JPS63234138A - Sensor applying light - Google Patents

Sensor applying light

Info

Publication number
JPS63234138A
JPS63234138A JP6992987A JP6992987A JPS63234138A JP S63234138 A JPS63234138 A JP S63234138A JP 6992987 A JP6992987 A JP 6992987A JP 6992987 A JP6992987 A JP 6992987A JP S63234138 A JPS63234138 A JP S63234138A
Authority
JP
Japan
Prior art keywords
matrix
molecules
dye
gas
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6992987A
Other languages
Japanese (ja)
Inventor
Hideji Saneyoshi
実吉 秀治
Yasuhiko Inami
井波 靖彦
Terue Kataoka
片岡 照栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6992987A priority Critical patent/JPS63234138A/en
Publication of JPS63234138A publication Critical patent/JPS63234138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To permit detection of gaseous molecules of multiple components with good accuracy by disposing plural kinds of org. materials which are changed in light absorption spectrum by adsorption and desorption of molecules in the shape of a matrix on a transparent substrate and converting the change in the color tones of the org. material by the adsorption of the molecules to the pattern images of the matrix, thereby discriminating the adsorbed molecules. CONSTITUTION:The sensor applying light is obtd. by depositing 16 kinds of betaine or cyanine type functional dyes on a glass substrate and further disposing these functional dye films 2 in the shape of the matrix on the transparent substrate 1. A change in respectively different colors takes place according to the kinds of gases and functional dyes when the dye films 2 disposed in the matrix are rested in an atmosphere contg. a specific gas such as ethyl alcohol. The pattern of the dye parts is previously stored into a memory circuit or observer's brain by noticing only the dye parts where the degree of such changes is large. The gaseous molecules are recognized by corresponding this patterns shape and the specific gas.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、光を利用して大気中の気体成分を検知する光
応用センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Field The present invention relates to an optical sensor that uses light to detect gaseous components in the atmosphere.

〈従来の技術〉 従来、光を利用して大気中の気体(ガス)を検出する方
法として(1)、気体自体の光の吸収を利用する方法、
(2)、気体を吸着することにより基本物性が変化する
物質と光ファイバーを利用した方法とが知られている。
<Conventional technology> Conventionally, methods for detecting gases in the atmosphere using light include (1) a method that utilizes the absorption of light by the gas itself;
(2) A method using a substance whose basic physical properties change by adsorbing gas and an optical fiber is known.

(1)の気体自体の光の吸収を利用する方法としては、
二酸化炭素ガスが波長4.3μmの光を吸収するのを利
用して、光源からの光の吸光度を測定して二酸化炭素濃
度を検知するセンサが知られている。(2)光ファイバ
ーを利用した方法としては、光ファイバーのクラッド部
分を取り除き、コアー上に直接酸化タングステンとパラ
ジウムを被覆した水素センサが知られている。酸化タン
グステンが水素を吸着することによりコアーから漏れる
エパネッセント光が変化することを利用して水素を検知
している。
(1) A method that utilizes the absorption of light by the gas itself is as follows:
2. Description of the Related Art There is a known sensor that detects carbon dioxide concentration by measuring the absorbance of light from a light source using the fact that carbon dioxide gas absorbs light with a wavelength of 4.3 μm. (2) As a method using an optical fiber, a hydrogen sensor is known in which the cladding portion of the optical fiber is removed and tungsten oxide and palladium are directly coated on the core. Hydrogen is detected by utilizing the change in epanescent light leaking from the core as tungsten oxide adsorbs hydrogen.

〈発明が解決しようとする間頚点〉 従来の光を利用した気体成分センサにおいて、気体自体
の吸収を利用する方法は、検知される気体が特定の場合
に限られておりまた、大気中の気体の光吸収を用いてい
るため感度が低いという欠点があった。さらに、光ファ
イバーのコアーの一部分のみに酸化タングステン、パラ
ジウムを積層しているので、同様に感度が低いという欠
点を有している。
<The crossroads that the invention seeks to solve> In conventional gas component sensors that use light, the method of using absorption of the gas itself is limited to cases in which the gas to be detected is specific; Since it uses gas light absorption, it has the disadvantage of low sensitivity. Furthermore, since tungsten oxide and palladium are laminated only on a portion of the core of the optical fiber, it also has the disadvantage of low sensitivity.

