JPS63234005A - Production of polyolefin - Google Patents

Production of polyolefin

Info

Publication number
JPS63234005A
JPS63234005A JP6863087A JP6863087A JPS63234005A JP S63234005 A JPS63234005 A JP S63234005A JP 6863087 A JP6863087 A JP 6863087A JP 6863087 A JP6863087 A JP 6863087A JP S63234005 A JPS63234005 A JP S63234005A
Authority
JP
Japan
Prior art keywords
bis
transition metal
metal compound
polymerization
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6863087A
Other languages
Japanese (ja)
Other versions
JPH0794500B2 (en
Inventor
Shinya Miya
宮 新也
Masahito Harada
雅人 原田
Takaya Mise
三瀬 孝也
Hiroshi Yamazaki
博史 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Chisso Corp filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP62068630A priority Critical patent/JPH0794500B2/en
Priority to US07/158,924 priority patent/US4874880A/en
Priority to DE3853692T priority patent/DE3853692T2/en
Priority to EP88102620A priority patent/EP0283739B2/en
Publication of JPS63234005A publication Critical patent/JPS63234005A/en
Publication of JPH0794500B2 publication Critical patent/JPH0794500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polymer of high molecular weight in high efficiency by polymerization of an olefin using a catalyst consisting of each specific transition metal compound having substituted cyclopentadienyl group and aluminoxane. CONSTITUTION:The objective polyolefin can be obtained by polymerization of an olefin such as ethylene or 1,4-hexadiene, using a catalyst consisting of (A) a transition metal compound of formula I (Rn<2>-C2H5-n is substituted cyclopentadienyl; n is 2-4; R<2> is 1-5C alkyl; M is Ti, Zr, V or Hf; X is halogen) [e.g., bis(1,3-dimethyl cyclopentadienyl)zirconium dichloride] and (B) an aluminoxane of formula II or III (m is 4-20; R<1> is hydrocarbon).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリオレフィンの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing polyolefins.

さらに詳しくは、新規な遷移金属化合物及び特定のアル
ミノキサンからなる触媒を用いて、ポリオレフィンを効
率よく製造する方法に関する。
More specifically, the present invention relates to a method for efficiently producing polyolefins using a catalyst comprising a novel transition metal compound and a specific aluminoxane.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

Kasinsky触媒、すなわちビス(シクロペンタジ
ェニル)ジルコニウムジクロリドなどとアルミノキサン
とから成る触媒が、オレフィンを高活性で重合すること
が、#I開昭58−19309号公報′、Makram
ol、 CheIl、Rapid Commun、、 
 4巻、 41?頁(1983年)にて知られている。
Kasinsky's catalyst, that is, a catalyst consisting of bis(cyclopentadienyl)zirconium dichloride or the like and aluminoxane, polymerizes olefins with high activity, as disclosed in #I Publication No. 1989-19309', Makram et al.
ol, CheIl, Rapid Commun,,
Volume 4, 41? Page (1983).

また、最近分子量、分子量分布、共重合性を調整す、る
ために、各種遷移金属化合物を使用する技術も知られて
いる(特開昭80−35008号公報、特開昭80−3
5007号公報、特開昭80−35008号公報)、な
お、これらの特許には、・置換シクロペンタジェニル基
を有する遷移金属化合物を触媒成分として用いる記載が
あるが、2.3及び4置換シクロペンタジエニル基を有
する遷移金属化合物を使用する実施例はまったくない。
In addition, recently, techniques using various transition metal compounds have been known to adjust molecular weight, molecular weight distribution, and copolymerizability (Japanese Patent Laid-Open No. 80-35008, Japanese Patent Laid-Open No. 80-3
5007, JP-A-80-35008), these patents describe the use of a transition metal compound having a substituted cyclopentadienyl group as a catalyst component; There are no examples using transition metal compounds with cyclopentadienyl groups.

この従来のKa■1nsky系触媒は、高活性ではある
が、分子量の低い重合体しか得られず、高分子量の重合
体を製造する場合には、活性が著しく低下するという問
題点があった。
Although this conventional Ka1nsky catalyst has high activity, it can only yield polymers with low molecular weights, and when producing high molecular weight polymers, there is a problem in that the activity is significantly reduced.

本発明者らは上記の問題点を解決すべく研究を重ねた結
果、新規な遷移金属化合物である2、3及び4fi換シ
クロペンタジエニル基を有する遷移金属化合物と持金の
アルミノキサンとからなる触媒が、高活性で、しかも高
分子量の重合体を製造しうることを見いだし、本発明に
到達した。
As a result of repeated research to solve the above-mentioned problems, the present inventors found that a new transition metal compound consisting of a transition metal compound having 2, 3 and 4fi-substituted cyclopentadienyl groups and aluminoxane as a supporting metal. The inventors have discovered that a catalyst can produce highly active and high molecular weight polymers, leading to the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は。 That is, the present invention.

(1) (A)遷移金属化合物、及び (B)一般式[I]または一般式[■]R2A1云0A
1h−OAIR2[I ](たCし、層は4〜20の数
で、R1は炭化水素基を示す)で表されるアルミノキサ
ンを成分をする触媒を用いてオレフィンを重合し、ポリ
オレフィンを製造する方法において。
(1) (A) Transition metal compound, and (B) general formula [I] or general formula [■] R2A1y0A
Polymerize an olefin using a catalyst containing an aluminoxane represented by 1h-OAIR2[I] (the number of layers is 4 to 20, and R1 represents a hydrocarbon group) to produce a polyolefin. In the method.

(A) !移金属化合物として、一般式[ml(Rn 
−CsHs−n)zMX2[m ](但し、Rn −C
5Hs−nは置換シクロペンタジェニル基を示し、nは
2〜4の整数、R2は炭素原子数1〜5のアルキル基、
にはチタン、ジルコニウム、バナジウムまたはハフニウ
ムを示す、また、Xはハロゲン原子を示す) で表される化合物を用いることを特徴とするポリオレフ
ィンの製造方法。
(A)! As a transfer metal compound, the general formula [ml(Rn
-CsHs-n)zMX2[m] (However, Rn -C
5Hs-n represents a substituted cyclopentadienyl group, n is an integer of 2 to 4, R2 is an alkyl group having 1 to 5 carbon atoms,
represents titanium, zirconium, vanadium or hafnium, and X represents a halogen atom.

本発明の方法において使用される触媒構成成分の遷移金
属化合物(A)は、2.3及び4置換シクロペンタジエ
ニル基を2つ有し、かつ、2個の/\ロゲン原子を有す
る遷移金属化合物である。
The transition metal compound (A) as a catalyst component used in the method of the present invention is a transition metal compound having two 2.3- and 4-substituted cyclopentadienyl groups and two /\ rogene atoms. It is a compound.

