base material. It is characterized by being equipped with a selective absorption film made of a copper compound that has a high energy absorption rate in the solar energy spectrum region and a low emissivity in the thermal radiation region, which is created by chemical conversion treatment of the entire body. There is. Next, this will be explained in detail. The base material may be other than copper or copper alloy,
In other words, a non-copper-based material must be selected. Moreover, the base material must be chemically and thermally stable. Therefore, stainless steel plates, nickel-plated steel plates, chrome-plated steel plates, etc. are suitable. A selective absorption film made of a copper compound such as copper oxide or copper sulfide is formed on the surface of the base material. It can be said that the formation method and type of the selective absorption film do not matter as long as it has a high energy absorption rate in the solar energy spectrum range and a low emissivity in the thermal radiation range. However, it is usually created as follows. That is, the surface of the stable base material is first plated,
A thin layer of copper or copper alloy is formed using a method such as vacuum evaporation or sputtering. The thickness of this thin layer is suitably between 0.1 and 1 micron (μm). Next, the entire thin layer is oxidized or sulfurized by chemical conversion treatment, preferably to form a selective absorption film made of cupric oxide (CuO). In this case, the crystal form of cupric oxide is fibrous or leaf-like when viewed under an electron microscope (×20,000). The length of this crystal is 0.4 ~
Preferably it is 2 microns. Depending on chemical conversion treatment conditions, cuprous oxide (Cu 2 O)
may be generated. When this cuprous oxide is exposed to high temperatures (approximately 200°C) during use, it becomes oxidized into a second oxide.
It turns into copper, but the secondary oxide produced in this way
When copper is viewed under an electron microscope (x20,000), its crystal form is not the fibrous or leaf-like shape described above, but granular crystals. Although fibrous or leaf-like crystals have a high absorption rate in the solar energy spectrum region, granular crystals have a low absorption rate and are therefore not very desirable in practical terms. Once a selective absorption film made of cupric oxide is obtained,
If necessary, the surface is coated with a transparent protective film such as silicone resin, fluororesin, bismaleimide/triazine resin, or inorganic silica. When forming a silicone resin film as a protective film, a commercially available silicone resin (for example, KR-177N manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted with xylene to a solid content of about 10% by weight, and the film was immersed in the solution. Afterwards, the coating is heated at about 100°C for about 5 minutes to harden the coating. In the case of fluororesin, it is better to dilute it with toluene. In either case, the formation of the coating film is preferably repeated two or more times. When forming a siliceous film as a protective film, an aqueous solution of a silicate such as lithium silicate, potassium silicate, or thorium silicate is applied onto the selective absorption film, dried, and then baked. A protective film made of a film-forming material containing bismaleimide triazine (BT) resin may be formed on the surface of the selective absorption film. As for the bismaleimide triazine resin, BT2170 manufactured by Mitsubishi Gas Chemical Co., Ltd. is known as a commercially available product. In this case, the film-forming material is this bismaleimide.
In addition to being made by mixing triazine resin with commonly used compounding raw materials for film-forming materials such as acrylic resin and silicone resin, it can also be made from bismaleimide triazine resin alone. At that time, known solvents such as ethyl acetoacetate are used as the solvent for forming a paint. The bismaleimide triazine resin itself is brown to dark brown, but when the protective film made of the film-forming material in which it is blended is a thin film of 2.0 microns or less, it is almost transparent. If the thickness of this protective coating is made thinner than 0.1 micron, sufficient protective performance cannot be expected in terms of corrosion resistance, etc. On the other hand, if it is thicker than 2.0 micron, absorption in the infrared region will occur and the thermal emissivity will increase. This problem tends to occur. Therefore, the thickness of the protective coating is preferably 0.1 to 2 microns. When the protective coating is made of other materials, the thickness is also
Preferably, the thickness is 0.1 to 2 microns. In the solar heat absorber obtained in this way, the base material is composed of a stable material, and the entire thin layer of copper or copper alloy formed on the surface serves as a selective absorption film, so it is difficult to absorb heat over time. It is not susceptible to damage and has excellent durability. Moreover, the selective absorption membrane is produced by oxidizing or sulfurizing it by chemical conversion treatment in an alkaline atmosphere. The structure of the membrane is different from that of a selective absorption membrane, which is made by treating a metal layer, which has a greater tendency to ionize than copper, with an ammoniacal solution containing a copper compound. That is, the selective absorption film obtained by the above chemical conversion treatment method for obtaining the solar heat absorber of the present invention is
For example, copper oxide, which is once formed on the surface of a thin film of copper or copper alloy, is eluted into the reaction solution in the form of Cu(OH) 2 and then precipitated on the surface of the substrate again due to the supersaturation state caused by the solubility product. The second
As schematically shown in the figure, fibrous or leaf-shaped crystals 2 are formed as independent clusters on the surface of the base material 1. On the other hand, a selective absorption film obtained by electrolytic oxidation treatment, for example, has a continuous layer 3 of a copper compound on the surface of a base material 1, as shown schematically in FIG. …
Each of these occurs independently. The selective absorption membrane of this invention has the above structure,