く問題点を解決するための手段〉 本発明は、光を利用した気体成分センサを高感度化する
とともに、その検知対象を拡大するために鋭意研究を行
った結果、ベタイン型あるいはシアニン型等の機能性色
素が気体を吸着することによって変色することに注目し
、これら機能性色素膜を用いて気体成分を検知しようと
するものである。気体の吸着現象を利用することによっ
て、機能性色素中に、検知される気体が濃縮され、気体
自体の吸収による方法よりも高感度になる。また、ベタ
イン型あるいはシアニン型等の機能性色素において、そ
の分子構造は、電子受容部分(4)と電子供与部分■)
から成りたっており、機能性色素のπ電子系が分極する
ことによって、色素の色が変化する、しかも、その分極
程度は、吸着する分子の親水度、疎水度等に依存するこ
とにより、種々の気体分子の特性によって、機能性色素
の色が変化する。
Means for Solving Problems〉 The present invention was developed as a result of extensive research to improve the sensitivity of gas component sensors that utilize light and to expand the range of detection targets. Focusing on the fact that functional dyes change color when they adsorb gases, we attempt to detect gaseous components using these functional dye films. By utilizing the gas adsorption phenomenon, the gas to be detected is concentrated in the functional dye, resulting in higher sensitivity than methods based on absorption of the gas itself. In addition, in functional dyes such as betaine type or cyanine type, the molecular structure is the electron accepting part (4) and the electron donating part (■)
The color of the dye changes when the π-electron system of the functional dye is polarized, and the degree of polarization varies depending on the hydrophilicity, hydrophobicity, etc. of the adsorbed molecules. The color of the functional dye changes depending on the characteristics of the gas molecules.

本発明は特性の異なる機能性色素を複数種同一基板上に
マトリックス配置し、各機能性色素の色変化を画像パタ
ーン変化として測定することによって、多成分の気体分
子を精度良く検出しようとするものである。
The present invention attempts to accurately detect multi-component gas molecules by arranging multiple types of functional dyes with different properties in a matrix on the same substrate and measuring the color change of each functional dye as a change in image pattern. It is.

〈作 用〉 本発明は、各種機能性色素のマトリックス膜又は各種機
能性色素のマトリックス膜と、各種機能色素の前方或は
後方に各機能性色素の最大吸収波長の光のみを透過させ
るフィルターのマトリックス膜を設置した構成となって
いる。各種機能性色素のマ) IJワックス膜けの場合
は、気体の吸・脱着によるマトリックス膜の色変化を目
視によりあるいは画像処理によって認識し、吸着気体を
識別する。他方、各種機能性色素のマ) IJワックス
膜、各種フィルターのマトリックス膜から構成されてい
る場合は、気体の吸“・脱着に、よる光の光量変化を目
視によりあるいは画像処理によって認識し吸着気体を識
別する。このような光応用センサにおいて、光源として
は太陽光が使用でき、太陽が現われていないときは白色
光源を用いる。
<Function> The present invention comprises a matrix film of various functional dyes or a matrix film of various functional dyes, and a filter that transmits only light having the maximum absorption wavelength of each functional dye in front of or behind the various functional dyes. The structure includes a matrix membrane. In the case of IJ wax film, the color change of the matrix film due to adsorption and desorption of gas is recognized visually or by image processing, and the adsorbed gas is identified. On the other hand, when the film is composed of an IJ wax film of various functional dyes or a matrix film of various filters, changes in the amount of light due to gas absorption and desorption can be recognized visually or through image processing, and the adsorbed gas can be detected. In such optical sensors, sunlight can be used as a light source, and when the sun is not present, a white light source is used.

〈実施例1〉 第1図は本発明の詳細な説明に供する光応用センサの構
成図である ベタイン型またはシアニン型の機能性色素を16種類ガ
ラス基板上に蒸着し、これら機能性色素膜2をさらに透
明基板1上にマトリックス配置して光応用センサを作製
した。このマトリックス配置された機能性色素膜2を、
エチルアルコール、アセトン、又は、アンモニア等の特
定の気体を含む雰囲気中に放置すると、気体種及び、機
能性色素膜によってそれぞれ異なった色の変化が起こる
<Example 1> FIG. 1 is a block diagram of an optical sensor used for detailed explanation of the present invention. Sixteen types of betaine-type or cyanine-type functional dyes were deposited on a glass substrate, and these functional dye films 2 were further arranged in a matrix on a transparent substrate 1 to produce an optical sensor. This matrix-arranged functional pigment film 2 is
When left in an atmosphere containing a specific gas such as ethyl alcohol, acetone, or ammonia, different color changes occur depending on the gas species and the functional pigment film.