これらの化合物は、新規化合物であり、その製造法は、
−後述の実施例に例示されているように2〜4置換アル
キルシクロペンタジエンを遷移金属ハ、ライドと反応さ
せることにより得られる。遷移金属原子としては、チタ
ン、ジルコニウム、バナジウム、ハフニウムなどであり
、好ましくはジルコニウムである。2Wi換シクロペン
タジエニル基には、1.2−及び1.3−R2−C3H
5の2種類が存在するが、何れをも含むものである。ま
た、3置換シククロペンタジニル基にも、 1,2.3
−及ヒl、2.4−R3−as R2の2種類が存在す
るが、何れをも含むものである。 R2はメチル基、エ
チル基、プロピル基、イソプロピル基、ブチル基、5e
c−ブチル基。
These compounds are new compounds, and the manufacturing method is
- Obtained by reacting a 2- to 4-substituted alkylcyclopentadiene with a transition metal compound as illustrated in the Examples below. Examples of the transition metal atom include titanium, zirconium, vanadium, and hafnium, with zirconium being preferred. The 2Wi-substituted cyclopentadienyl group includes 1.2- and 1.3-R2-C3H
There are two types, No. 5, but both are included. Also, for the 3-substituted cyclopentazinyl group, 1,2.3
There are two types, 2.4-R3-as and 2.4-R3-as R2, both of which are included. R2 is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, 5e
c-butyl group.

tert−ブチル基、ペンチル基などの炭化水素基であ
り、好ましくはメチル基、エチル基である。Xは弗素、
塩素、臭素、沃素などのハロゲン原子であり、好ましく
は塩素である。
Hydrocarbon groups such as tert-butyl group and pentyl group, preferably methyl group and ethyl group. X is fluorine,
A halogen atom such as chlorine, bromine, or iodine, preferably chlorine.

更に、該遷移金属化合物として具体的には、ビス(1,
2−ジメチルシクロペンタジェニル)チタンジクロリド
、ビス(l、2−ジエチルシクロペンタジェニル)チタ
ンジクロリド、ビス(l、2−ジメチルシクロペンタジ
ェニル)チタンジクロリド、ビス(1,3−ジメチルシ
クロペンタジェニル)チタンジクロリド、ビス(1,2
,3−トリメチルシクロペンタジェニル)チタンジクロ
リド、ビス(1,2,4−トリメチルシクロペンタジェ
ニル)チタンジクロリド、ビス(1,2,3,4−テト
ラメチルシフペンタジェニル)チタンジクロリドなどの
チタン化合物、ビス(1,2−ジメチルシクロペンタジ
ェニル)ジルコニウムジクロリド、ビス(1,2−ジエ
チルシクロペンタジェニル)ジルコニウムジクロリド、
ビス(1,3−ジメチルシクロペンタジェニル)ジルコ
ニウムジクロリド、ビス(l、3−ジエチルシフペンタ
ジェニル)ジルコニウムジクロリド、ビス(1,3−ジ
メチルシクロペンタジェニル)ジルコニウムジブロミド
、ビス(1,2,3−)リメチルーシクロペンタジエニ
ル)ジルコニウムジクロリド、ビス(1,2゜3−トリ
メチルシクロペンタジェニル)ジルコニウムジブロミド
、ビス(1,2,4−)ジエチルシクロペンタジェニル
)ジルコニウムジクロリド、ビス(1,2,4−トリメ
チルシクロペンタジェニル)ジルコニウムジブロミド、
ビス(1,2,4−)ジエチルシクロペンタジェニル)
ジルコニウムジイオデイト、ヒス(1,2,4−)ジメ
チルシクロペンタジェニル)ジルコニウムジクロリド、
ビス(1,2,3,4−テトラメチルシクロペンタジェ
ニル)ジルコニウムジクロリド、ビス(1,2,3,4
−テトラメチルシクロペンタジェニル)ジルコニウムジ
ブロミドなどのジルコニウム化合物、ビス(l、2−ジ
メチルシクロペンタジェニル)ハフニウムジクロリド、
ビス(1,3−ジメチルシクロペンタジェニル)ハフニ
ウムジクロリド、ビス(1,2,3−)ジメチルシクロ
ペンタジェニル)ハフニウムジクロリド、ビス(1゜2
.4−)ジエチルシクロペンタジェニル)ハフニウムジ
クロリド、ビス(1,2,3,4−テトラメチルシクロ
ペンタジェニル)ハフニウムジクロリドなどのハフニウ
ム化合物、ビス(1,2−ジメチルシクロペンタジェニ
ル)バナジウムジクロリド、ビス(1゜3−ジメチルシ
クロペンタジェニル)バナジウムジクロリド、ビス(1
,2,3−)ジエチルシクロペンタジェニル)バナジウ
ムジクロリド、ビス(1,2,4−トリメチルシクロペ
ンタジェニル)バナジウムジクロリド、ビス(1,2,
3,4−テトラメチルシクロペンタジェニル)バナジウ
ムジクロリドなどのバナジウム化合物を例示することが
できる。
Furthermore, specifically, the transition metal compound is bis(1,
2-dimethylcyclopentagenyl) titanium dichloride, bis(l,2-diethylcyclopentagenyl)titanium dichloride, bis(l,2-dimethylcyclopentagenyl)titanium dichloride, bis(1,3-dimethylcyclopentadienyl) titanium dichloride, bis(1,2
, 3-trimethylcyclopentagenyl) titanium dichloride, bis(1,2,4-trimethylcyclopentagenyl) titanium dichloride, bis(1,2,3,4-tetramethylsifpentagenyl) titanium dichloride, etc. Titanium compound, bis(1,2-dimethylcyclopentadienyl)zirconium dichloride, bis(1,2-diethylcyclopentagenyl)zirconium dichloride,
Bis(1,3-dimethylcyclopentagenyl)zirconium dichloride, bis(l,3-diethylshifpentagenyl)zirconium dichloride, bis(1,3-dimethylcyclopentagenyl)zirconium dibromide, bis(1, 2,3-)limethylcyclopentadienyl)zirconium dichloride, bis(1,2゜3-trimethylcyclopentadienyl)zirconium dibromide, bis(1,2,4-)diethylcyclopentadienyl)zirconium dichloride , bis(1,2,4-trimethylcyclopentadienyl)zirconium dibromide,
bis(1,2,4-)diethylcyclopentadienyl)
Zirconium diiodate, his(1,2,4-)dimethylcyclopentagenyl)zirconium dichloride,
Bis(1,2,3,4-tetramethylcyclopentadienyl)zirconium dichloride, bis(1,2,3,4
zirconium compounds such as -tetramethylcyclopentagenyl) zirconium dibromide, bis(l,2-dimethylcyclopentagenyl) hafnium dichloride,
Bis(1,3-dimethylcyclopentagenyl)hafnium dichloride, bis(1,2,3-)dimethylcyclopentagenyl)hafnium dichloride, bis(1゜2
.. Hafnium compounds such as 4-)diethylcyclopentagenyl)hafnium dichloride, bis(1,2,3,4-tetramethylcyclopentagenyl)hafnium dichloride, bis(1,2-dimethylcyclopentagenyl)vanadium dichloride , bis(1°3-dimethylcyclopentadienyl) vanadium dichloride, bis(1
,2,3-)diethylcyclopentagenyl)vanadium dichloride, bis(1,2,4-trimethylcyclopentagenyl)vanadium dichloride, bis(1,2,
Examples include vanadium compounds such as 3,4-tetramethylcyclopentagenyl)vanadium dichloride.