Because its structure itself exhibits a type of selective absorption, it has a high energy absorption rate in the solar energy spectrum region, making it an excellent material. Next, examples of the solar heat absorber according to the present invention will be given, and their performance will be shown in Table 1 below, together with comparative examples. [Example 1] Using a stainless steel plate with a thickness of 0.5 mm as the base material,
After nickel strike plating was applied to the surface, copper plating with a thickness of 0.6 microns was applied. After degreasing the surface, it was immersed in a 2%-HNO 3 aqueous solution for 1.5 minutes at room temperature to activate the surface.
After that, wash thoroughly and use 50% caustic soda.
g, potassium persulfate, 10 g, and water (1 g) for 2 minutes at 100° C. to form a selective absorption membrane.
After thoroughly washing it with water, it was dried with hot air at 80°C for 10 minutes. The material of the obtained selective absorption film was examined by X-ray diffraction and was found to be CuO. Further, as a result of observation using an electron microscope (×20,000), the crystal shape was not fibrous and leaf-like. Silicone resin KC223 manufactured by Shin-Etsu Chemical Co., Ltd. was diluted 5 times with ethanol and applied twice by dipping onto the surface of the selective absorption surface. The thickness of the coating film was 0.5 microns. Thereafter, it was heated at 120°C for 10 minutes to obtain a solar heat absorber. [Example 2] A 0.2 micron thick copper layer was formed on the surface of a 0.5 mm thick stainless steel plate by vapor deposition. After degreasing the surface, it was immersed in a 1%-HNO 3 aqueous solution for 25 seconds at room temperature to activate the surface. After washing this thoroughly with water, add 90% sodium chlorite.
g/, 80% in a treatment solution consisting of 15g/ of caustic soda.
A selective absorption membrane was formed by immersion at ℃ for 6 minutes. Then, after thoroughly washing with water, it was dried with hot air at 70°C for 20 minutes. The selective absorption membrane obtained had a component of CuO and a fibrous or leaf-like crystal shape. On the surface of the selective absorption membrane, a fluororesin JX900 manufactured by Sumitomo 3M Co., Ltd. diluted with toluene to a solid content of 4% by weight was applied (dip coating). This application is 3
Repeated times. The thickness of the coating film was 1.1 microns. This was heated at 100°C for 10 minutes to obtain a solar heat absorber. [Example 3] Copper was deposited to a thickness of 1 micron on the surface of a 0.8 mm thick nickel-plated steel plate (nickel layer thickness 15 microns) by sputtering. After degreasing this, it was immersed in a 3%-HCl aqueous solution for 1 minute at room temperature to activate the surface. After thorough washing with water, it was immersed for 4 minutes at 100°C in a treatment solution consisting of 15 g of potassium persulfate, 40 g of caustic soda, and 1 part of water to form a selective absorption membrane. The material of the selective absorption membrane was CuO, and its crystal form was fibrous or leaf-like. The same silicone resin liquid as that used in Example 1 was applied three times to the surface of the obtained selective absorption membrane. The thickness of the coating film was 1.4 microns. This was heated at 120°C for 10 minutes to obtain a solar heat absorber. [Comparative Example 1] The same procedure as in Example 1 was carried out except that a 0.5 mm thick copper plate was used as the base. [Comparative Example 2] In Example 1, instead of forming copper oxide by chemical conversion treatment, a selective absorption film made of copper oxide was formed by heating at 250° C. for 100 hours. The material of the obtained selective absorption film was confirmed to be cupric oxide from the results of X-ray diffraction. Furthermore, the crystal form was found to be granular crystals when observed using an electron microscope. [Comparative Example 3] A 1% by weight aqueous solution of sodium hydroxide was placed in a polyethylene container, and the polyethylene container was heated to 35% by weight.
The solution was placed in a hot water bath whose temperature was controlled at 35°C, and the temperature of the aqueous sodium hydroxide solution was maintained at 35±1°C. Next, in this sodium hydroxide aqueous solution, the thickness
A 0.5 mm metal copper plate was used as an anode and a platinum plate was used as a cathode, and a voltage of 25 V was applied for 60 seconds from a constant voltage power supply between the two electrodes to perform electrolytic oxidation treatment. At this time, the distance between both electrodes was 1.5 cm. By this electrolytic oxidation treatment, a black film was formed on the surface of the metal copper. After the treatment, hot air drying was performed at 80°C for 10 minutes to obtain a sample. The material of the selective absorption film formed on the sample surface is
It was confirmed from the line diffraction results that it was cupric oxide. Furthermore, when observed with an electron microscope (×20,000), the surface of the structure is fibrous or leaf-like, which is the same as in Examples 1 to 3;
It was very short, about 0.5 μm, whereas it was more than 5 μm. In addition, the thickness of the selective absorption membrane was measured by cutting out a part of the sample using a galvanostatic reduction method, and found that the average thickness was 0.4 μm when the voids between the fibers or leaves were completely filled. . Calculating backwards from this value, it was considered that the selective absorption film in this sample had a structure in which the short fibrous or leaf-like crystals were formed on a thin continuous film of copper oxide. A coating film of fluororesin (manufactured by Sumitomo 3M, JX-900) was formed on the surface of the sample in the same manner as in Example 2 to obtain a solar heat absorber. The optical properties of the thus obtained solar heat absorbers and the solar heat absorbers of Examples 1 to 3 were measured. The results are shown in Figure 1. As shown in the figure, Examples 1 to 3 (solid line in the figure), which are solar heat absorbers of the present invention, showed uniform absorption in the near-infrared region, whereas Comparative Example 3 (broken line in the figure) , the absorption rate in the near-infrared region with wavelengths of 0.6 μm or more became poor.