賓化度合いの大きい色素部分のみに注目して、これらの
色素部分のパターンをメモリ回路あるいは観測者の脳裏
に記憶させておき、このパターン形状と特定の気体とを
対応さして気体分子を認識する。エチルアルコール、ア
セトシ、アンモニア等の気体種により、パターン形状も
それぞれ異なっていることが確かめられ、多成分の混合
気体でも、個々の成分が認識できることがわかった。
Focusing only on the pigment parts that have a high degree of activation, the patterns of these pigment parts are stored in a memory circuit or in the observer's mind, and the gas molecules are recognized by correlating this pattern shape with a specific gas. It was confirmed that the pattern shapes were different depending on the gas species such as ethyl alcohol, acetate, and ammonia, and it was found that even in a mixture of multiple components, the individual components could be recognized.

〈実施例2〉 ベタイン型、シアニン型の機能性色素を16種類ガラス
基板上に蒸着し、これら機能性色素膜2をさらに透明基
板1上にマトリックス配置して、光応用センナを作製し
た。さらにこれら色素膜の後方に、各色素の最大吸収波
長のみを透過させる光学フィルターをマトリックス状に
配置した膜を第2図に示されるように設置する。このよ
うに、機能性色素と光学フィルターをマ) IJフック
ス置した膜を、エチルアルコール、アセトン又はアンモ
ニア等の特定の気体を含む雰囲気中に放置すると、気体
種及び機能性色素膜によって、光の光量変化が起こる。
<Example 2> Sixteen kinds of betaine type and cyanine type functional dyes were vapor-deposited on a glass substrate, and these functional dye films 2 were further arranged in a matrix on a transparent substrate 1 to produce a photonic senna. Further, behind these dye films, a film in which optical filters that transmit only the maximum absorption wavelength of each dye are arranged in a matrix is installed as shown in FIG. In this way, when a film with a functional dye and an optical filter placed on an IJ hook is left in an atmosphere containing a specific gas such as ethyl alcohol, acetone, or ammonia, the gas species and the functional dye film will cause the light to emit light. A change in light intensity occurs.

光量が大きく変化する色素部分のみに注目して、これら
の色素部分のパターンを記憶しておき、このパターン形
状と特定の気体とを対応さして気体分子を認識する。エ
チルアルコール、アセトン、アンモニア等の気体種によ
り、パターン形状もそれぞれ異なっていることが確かめ
られ、多成分の混合気体でも、個々の成分が認識できる
ことがわかった。
Focusing only on the dye parts where the amount of light changes significantly, patterns of these dye parts are memorized, and gas molecules are recognized by correlating the shape of this pattern with a specific gas. It was confirmed that the pattern shapes were different depending on the gas species, such as ethyl alcohol, acetone, and ammonia, and it was found that even in a gas mixture containing multiple components, the individual components could be recognized.

〈発明の効果〉 本発明は、光を利用して大気中の気体成分を検知するも
ので、光を利用しているため、防爆性が優れ、電磁誘導
に強いセンサを作製することができ、また素子構造が簡
単なため、容易、安価に素子を作製することができる。
<Effects of the Invention> The present invention uses light to detect gaseous components in the atmosphere, and because it uses light, it is possible to create a sensor that has excellent explosion-proof properties and is resistant to electromagnetic induction. Furthermore, since the element structure is simple, the element can be manufactured easily and at low cost.

さらに、本素子は多種類の機能性色素膜を用いパターン
画像として気体成分を検知するため、混合気体中の気体
成分も、瞬時に、精度良く認識することが可能である。
Furthermore, since this device detects gas components as pattern images using various types of functional dye films, it is possible to instantly and accurately recognize gas components in a mixed gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を示す図である0 1:透明基板 2:各種機能性色素 3:光学フィルターのマトリックス膜 代理人 弁理士 杉 山 毅 至(他1名)萬1図 薦2図 1 and 2 are diagrams showing embodiments of the present invention. 1: Transparent substrate 2: Various functional dyes 3: Optical filter matrix film Agent: Patent attorney: Tsuyoshi Sugi Yama (1 other person) Recommended figure 2

Claims (1)