これらの化合物のなかで好ましくは、ビス、(1,3−
ジメチルシクロペンタジェニル)ジルコニウムジクロリ
ド、ビス(1,2,4−トリメチルシクロペンタジェニ
ル)ジルコニウムジクロリド、ビス(1,2,3,4−
テトラメチルシクロペンタジェニル)ジルコニウムジク
ロリドなどが用いられる。
Among these compounds, bis, (1,3-
dimethylcyclopentagenyl) zirconium dichloride, bis(1,2,4-trimethylcyclopentagenyl)zirconium dichloride, bis(1,2,3,4-
Tetramethylcyclopentadienyl) zirconium dichloride and the like are used.

本発明の方法において使用されるもう一つの触媒構成成
分のアルミノキサン(B)は、前述の一般式[II又は
、一般式[II ]で表される有機アルミニウム化合物
である。 R+はメチル基、エチル基、プロピル基、ブ
チル基などの炭化水素基であり、好ましくはメチル基、
エチル基である。麿は4〜20の整数であり、好ましく
は6以上で、とりわけ10以上であるのが好ましい、こ
の種の化合物の製法は公知であり1例えば、吸着水を含
有するルへ編 妊且↓克ム責毒1南鮪l訪融編↓翻札硫
酸銅アルミニウム水和物など)の炭化水素媒体懸濁液に
トリアルキルアルミニウムを添加して反応させる方法を
例示することができる。
Aluminoxane (B), another catalyst component used in the method of the present invention, is an organoaluminum compound represented by the above-mentioned general formula [II] or general formula [II]. R+ is a hydrocarbon group such as a methyl group, an ethyl group, a propyl group, a butyl group, and preferably a methyl group,
It is an ethyl group. Maro is an integer from 4 to 20, preferably 6 or more, especially 10 or more. Methods for producing compounds of this type are known. An example of a method is to add trialkylaluminum to a suspension of copper aluminum sulfate (copper aluminum sulfate hydrate, etc.) in a hydrocarbon medium and cause the reaction to occur.

本発明の方法において1重合反応に用いられるオレフィ
ンは、エチレン、プロピレン、1−ブテン、4−メチル
−1−ペンテン、l−ヘキセン、l−オクテン、l−デ
セン、l−ドデセン、l−テトラデセン、l−へキサデ
セン、1−オクタデセン、l−エイコセンなどα−オレ
フィンであり、これら2種以上の混合成分を重合に供す
ることもできる。さらには、ブタジェン、1.トヘキサ
ジエン、1.4−ペンタジェン、1.7−オクタジエン
、1.8−ノナジェン、1.9−デカジエン、などのよ
うなジエン類、またはシクロプロパン、シクロブテン、
シクロヘキセン、ノルボルネン、ジシクロペンタジェン
などのような環状オレフィンとα−オレンフィンとの共
重合にも有効である。
The olefins used in the monopolymerization reaction in the method of the present invention include ethylene, propylene, 1-butene, 4-methyl-1-pentene, l-hexene, l-octene, l-decene, l-dodecene, l-tetradecene, These are α-olefins such as 1-hexadecene, 1-octadecene, and 1-eicosene, and a mixture of two or more of these components can also be subjected to polymerization. Furthermore, butadiene, 1. Dienes such as tohexadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, etc., or cyclopropane, cyclobutene,
It is also effective for copolymerization of cyclic olefins such as cyclohexene, norbornene, dicyclopentadiene, and α-olefins.

重合方法としては、懸濁重合、溶液重合、気相重合のい
ずれも可能である。液相重合の重合溶媒としては、ブタ
ン、ペンタン、ヘキサン、オクタン、デカン、ドデカン
、ヘキサデカン、オクタデカンなどの脂肪族系炭化水素
、シクロペンタン、メチルシクロペンタン、シクロヘキ
サン、シクロオクタンなどの脂環族系炭化水素、ベンゼ
ン、トルエン、キシレンなどの芳香族系炭化水素、ガソ
リン、灯油、軽油などの石油留分などが用いられる。こ
れらの中では、芳香族系炭化水素が好ましい0反応系の
オレフィン圧は常圧〜50Kg/am2Gであり1重合
源度は一50℃〜230℃、好ましくは−20℃〜20
0℃の範囲である0重合に際しての分子量調節は公知の
手段、例えば温度の選定あるいは水素の導入により行う
ことができる。
As the polymerization method, any of suspension polymerization, solution polymerization, and gas phase polymerization is possible. Polymerization solvents for liquid phase polymerization include aliphatic hydrocarbons such as butane, pentane, hexane, octane, decane, dodecane, hexadecane, and octadecane, and alicyclic carbonates such as cyclopentane, methylcyclopentane, cyclohexane, and cyclooctane. Hydrogen, aromatic hydrocarbons such as benzene, toluene, and xylene, and petroleum fractions such as gasoline, kerosene, and light oil are used. Among these, aromatic hydrocarbons are preferred.The olefin pressure in the reaction system is normal pressure to 50 kg/am2G, and the degree of polymerization is from -50°C to 230°C, preferably from -20°C to 20°C.
Molecular weight adjustment during zero polymerization in the range of 0° C. can be carried out by known means, such as temperature selection or hydrogen introduction.

本発明の方法では、(A)遷移金属化合物。In the method of the present invention, (A) a transition metal compound.

(B)アルミノキサンの青成分を予め混合したものを反
応系に供給してもよく、また反応系に(A)、(B)青
成分をそれぞれ供給してもよい、いずれの場合において
も、青成分の重合系内における濃度1モル比については
特に制限はないが、好ましくは遷移金属濃度で10−4
〜1O−9sol/ 1の範囲であり、 Al/金属原
子のモル比は100以上、特に1000以上の範囲が好
んでもちいられる。
(B) A premixed blue component of aluminoxane may be supplied to the reaction system, or (A) and (B) blue components may be supplied to the reaction system individually. In either case, the blue component There is no particular restriction on the concentration per molar ratio of the components in the polymerization system, but preferably the transition metal concentration is 10-4.
~10-9 sol/1, and the Al/metal atom molar ratio is preferably 100 or more, particularly 1000 or more.

〔発明の効果〕〔Effect of the invention〕

アルミノキサンと組み合わせる新規な遷移金属化合物と
して、2.3及び4B置換シクロペンタジエニル基を2
つ有する遷移金属化合物を用いる本発明の方法のよれば
、後述の実施例及び比較例から明かな通り、従来の触媒
系よりも1.高活性で、しかも高分子量な重合体が得ら
れる。また、これらの新規な遷移金属化合物を2種以上
同時に用いれば、分子量分布を容易に調節することがで
きる。
As a novel transition metal compound in combination with aluminoxane, 2.3- and 4B-substituted cyclopentadienyl groups can be combined with 2.
As is clear from the Examples and Comparative Examples described below, the method of the present invention using a transition metal compound having 1. A highly active and high molecular weight polymer can be obtained. Moreover, if two or more of these novel transition metal compounds are used simultaneously, the molecular weight distribution can be easily controlled.

〔実施例〕〔Example〕

次に、本発明を実施例によって具体的に説明する。 Next, the present invention will be specifically explained using examples.