【表】【table】

【表】 なお、第1表の試験方法は次の通りであつた。 保護被膜の膜厚:断面を顕微鏡で観察し、かつ
これに塗布重量の測定結果を併せて算出し
た。 吸収率:α=∫2.50.3α〓・I〓dλ/∫2.50.3I
〓dλ (∫2.5 0.3は、太陽光のスペクトル領域が0.3〜
2.5μに95%存在することに基づく) ここで α;吸収率(太陽光全エネルギーに対する) d〓;波長λでの吸収率 I〓;太陽光の波長λの放射強度 放射率:ε=∫152.5S〓T=150・ε〓dλ/∫152.
5
S〓T=150dλ ここで ε;放射率(黒体放射全エネルギーに対する) S〓T=150;150℃の黒体から波長λの放射強度 ε〓;波長λの放射率(黒体に対する) なお、赤外分光光度計で赤外域の反射率P〓を測
定し、ε〓=1−P〓とした。 SO2ガス試験:デシケータの底部に30mmの深さ
に水を入れ、4000ppmのSO2ガスを10分間
注入し、空気を置換して密栓し、24時間放
置する操作を1サイクルとした。
[Table] The test method in Table 1 was as follows. Thickness of protective coating: The cross section was observed under a microscope, and the coating weight was calculated along with this. Absorption rate: α=∫ 2.5 / 0.3 α〓・I〓dλ/∫ 2.5 / 0.3 I
〓dλ (∫ 2.5 0.3 means that the spectral range of sunlight is 0.3~
(Based on 95% presence at 2.5μ) Where α: Absorption rate (relative to total solar energy) d〓: Absorption rate at wavelength λ I〓: Radiation intensity at wavelength λ of sunlight Emissivity: ε=∫ 15 / 2.5 S〓 T=150・ε〓dλ/∫ 15/2 .
5
S〓 T=150 dλ Where ε; Emissivity (relative to the total energy radiated by the black body) S〓 T=150 ; Radiation intensity at wavelength λ from a black body at 150℃ ε〓; Emissivity at wavelength λ (relative to the black body) ) The reflectance P〓 in the infrared region was measured using an infrared spectrophotometer, and it was set as ε〓=1−P〓. SO 2 gas test: One cycle consisted of filling the bottom of a desiccator with water to a depth of 30 mm, injecting 4000 ppm SO 2 gas for 10 minutes, displacing the air, sealing the desiccator, and leaving it for 24 hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜4ならびに比較例3の太陽
熱吸収体における吸収特性の測定結果の1例をあ
らわすグラフ、第2図はこの発明にかかる太陽熱
吸収体の模式的断面図、第3図は従来の太陽熱吸
収体の模式的断面図である。 1…基材、2,2′…結晶。
FIG. 1 is a graph showing one example of the measurement results of the absorption characteristics of the solar heat absorbers of Examples 1 to 4 and Comparative Example 3, FIG. 2 is a schematic cross-sectional view of the solar heat absorber according to the present invention, and FIG. is a schematic cross-sectional view of a conventional solar heat absorber. 1...Base material, 2,2'...Crystal.