【特許請求の範囲】 1、分子の吸・脱着によって光の吸収スペクトルが変化
する有機物質を透明基板上に複数種マトリックス配置し
、分子の吸着による前記各有機物質の色調の変化をマト
リックスのパターン画像に変換して吸着分子を識別する
ことを特徴とする光応用センサ。 2、上記マトリックス配置した各有機物質の前面又は背
面に各有機物質の最大吸収波長のみを透過するフィルタ
ーを設けた特許請求の範囲第1項記載の光応用センサ。 3、上記有機物質がベタイン型、シアニン型色素の内少
なくとも1種以上で構成されている特許請求の範囲第1
項記載の光応用センサ。
[Claims] 1. A plurality of types of organic substances whose light absorption spectra change due to adsorption/desorption of molecules are arranged in a matrix on a transparent substrate, and the change in color tone of each of the organic substances due to adsorption of molecules is reflected in the pattern of the matrix. An optical sensor that identifies adsorbed molecules by converting them into images. 2. The optical sensor according to claim 1, further comprising a filter that transmits only the maximum absorption wavelength of each organic substance on the front or back side of each organic substance arranged in the matrix. 3. Claim 1, wherein the organic substance is composed of at least one of betaine type and cyanine type pigments.
Optical application sensor described in section.
JP6992987A 1987-03-23 1987-03-23 Sensor applying light Pending JPS63234138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6992987A JPS63234138A (en) 1987-03-23 1987-03-23 Sensor applying light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6992987A JPS63234138A (en) 1987-03-23 1987-03-23 Sensor applying light

Publications (1)

Publication Number Publication Date
JPS63234138A true JPS63234138A (en) 1988-09-29

Family

ID=13416862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6992987A Pending JPS63234138A (en) 1987-03-23 1987-03-23 Sensor applying light

Country Status (1)

Country Link
JP (1) JPS63234138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1274983A1 (en) * 2000-03-21 2003-01-15 The Board of Trustees of the University of Illinois Colorimetric artificial nose having an array of dyes and method for artificial olfaction
JP2006112992A (en) * 2004-10-18 2006-04-27 Riken Keiki Co Ltd Gas sensing sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1274983A1 (en) * 2000-03-21 2003-01-15 The Board of Trustees of the University of Illinois Colorimetric artificial nose having an array of dyes and method for artificial olfaction
EP1274983A4 (en) * 2000-03-21 2004-12-22 Univ Illinois Colorimetric artificial nose having an array of dyes and method for artificial olfaction
JP2006112992A (en) * 2004-10-18 2006-04-27 Riken Keiki Co Ltd Gas sensing sheet
JP4699737B2 (en) * 2004-10-18 2011-06-15 理研計器株式会社 Gas detection sheet

Similar Documents

Publication Publication Date Title
RU2360232C2 (en) Colorimetric sensor
US4470666A (en) Colored liquid crystal display
Vallejos et al. Putting to work organic sensing molecules in aqueous media: fluorene derivative-containing polymers as sensory materials for the colorimetric sensing of cyanide in water
Papkovsky Luminescent porphyrins as probes for optical (bio) sensors
US4752447A (en) Optical filter with reversible color change
CN101726459B (en) Fluorescent reference member and fluorescent detection device including fluorescent reference member
CN100567952C (en) The metal porphyrin langmuir blodgett film optical fiber gas sensor
HK1000736A1 (en) Method and apparatus for detection of an analyte
CA2256629A1 (en) Masking background fluorescence and luminescence in optical analysis of biomedical assays
CN103674946B (en) Color-sensitive gas sensor array based on the enrichment of nanofiber gas and preparation method thereof
Hauser et al. All-solid-state instrument for fluorescence-based fibre-optic chemical sensors
CN105911031B (en) The Visual retrieval test paper of susceptible-dose of the one kind for detecting arsenic in water body (III)
GB985089A (en) Data display device
US5952237A (en) Method for detecting harmful gases which is applicable to broad gas concentration range
JPS63234138A (en) Sensor applying light
Del Bianco et al. A new kind of oxygen-sensitive transducer based on an immobilized metallo-organic compound
JPH0518371B2 (en)
US6812035B1 (en) Dye desortion molecular indicator
SE9504417D0 (en) Method for determining the concentration of a specific gas and an analyzer
ATE99051T1 (en) USE OF A CHEMICALLY SENSITIVE COMPONENT.
KR930013718A (en) Measuring system for measuring the concentration of inorganic and organic compounds in the sample
JPH0481662A (en) Light applied gas sensor
CN109100305B (en) Digital substance information acquisition device and method for liquid dispersion system
Jagasia Investigation of fluorescence sensor matrices for environmental analyses
GB1229886A (en)