触媒製造例1 [ビス(1,2,4−トリメチルシクロペンタジェニル
)ジルコニウムジクロリド] 反応はすべて不活性ガス雰囲気下で行った。また1反応
溶媒はあらかじめ乾燥したものを使用した。500■見
ガラス製反応容器中で1.2.4−)リメチルシクロペ
ンタジエン5.5g (51ミリモル)を、テトラヒド
ロフラン150■皇により希釈し、n−ブチルリチウム
/ヘキサンの15%溶液3B膳立を滴下した。室温で1
時間攪拌した後、 1,2.4−)リメチルシクロペン
タジエニルリチウムの白色懸濁液を0℃に冷却し、4塩
化ジルコニウム5.9g (25ミリモル)を5回に分
けて加えた0反応溶液をゆっくり室温にまであげ、48
時間攪拌した。白色沈殿(LiC1)を含む黄色溶液か
ら溶媒を減圧留去後、塩化メチレン300鳳交で抽出、
ろ過をした。黄色ろ過液を濃縮し、ペンタンを加えて、
−30℃に冷却し、4.0gの白色結晶を得た。昇華(
130〜bl mmHg)精製後、3.5g (収率3
B%)の目的物を得た。この化合物の融点は172〜1
73℃であった。
Catalyst Production Example 1 [Bis(1,2,4-trimethylcyclopentadienyl)zirconium dichloride] All reactions were performed under an inert gas atmosphere. In addition, one reaction solvent used was one that had been dried in advance. In a 500 μm glass reaction vessel, 5.5 g (51 mmol) of 1.2.4-)limethylcyclopentadiene was diluted with 150 μg of tetrahydrofuran to prepare a 15% solution of n-butyllithium/hexane in a 3B solution. was dripped. 1 at room temperature
After stirring for an hour, the white suspension of 1,2.4-)limethylcyclopentadienyllithium was cooled to 0°C and 5.9 g (25 mmol) of zirconium tetrachloride was added in five portions. The reaction solution was slowly raised to room temperature and heated to 48
Stir for hours. The solvent was distilled off under reduced pressure from the yellow solution containing the white precipitate (LiC1), and then extracted with methylene chloride 300 ml.
It was filtered. Concentrate the yellow filtrate, add pentane,
It was cooled to -30°C to obtain 4.0 g of white crystals. Sublimation (
130~bl mmHg) After purification, 3.5g (yield 3
B%) of the target product was obtained. The melting point of this compound is 172-1
The temperature was 73°C.

実施例1 [i1合] 充分に窒素置換した内容積1.51のsus製オートク
レーブに精製トルエン450mJL、東洋ストウファー
〇ケミカル■製メチルアルミノキサン(分子1909)
13.3 ミリモルおよび触媒製造lで得られたビス(
1,2,4−トリメチルシクロペンタジェニル)ジルコ
ニウムジクロリド0.02ミリモルを順次添加し、 5
0℃に昇温した0次いで、これにプロピレンを全圧が8
Kg/crn’Gを維持するように連続的に導入し、1
.5時間重合を行った0反応後、メタノールにより触媒
成分を分解し、得られたポリプロピレンを乾燥した。こ
の結果アタクチックポリプロピレン280gが得られた
。触媒活性は95kg/gZr−byであり、分子量は
、 13000 テあった。
Example 1 [11 combination] In a SUS autoclave with an internal volume of 1.51 that was sufficiently purged with nitrogen, 450 mJL of purified toluene and methylaluminoxane (molecule 1909) manufactured by Toyo Stouffer Chemical ■ were added.
13.3 mmol and the bis(
0.02 mmol of 1,2,4-trimethylcyclopentadienyl)zirconium dichloride is sequentially added, and 5
The temperature was raised to 0°C, then propylene was added to it at a total pressure of 8°C.
Continuously introduced so as to maintain Kg/crn'G, 1
.. After 5 hours of polymerization, the catalyst component was decomposed with methanol, and the resulting polypropylene was dried. As a result, 280 g of atactic polypropylene was obtained. The catalyst activity was 95 kg/g Zr-by, and the molecular weight was 13,000 te.

触媒製造例2 [ビス(1,2,3,4−テトラメチルシクロペンタジ
ェニル)ジルコニウムジクロリド] 反応はすべて不活性ガス雰囲気下で行った。また、反応
溶媒はあらかじめ乾燥したものを使用した、 500m
1ガラス製反応容器中で1.2,3.4−テトラメチル
シクロペンタジェン2.5g (20ミリモル)を1.
2−ジメトキシエタン1501 により希釈し、n−ブ
チルリチウム/ヘキサンの15%溶液151を滴下した
。室温で1時間攪拌した後、1,2,3.4−テトラメ
チルシクロペンタジェニルリチウムの白色懸濁液を0℃
に冷却し、4塩化ジルコニウム2.3g(10ミリモル
)を5回に分けて加えた0反応溶液を加熱し、72時間
環流攪拌した。白色沈殿(LiC1)を含む黄色溶液か
ら溶媒を減圧留去後、塩化メチレン3001で抽出、ろ
過をした。黄色ろ液を濃縮し、ペンタンを加えて、−3
0℃に冷却し、0.18gの白色結晶を得た。昇華(1
30〜b 製後、 0.13g  (収率3%)の目的物を得た。
Catalyst Production Example 2 [Bis(1,2,3,4-tetramethylcyclopentadienyl)zirconium dichloride] All reactions were performed under an inert gas atmosphere. In addition, the reaction solvent used was one that had been dried in advance.
1. In a glass reaction vessel, 2.5 g (20 mmol) of 1.2,3.4-tetramethylcyclopentadiene was added in 1.
It was diluted with 1,501 parts of 2-dimethoxyethane, and 151 parts of a 15% solution of n-butyllithium/hexane was added dropwise. After stirring for 1 hour at room temperature, the white suspension of 1,2,3,4-tetramethylcyclopentadienyllithium was heated to 0°C.
The reaction solution to which 2.3 g (10 mmol) of zirconium tetrachloride was added in five portions was heated and stirred under reflux for 72 hours. The solvent was distilled off under reduced pressure from the yellow solution containing the white precipitate (LiC1), followed by extraction with methylene chloride 3001 and filtration. Concentrate the yellow filtrate and add pentane to -3
It was cooled to 0°C to obtain 0.18 g of white crystals. Sublimation (1
After the preparation of 30-b, 0.13 g (yield 3%) of the target product was obtained.

この化合物の融点は270〜271℃であっ、た。The melting point of this compound was 270-271°C.

実施例2 [重合] 充分に窒素置換した内容積1.51のaug製オートク
レーブに精製トルエン4501.東洋ストウファーΦケ
ミカル■製メチルアルミノキサン(分子量909) 8
.3 ミリモルおよび触媒製造例2で得られたビス(1
,2,3,4−テトラメチルシクロペンタジェニル)ジ
ルコニウムジクロリド0.02ミリモルi順次添加し、
50℃に昇温した0次いで、これにプロピレンを全圧が
8 Kg/cm″Gを維持するように連続的に導入し、
2時間重合を行った0反応後、メタノールにより触媒成
分を分解し、得られたポリプロピレンを乾燥した。この
結果アタクチックポリプロピレン280gが得られた。
Example 2 [Polymerization] Purified toluene 4,501.1.ml. Methylaluminoxane manufactured by Toyo Stouffer Φ Chemical ■ (molecular weight 909) 8
.. 3 mmol and bis(1
, 0.02 mmol i of 2,3,4-tetramethylcyclopentadienyl)zirconium dichloride,
The temperature was raised to 50°C, and then propylene was continuously introduced into it so as to maintain a total pressure of 8 kg/cm''G.
After 2 hours of polymerization, the catalyst component was decomposed with methanol, and the resulting polypropylene was dried. As a result, 280 g of atactic polypropylene was obtained.