Claims (1)

【特許請求の範囲】 1 基材が非銅系の化学的、熱的に安定な材料で
つくられ、この基材の表面に銅および銅合金のう
ちの少なくとも一方からなる薄層が形成され、同
薄層の全体がアルカリ性雰囲気下での化成処理に
より酸化または硫化されて、前記基材表面に、太
陽エネルギースペクトル領域でのエネルギー吸収
率が高く熱放射領域での放射率が低い、銅化合物
からなる選択吸収膜をそなえてなる太陽熱吸収
体。 2 選択吸収膜が繊維状ないし葉状を呈する酸化
第2銅の結晶からなる特許請求の範囲第1項記載
の太陽熱吸収体。 3 選択吸収膜の表面が透明の保護被膜でおおわ
れている特許請求の範囲第1項または第2項記載
の太陽熱吸収体。
[Claims] 1. The base material is made of a non-copper-based chemically and thermally stable material, and a thin layer made of at least one of copper and a copper alloy is formed on the surface of the base material, The entire thin layer is oxidized or sulfurized by a chemical conversion treatment in an alkaline atmosphere, and the surface of the substrate is made of a copper compound that has a high energy absorption rate in the solar energy spectrum region and a low emissivity in the thermal radiation region. A solar heat absorber equipped with a selective absorption film. 2. The solar heat absorber according to claim 1, wherein the selective absorption film is made of cupric oxide crystals exhibiting a fibrous or leaf shape. 3. The solar heat absorber according to claim 1 or 2, wherein the surface of the selective absorption film is covered with a transparent protective film.
JP4585481A 1981-03-27 1981-03-27 Solar-heat absorbing element Granted JPS5780149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4585481A JPS5780149A (en) 1981-03-27 1981-03-27 Solar-heat absorbing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4585481A JPS5780149A (en) 1981-03-27 1981-03-27 Solar-heat absorbing element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15715680A Division JPS5953458B2 (en) 1980-11-08 1980-11-08 solar heat absorber

Publications (2)

Publication Number Publication Date
JPS5780149A JPS5780149A (en) 1982-05-19
JPS6323461B2 true JPS6323461B2 (en) 1988-05-17

Family

ID=12730790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4585481A Granted JPS5780149A (en) 1981-03-27 1981-03-27 Solar-heat absorbing element

Country Status (1)

Country Link
JP (1) JPS5780149A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915154B2 (en) * 2006-07-07 2012-04-11 パナソニック株式会社 Commutator motor
JP2018050389A (en) 2016-09-21 2018-03-29 本田技研工業株式会社 Stator and manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525026A (en) * 1975-06-30 1977-01-14 Sekisui Chem Co Ltd Solar heat absorbent
JPS5224252A (en) * 1975-08-19 1977-02-23 Asahi Glass Co Ltd Fluorocarbon resin articles contaning inorganic filler
JPS54112742A (en) * 1978-02-02 1979-09-03 Steinruecke Walter Selectively absorbing coating and production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525026A (en) * 1975-06-30 1977-01-14 Sekisui Chem Co Ltd Solar heat absorbent
JPS5224252A (en) * 1975-08-19 1977-02-23 Asahi Glass Co Ltd Fluorocarbon resin articles contaning inorganic filler
JPS54112742A (en) * 1978-02-02 1979-09-03 Steinruecke Walter Selectively absorbing coating and production

Also Published As

Publication number Publication date
JPS5780149A (en) 1982-05-19

Similar Documents

Publication Publication Date Title
Barrera et al. A new cobalt oxide electrodeposit bath for solar absorbers
Top et al. VO 2/TiO 2 bilayer films for energy efficient windows with multifunctional properties
EA014263B1 (en) Process for producing a sol-gel-based absorber coating for solar heating
US4392920A (en) Method of forming oxide coatings
US4195124A (en) Solar radiation energy absorber
JPS6323461B2 (en)
US4437455A (en) Stabilization of solar films against hi temperature deactivation
NO144365B (en) SELECTIVE ABSORPTION SURFACE, FOR SOLAR COLLECTOR, AND PROCEDURES IN THE PREPARATION OF THIS
US4026271A (en) Solar collector coating
US4490412A (en) Method of making a solar energy collector element
Kirilov et al. A high effective selective absorbing coating for solar thermal collectors
JPS5956661A (en) Manufacture of solar heat collector
JPS5953459B2 (en) solar heat absorber
JPS5953458B2 (en) solar heat absorber
JPS6311429B2 (en)
Gogna et al. Structure-dependent thermal and optical properties of black nickel coatings
Kulkarni et al. Preparation of silver sulphide from chemically deposited silver films
JPS6138783B2 (en)
Uma et al. Spectrally selective surfaces on stainless steel produced by chemical conversion
JPS5811350A (en) Manufacture of solar heat absorber
Barrera et al. Preparation of selective surfaces of black cobalt by the sol-gel process
JPS6037376B2 (en) Manufacturing method of solar heat absorber
JPS5952748B2 (en) solar heat absorber
Iyer et al. Cr2O3 Cr composite selective absorbers produced by the ebonizing process
JPS60117056A (en) Heat collector and manufacture thereof