触媒活性は?1Kg/gZr−by テあり、分子量は
85G(lテあった。
What is the catalyst activity? There was 1Kg/g Zr-byte, and the molecular weight was 85G (lte).

触媒製造例3 [ビス(1,3,−ジメチルシクロペンタジェニル)ジ
ルコニウムジクロリド] 反応はすべて不活性ガス雰囲気下で行った。また、反応
溶媒はあらかじめ乾燥したものを使用した。 500s
jLガラス製反応容器中で1.3.−ジメチルシクロペ
ンタジェン3.4g (38ミリモル)をテトラヒドロ
フラン1501により希釈し、n−ブチルリチウム/へ
午サンの15%溶液241を0℃で滴下した。室温で1
時間攪拌した後、1.3.−ジメチルシクロペンタジェ
ニルリチウムの溶液を0℃に冷却し、4塩化ジルコニウ
ム3.5g(15ミリモル)を5回に分けて加えた0反
応溶液をゆっくり室温にまであげ、48時間攪拌した。
Catalyst Production Example 3 [Bis(1,3,-dimethylcyclopentadienyl)zirconium dichloride] All reactions were performed under an inert gas atmosphere. Moreover, the reaction solvent used was one that had been dried in advance. 500s
1.3 in a jL glass reaction vessel. 3.4 g (38 mmol) of -dimethylcyclopentadiene was diluted with 150 l of tetrahydrofuran, and 241 l of a 15% solution of n-butyllithium/helical chloride was added dropwise at 0°C. 1 at room temperature
After stirring for an hour, 1.3. A solution of -dimethylcyclopentadienyllithium was cooled to 0°C, and 3.5 g (15 mmol) of zirconium tetrachloride was added in 5 portions to the 0 reaction solution, which was slowly warmed to room temperature and stirred for 48 hours.

白色沈殿(LiC1)を含む黄色溶液から溶媒を減圧留
去後、塩化メチレン3001で抽出、ろ過をした。黄色
ろ液を濃縮し、ペンタンを加えて、−30℃に冷却し、
1.7gの白色結晶を得た。昇華(130〜140℃7
1 smHg)精製後、1.1g (収率22%)の目
的物を得た。この化合物の融点は175〜17B ’0
であった。
The solvent was distilled off under reduced pressure from the yellow solution containing the white precipitate (LiC1), followed by extraction with methylene chloride 3001 and filtration. Concentrate the yellow filtrate, add pentane, cool to -30°C,
1.7 g of white crystals were obtained. Sublimation (130-140℃7
After purification (1 smHg), 1.1 g (yield 22%) of the target product was obtained. The melting point of this compound is 175-17B'0
Met.

実施例3 [重合] 充分に窒素置換した内容積1.51のsua製オートク
レーブに精製トルエン450m1 、東洋ストウファー
・ケミカル■製メチルアルミノキサン(分子量1110
1) 8.3ミリモル触媒製造例3およびビス(1,3
,−ジメチルシクロペンタジェニル)ジル、コニウムジ
クロリド0.02ミリモルを順次添加し。
Example 3 [Polymerization] In a SUA autoclave with an internal volume of 1.51 which was sufficiently purged with nitrogen, 450 ml of purified toluene and methylaluminoxane (molecular weight 1110, manufactured by Toyo Stouffer Chemical) were added.
1) 8.3 mmol Catalyst Preparation Example 3 and bis(1,3
, -dimethylcyclopentadienyl)dyl, and 0.02 mmol of conium dichloride were added sequentially.

50℃に昇温した0次いで、これにプロピレンを全圧が
8Kg/crn”Gを維持するように連続的に導入し、
4時間重合を行った0反応後、メタノールにより触媒成
分を分解し、得られたポリプロピレンを乾燥した。この
結果アククチツクポリプロビレy 450gが得られた
。触媒活性は81Kg/gZr−hrであり1分子量は
5oooであった。
The temperature was raised to 50°C, and then propylene was continuously introduced into it so that the total pressure was maintained at 8 kg/crn''G.
After 4 hours of polymerization, the catalyst component was decomposed with methanol, and the resulting polypropylene was dried. As a result, 450 g of active polypropylene was obtained. The catalyst activity was 81 Kg/gZr-hr and the molecular weight was 5 ooo.

比較例1 充分に窒素置換した内容積1.51のjus製オートク
レーブに精製トルエン450g+1 、東洋ストウファ
ーΦケミカル■製メチルアルミノキサン(分子l 90
9) 8.3 ミリモルおよびビス(シクロペンタジェ
ニル)ジ、ルコニウムジクロリド0.02ミリモルを順
次添加し、50℃に昇温した0次いで、これにプロピレ
ンを全圧が8 Kg/crrI″Gを維持するように連
続的に導入し、4時間重合を行った0反応後、メタノー
ルにより触媒成分を分解し、得られたポリプロピレンを
乾燥した。この結果アタクチックポリプロピレン150
gが得られた。触媒活性は20Kg/gZr−hrであ
り、分子量は1300テあった。
Comparative Example 1 450g+1 of purified toluene was placed in a jus autoclave with an internal volume of 1.51 which was sufficiently purged with nitrogen, and methylaluminoxane (molecular weight 90) manufactured by Toyo Stouffer Φ Chemical
9) 8.3 mmol and 0.02 mmol of bis(cyclopentadienyl) di,ruconium dichloride were sequentially added, and the temperature was raised to 50°C. Next, propylene was added to the mixture at a total pressure of 8 Kg/crrI″G. After 4 hours of polymerization, the catalyst component was decomposed with methanol and the resulting polypropylene was dried.As a result, atactic polypropylene 150
g was obtained. The catalyst activity was 20 Kg/g Zr-hr, and the molecular weight was 1300 Te.

比較例2 充分に窒素置換した内容!at、stのsus製オート
クレープに精製トルエン450m1 、東洋ストウファ
ー・ケミカル舗装メチルアルミノキサン(分子量909
) 8.3 ミリモルおよびビス(ペンタメチルシクロ
ペンタジェニル)ジルコニウムジクロリド0.02ミリ
モルを順次添加し、50℃に昇温した。
Comparative Example 2 Contents of sufficient nitrogen replacement! 450ml of purified toluene, Toyo Stouffer Chemical Paving Methylaluminoxane (molecular weight 909
) 8.3 mmol and 0.02 mmol of bis(pentamethylcyclopentadienyl)zirconium dichloride were sequentially added, and the temperature was raised to 50°C.

次いで、これにプ、ロピレンを全圧が8 Kg/am″
Gを維持するように連続的に導入し、4時間重合を行っ
た0反応後、メタノールにより触媒成分を分解し、得ら
れたポリプロピレンを乾燥した。この結果アタクチック
ポリプロピレン210gが得られた。触媒活性は28K
g/gZr−hrであり、分子量は300であった。
Next, propylene was added to this at a total pressure of 8 Kg/am''
After 0 reaction in which G was continuously introduced so as to maintain it and polymerization was carried out for 4 hours, the catalyst component was decomposed with methanol, and the obtained polypropylene was dried. As a result, 210 g of atactic polypropylene was obtained. Catalyst activity is 28K
g/gZr-hr, and the molecular weight was 300.

比較例3 充分に窒素置換した内容積1.51のsus製オートク
レーブに精製トルエン450m1 、東洋ストウファー
・ケミカル■製メチルアルミノキサン(分子量909)
 8.3 ミリモルおよびビス(メチルシクロペンタジ
ェニル)ジルコニウムジクロリド0.02ミリモルを順
次添加し、50℃に昇温した0次いで、これにプロピレ
ンを全圧が8Kg/cnfGを維持するように連続的に
導入し、4時間重合を行った0反応後、メタノールによ
り触媒成分を分解し、得られたポリプロピレンを乾燥し
た。この結果アタクチックポリプロピレン220gが得
られた。
Comparative Example 3 450 ml of purified toluene was placed in a SUS autoclave with an internal volume of 1.51 that was sufficiently purged with nitrogen, and methylaluminoxane (molecular weight 909) manufactured by Toyo Stouffer Chemical ■ was added.
8.3 mmol and 0.02 mmol of bis(methylcyclopentagenyl)zirconium dichloride were added sequentially, and the temperature was raised to 50°C. Next, propylene was added continuously to this so that the total pressure was maintained at 8 Kg/cnfG. After 0 reaction in which polymerization was carried out for 4 hours, the catalyst component was decomposed with methanol, and the obtained polypropylene was dried. As a result, 220 g of atactic polypropylene was obtained.

触媒活性は30Kg/gZr−hrであり、分子量は8
00テあった。
Catalytic activity is 30Kg/gZr-hr, molecular weight is 8
There was 00 te.

比較例4 充分に窒素置換した内容積1.51のsus製オートク
レーブに精製トルエン450m1 、東洋ストウファー
・ケミカル■製メチルアルミノキサン(分子量90θ)
8.3 ミリモルおよびビス(t−ブチルシクロペンタ
ジェニル)ジルコニウムジクロリド0.02ミリモルを
順次添加し、50℃に昇温した0次いで、これにプロピ
レンを全圧が8Kg/crn”Gを維持するように連続
的に導入し、4時間重合を行った0反応後、メタノール
により触媒成分を分解し、得られたポリプロピレンを乾
燥した。この結果アタクチックポリプロピレン1110
gが得られた。
Comparative Example 4 450 ml of purified toluene was placed in a SUS autoclave with an internal volume of 1.51 that was sufficiently purged with nitrogen, and methylaluminoxane (molecular weight 90θ) manufactured by Toyo Stouffer Chemical ■ was added.
8.3 mmol and 0.02 mmol of bis(t-butylcyclopentagenyl)zirconium dichloride were sequentially added, and the temperature was raised to 50°C. Next, propylene was added to this while maintaining the total pressure of 8 Kg/crn"G. After 0 reaction in which polymerization was carried out for 4 hours, the catalyst component was decomposed with methanol and the obtained polypropylene was dried.As a result, atactic polypropylene 1110
g was obtained.

触媒活性は22Kg/gZr−hr テあり、分子量は
500テあった。
The catalyst activity was 22Kg/gZr-hr, and the molecular weight was 500T.

触媒製造例4 [ビス(1,2,−ジメチルシクロペンタジェニル)ジ
ルコニウムジクロリド] 反応はすべて不活性ガス雰囲気下で行った。また、反応
溶媒はあらかじめ乾燥したものを使用した。500腸見
ガラス製反応容器中に1,2I−ジメチルシクロペンタ
ジェン2.0g (21ミリモル)をテトラヒドロフラ
ン1501により希釈し、n−ブチルリチウム/ヘキサ
ンの15%溶液181を0℃で滴下した。室温で1時間
攪拌した後、 1,2.−ジメチルシクロペンタジェニ
ルリチウムの白色懸濁溶液を0℃に冷却し、4塩化ジル
コニウム2.4g(10ミリモル)を5回に分けて加え
た0反応溶液をゆつ、くり室温にまであげ、12時間攪
拌した。白色沈殿(LiC1)を含む黄色溶液から溶媒
を減圧留去した後、生成物を昇華(taO〜140℃7
1■−1g)精製し、白色結晶の目的物0.25g  
(収率7%)を得た。この化合物の融点は252〜25
4℃であった。
Catalyst Production Example 4 [Bis(1,2,-dimethylcyclopentadienyl)zirconium dichloride] All reactions were performed under an inert gas atmosphere. Moreover, the reaction solvent used was one that had been dried in advance. 2.0 g (21 mmol) of 1,2I-dimethylcyclopentadiene was diluted with 150 ml of tetrahydrofuran in a reaction vessel made of 500 mm glass, and 181 15% n-butyllithium/hexane solution was added dropwise at 0°C. After stirring at room temperature for 1 hour, 1,2. - A white suspension solution of dimethylcyclopentadienyllithium was cooled to 0°C, and 0 reaction solution to which 2.4 g (10 mmol) of zirconium tetrachloride was added in 5 portions was slowly raised to room temperature. Stirred for 12 hours. After the solvent was distilled off under reduced pressure from the yellow solution containing the white precipitate (LiC1), the product was sublimed (taO ~ 140 ° C. 7
1■-1g) Purified white crystal target product 0.25g
(yield 7%). The melting point of this compound is 252-25
The temperature was 4°C.

実施例4 [舌^] 充分に窒素置換した内容積1.51のsus製オートク
レーブに精製トルエン450m1 、東洋ストウファー
〇ケミカル■製メチルアルミノキサン(分子i 909
) 8.3 ミリモル触媒製造例4で得られたビス(1
,2,−ジメチルシクロペンタジェニル)ジルコニウム
ジクロリド0.02ミリモルを順次添加し、50℃に昇
温した0次いで、これにプロピレンを全圧が8Kg/a
m”Gを維持するように連続的に導入し、4時間重合を
行った0反応後、メタノールにより触媒を分解し、得ら
れたポリプロピレンを乾燥した。この結果アタクチック
ポリプロピレン300gが得られた。触媒活性は41K
g/gZr−hrであり、分子量は300Gであった。
Example 4 [Tongue^] 450 ml of purified toluene was placed in a SUS autoclave with an internal volume of 1.51 that was sufficiently purged with nitrogen, and methylaluminoxane (Molecular I 909 manufactured by Toyo Stouffer Chemical ■) was added.
) 8.3 mmol Bis(1
,2,-dimethylcyclopentagenyl) zirconium dichloride was added in sequence, and the temperature was raised to 50°C.Next, propylene was added to this at a total pressure of 8 kg/a.
After the zero reaction in which polymerization was carried out for 4 hours by continuously introducing m''G so as to maintain it, the catalyst was decomposed with methanol and the obtained polypropylene was dried. As a result, 300 g of atactic polypropylene was obtained. Catalytic activity is 41K
g/gZr-hr, and the molecular weight was 300G.

触媒製造例5 [ビス(1,2,3−)ジメチルシクロペンタジェニル
)ジルコニウムジクロリド] 反応はすべて不活性ガス雰囲気下で行った。また、反応
溶媒はあらかじめ乾燥したものを使用した。 5001
1fLガラス製反応容器中L 1,2.3− )ジメチ
ルシクロペンタジェン3.5g (32ミリモル)をテ
トラヒドロフラン150m1により希釈し、n−ブチル
リチウム/ヘキサンの15%溶液251を滴下した。室
温で1時間攪拌した後、 1,2.3−トリメチルシク
ロペンタジェニルリチウムの白色懸濁液を0℃に冷却し
、4塩化ジルコニウム3.7g(16ミリモル)を5回
に分けて加えた0反応溶液をゆっくり室温にまであげ、
3時間攪拌した。白色沈殿(LiC1)を含む黄色溶液
から溶媒を減圧留去した後、生成物を昇華(130〜b 晶の目的物0.88g  (収率11%)を得た。この
化合物の融点は252〜253℃であった。
Catalyst Production Example 5 [Bis(1,2,3-)dimethylcyclopentadienyl)zirconium dichloride] All reactions were performed under an inert gas atmosphere. Moreover, the reaction solvent used was one that had been dried in advance. 5001
In a 1 fL glass reaction vessel, 3.5 g (32 mmol) of L 1,2.3- )dimethylcyclopentadiene was diluted with 150 ml of tetrahydrofuran, and 251 ml of a 15% n-butyllithium/hexane solution was added dropwise. After stirring for 1 hour at room temperature, the white suspension of 1,2,3-trimethylcyclopentadienyllithium was cooled to 0 °C and 3.7 g (16 mmol) of zirconium tetrachloride was added in 5 portions. 0 reaction solution was slowly raised to room temperature,
Stirred for 3 hours. After distilling the solvent off under reduced pressure from the yellow solution containing the white precipitate (LiC1), the product was sublimed (0.88 g (yield 11%) of the target product as crystal 130-b was obtained. The melting point of this compound was 252- The temperature was 253°C.

実施例5 [重合] 充分に窒素置換した内容積1.51のsus製オートク
レーブに精製トルエン450m11.東洋ストウファ−
・ケミカル■製メチルアルミノキサン(分子量909)
 lli、3 ミリモルおよび触媒製造例5で得られた
ビス(1,2,3−トリメチルシクロペンタジェニル)
ジルコニウムジクロリド0゜02ミリモルを順次添加し
、50℃に昇温した1次いで、これにプロピレンを全圧
が8 Kg/cm″Gを維持するように連続的に導入し
、4時間重合を行った0反応後、メタノールにより触媒
成分を分解し、得られたポリプロピレンを乾燥した。こ
の結果アタクチックポリプロピレン180.が得られた
。触媒活性は25Kg/gZr−hrであり1分子量は
5800であった。
Example 5 [Polymerization] 450 ml of purified toluene was placed in a SUS autoclave with an internal volume of 1.51 which was sufficiently purged with nitrogen. Toyo Stouffer
・Methylaluminoxane manufactured by Chemical■ (molecular weight 909)
lli, 3 mmol and bis(1,2,3-trimethylcyclopentagenyl) obtained in Catalyst Production Example 5
0.02 mmol of zirconium dichloride was sequentially added and the temperature was raised to 50°C.Next, propylene was continuously introduced into the mixture so as to maintain a total pressure of 8 Kg/cm''G, and polymerization was carried out for 4 hours. After the reaction, the catalyst component was decomposed with methanol and the obtained polypropylene was dried.As a result, atactic polypropylene 180.

実施例6 [重合] 充分に窒素置換した内容積1.51のsus製オートク
レーブに精製トルエン450m1 、東洋ストウファー
・ケミカル−製メチルアルミノキサン(分子l 909
) 1.5 ミリモルおよび触媒製造例5で得られたビ
ス(1,2,3−)リメチルシクロペンタジエニル)ジ
ルコニウムジクロリド0.002ミリモルを順次添加し
、50℃に昇温した0次いで、これにエチレンを全圧が
4 Kg/am″Gを維持するように連続的に導入し、
2時間重合を行った0反応後、メタノ・−ルにより触媒
成分を分解し、得られたポリエチレンを乾燥した。この
結果ポリエチレン30gが得られた。触媒活性は82K
g/gZr−hrであり1分子量は177000であっ
た。
Example 6 [Polymerization] In a SUS autoclave with an internal volume of 1.51 which was sufficiently purged with nitrogen, 450 ml of purified toluene and methylaluminoxane (molecular weight 909, manufactured by Toyo Stouffer Chemical) were added.
) 1.5 mmol and 0.002 mmol of bis(1,2,3-)limethylcyclopentadienyl)zirconium dichloride obtained in Catalyst Production Example 5 were sequentially added, and the temperature was raised to 50°C. Ethylene was continuously introduced into this so that the total pressure was maintained at 4 Kg/am''G,
After 2 hours of polymerization, the catalyst component was decomposed with methanol and the resulting polyethylene was dried. As a result, 30 g of polyethylene was obtained. Catalytic activity is 82K
g/gZr-hr, and the molecular weight was 177,000.

比較例5 [重合] 充分に窒素置換した内容積1.51のsua製オートク
レーブに精製トルエン450m1 、東洋ストウファー
・ケミカル■製メチルアルミノキサン(分子量909)
  2.0ミリモルおよびビス(ペンタメチルシクロペ
ンタジェニル)ジルコニウムジクロリド0.003ミリ
モルを順次添加し、50℃に昇温した0次いで、これに
エチレンを全圧が4Kg/cm”Gを維持するように連
続的に導入し、2時間重合を行った0反応後、メタノー
ルにより触媒成分を分解し、得られたポリエチレンを乾
燥した。この結果ポリエチレン18gが得られた。触媒
活性は32Kg/gZr−hr テあり、分子量は70
000であった。
Comparative Example 5 [Polymerization] 450 ml of purified toluene was placed in a SUA autoclave with an internal volume of 1.51 that was sufficiently purged with nitrogen, and methylaluminoxane (molecular weight 909) manufactured by Toyo Stouffer Chemical ■ was added.
2.0 mmol and 0.003 mmol of bis(pentamethylcyclopentagenyl)zirconium dichloride were sequentially added, and the temperature was raised to 50°C.Next, ethylene was added to this so as to maintain a total pressure of 4 kg/cm"G. After 0 reaction, the catalyst components were decomposed with methanol and the resulting polyethylene was dried. As a result, 18 g of polyethylene was obtained. The catalyst activity was 32 Kg/g Zr-hr. With Te, molecular weight is 70
It was 000.

以   上that's all

Claims (4)

【特許請求の範囲】[Claims] (1)(A)遷移金属化合物、及び (B)一般式[ I ]または一般式[II] ▲数式、化学式、表等があります▼[ I ] ▲数式、化学式、表等があります▼[II] (たゞし、mは4〜20の数で、R^1は炭化水素基を
示す)で表されるアルミノキサンを成分をする触媒を用
いてオレフィンを重合し、ポリオレフィンを製造する方
法において、 (A)遷移金属化合物として、一般式[III](R^2
_n−C_5H_5_−_n)_2MX_2[III](
但し、R^2_n−C_5H_5_−_nは置換シクロ
ペンタジエニル基を示し、nは2〜4の整数、R^2は
炭素原子数1〜5のアルキル基、Mはチタン、ジルコニ
ウム、バナジウムまたはハフニウムを示す。また、Xは
ハロゲン原子を示す) で表される化合物を用いることを特徴とするポリオレフ
ィンの製造方法。
(1) (A) Transition metal compound, and (B) General formula [I] or general formula [II] ▲There are mathematical formulas, chemical formulas, tables, etc.▼[I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼[II] ] (where m is a number from 4 to 20 and R^1 represents a hydrocarbon group) In a method for producing a polyolefin by polymerizing an olefin using a catalyst containing aluminoxane as a component, (A) As a transition metal compound, the general formula [III] (R^2
_n-C_5H_5_-_n)_2MX_2[III](
However, R^2_n-C_5H_5_-_n represents a substituted cyclopentadienyl group, n is an integer of 2 to 4, R^2 is an alkyl group having 1 to 5 carbon atoms, and M is titanium, zirconium, vanadium or hafnium. shows. Moreover, X represents a halogen atom) A method for producing a polyolefin, characterized by using a compound represented by:
(2)(A)遷移金属化合物が、2置換シクロペンタジ
エニル基を、2つ有する化合物である特許請求の範囲第
(1)項記載の方法。
(2) The method according to claim (1), wherein the transition metal compound (A) is a compound having two disubstituted cyclopentadienyl groups.
(3)(A)遷移金属化合物が、3置換シクロペンタジ
エニル基を、2つ有する化合物である特許請求の範囲第
(1)項記載の方法。
(3) The method according to claim (1), wherein the transition metal compound (A) is a compound having two trisubstituted cyclopentadienyl groups.
(4)(A)遷移金属化合物が、4置換シクロペンタジ
エニル基を、2つ有する化合物である特許請求の範囲第
(1)項記載の方法。
(4) The method according to claim (1), wherein the transition metal compound (A) is a compound having two 4-substituted cyclopentadienyl groups.
JP62068630A 1987-03-10 1987-03-23 Method for producing polyolefin Expired - Lifetime JPH0794500B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62068630A JPH0794500B2 (en) 1987-03-23 1987-03-23 Method for producing polyolefin
US07/158,924 US4874880A (en) 1987-03-10 1988-02-22 Bis(di-, tri- or tetra-substituted-cyclopentadienyl)-zirconium dihalides
DE3853692T DE3853692T2 (en) 1987-03-10 1988-02-23 Bis (di, tri or tetra substituted cyclopentadienyl) zirconium dihalides.
EP88102620A EP0283739B2 (en) 1987-03-10 1988-02-23 Bis (di-, tri- or tetra-substituted-cyclopentadienyl)-zirconium dihalides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068630A JPH0794500B2 (en) 1987-03-23 1987-03-23 Method for producing polyolefin

Publications (2)

Publication Number Publication Date
JPS63234005A true JPS63234005A (en) 1988-09-29
JPH0794500B2 JPH0794500B2 (en) 1995-10-11

Family

ID=13379251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068630A Expired - Lifetime JPH0794500B2 (en) 1987-03-10 1987-03-23 Method for producing polyolefin

Country Status (1)

Country Link
JP (1) JPH0794500B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235309A (en) * 1987-03-25 1988-09-30 Chisso Corp Catalyst for preparation of polyolefin
US5331071A (en) * 1991-11-12 1994-07-19 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins
EP0694563A1 (en) 1994-07-26 1996-01-31 Nippon Oil Company, Limited Olefin polymerization catalyst and process for preparing polyolefins
US5556821A (en) * 1993-07-22 1996-09-17 Nippon Oil Company, Limited Catalyst component for the polymerization of olefins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035007A (en) * 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Method and catalyst for controlling polyolefin density and molecular weight

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035007A (en) * 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Method and catalyst for controlling polyolefin density and molecular weight

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235309A (en) * 1987-03-25 1988-09-30 Chisso Corp Catalyst for preparation of polyolefin
US5331071A (en) * 1991-11-12 1994-07-19 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins
US5625014A (en) * 1991-11-12 1997-04-29 Nippon Oil Co., Ltd. Method for polymerization of olefins
US5677401A (en) * 1991-11-12 1997-10-14 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins
US5707914A (en) * 1991-11-12 1998-01-13 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins
US5556821A (en) * 1993-07-22 1996-09-17 Nippon Oil Company, Limited Catalyst component for the polymerization of olefins
EP0694563A1 (en) 1994-07-26 1996-01-31 Nippon Oil Company, Limited Olefin polymerization catalyst and process for preparing polyolefins

Also Published As

Publication number Publication date
JPH0794500B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US4874880A (en) Bis(di-, tri- or tetra-substituted-cyclopentadienyl)-zirconium dihalides
US4931417A (en) Transition-metal compound having a bis-substituted-cyclopentadienyl ligand of bridged structure
EP0529908B2 (en) Catalyst useful for the polymerization of olefin
US6197902B1 (en) Syndio-isoblock polymer and process for its preparation
EP1283223B1 (en) Use of a mixture of two metallocene regioisomers as catalyst component for preparing bimodal isotactic polyolefins
RU2007213C1 (en) Catalyst for propylene polymerization
JPH0374410A (en) Aluminoxane composition, production thereof and production of olefin-based polymer using the same composition
JP2668732B2 (en) Catalyst for olefin polymer production
JPS63234005A (en) Production of polyolefin
JP2668733B2 (en) Catalyst for polyolefin production
JPH05202124A (en) Production of olefin polymer
US6579822B2 (en) Polyolefin production
JPH0276887A (en) Zirconium compound having bis substituted cyclopentadienyl ligand of bridged structure
JPH0559077A (en) New transition metal compound
WO1999045014A1 (en) Metallocene compounds having bis(2,5-disubstituted-3-phenylcyclopentadienyl) ligand and process for producing the same
JPH01319489A (en) Hafnium compound having bis-substituted cyclopentadienyl ligand of crosslinked structure
JPS63235309A (en) Catalyst for preparation of polyolefin
JP4576126B2 (en) Azaborolyl group 4 metal complex, catalyst and olefin polymerization method
JPH0662642B2 (en) Bis (2-substituted cyclopentadienyl) zirconium dihalide
JPH05112611A (en) Production of polyolefin
JPS63222178A (en) Bis(trisubstituted cyclopentadienyl)zirconium dihalide
JPH0662644B2 (en) Bis (4-substituted cyclopentadienyl) zirconium dihalide
JPH05155923A (en) Catalyst for polymerization of olefin and polymerization of olefin
JPH0649121A (en) Olefin polymerization catalyst and method of polymerizing olefin
JPS61211307A (en) Polymerization of olefin