JPS6323378A - Battery-driven emergency light using light emitting diode - Google Patents
Battery-driven emergency light using light emitting diodeInfo
- Publication number
- JPS6323378A JPS6323378A JP62160735A JP16073587A JPS6323378A JP S6323378 A JPS6323378 A JP S6323378A JP 62160735 A JP62160735 A JP 62160735A JP 16073587 A JP16073587 A JP 16073587A JP S6323378 A JPS6323378 A JP S6323378A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- light
- emitting diode
- resin
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005989 resin Polymers 0.000 claims abstract description 4
- 239000011347 resin Substances 0.000 claims abstract description 4
- 239000011810 insulating material Substances 0.000 claims 1
- 238000004943 liquid phase epitaxy Methods 0.000 claims 1
- 239000003822 epoxy resin Substances 0.000 abstract description 2
- 229920000647 polyepoxide Polymers 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000002109 crystal growth method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101100311458 Lytechinus variegatus SUM-1 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は非常灯に関し、特に蒸気圧制ta11温度差液
相成長法により製作した発光ダイオードを用いた電池駆
動非常灯に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an emergency light, and more particularly to a battery-powered emergency light using a light emitting diode fabricated by vapor pressure controlled TA11 temperature difference liquid phase growth method.
従来の非常灯装置は白熱電球を発光体とじて用い、着色
ガラス等の色フィルターを用いて所望の波長光のみを取
り出していた。白熱電球の光変換ダJ ”Pが低いこと
はよく知られている事実であり、1つ目的とする波長の
光が白熱電球の放射する尤の波長の1部のみを使用して
いるものである為、従来の非常灯の実効電力効率は非常
に低いものでしかなかった。白熱電球は熱放射を用いた
発光体である為、乾電池等使用で電圧低下に伴い、発光
体の温度が低下し、発光強度が敏感に低下してしまう。Conventional emergency lighting devices use incandescent light bulbs as light emitters, and use colored filters such as colored glass to extract only the desired wavelength of light. It is a well-known fact that incandescent light bulbs have a low light conversion coefficient (J'P), and the light of one desired wavelength uses only a fraction of the wavelengths that are likely to be emitted by incandescent light bulbs. Therefore, the effective power efficiency of conventional emergency lights was very low.Since incandescent light bulbs are light emitters that use heat radiation, the temperature of the light emitter decreases as the voltage decreases due to the use of dry batteries, etc. However, the luminescence intensity decreases sensitively.
マンガン電it!!SUM−12測置列使用で、電球連
続使用での持続時間は高々10数時間程度である。従っ
て長期の非常災害、遭難時における異常事態の報知には
著しく不適であった。路上、山あるいは而等での遭難時
には1日しか寿命のない従来型非常灯では全く用をなさ
ないことになる。Manganese electric it! ! When using the SUM-12 station array, the duration of continuous use of the bulb is about 10-odd hours at most. Therefore, it was extremely unsuitable for reporting abnormal situations during long-term disasters and distress. In the event of a disaster on the road, in the mountains, or somewhere else, conventional emergency lights, which have a lifespan of only one day, are completely useless.
木iそ明の目的は、蒸気圧制御11I温度差液相成艮法
という画期的な結晶成長法によって作られた従来の徐冷
法による液相成長法では考えられなかった効率、高輝度
の発光ダイオードを用いて無効電力が少なくて、長時間
使用することが可能な電池駆動の非常fr1装置を提供
するものである。蒸気圧ル制御温度差液相成長法につい
ては、特許第857545号「連続液相成長による半導
体デバイスの製造方法及び製造装胃」に示されている方
法を用いると、GaA4As発光ダイオードは、赤色領
域の6650Aで、30000ft−L (20m A
>という従来の結晶成長方法では全く考えられなかった
非常に高輝度のものが得られている。この成長方法によ
り作られた発光ダイオードを用いることにより消¥’1
ffi力は10分の1以下、発光体のR命は100倍以
上、持続時間が10倍以上で、且つ高輝度のものを容易
に実現できる。The purpose of Kii Somei is to produce light with efficiency and high brightness that was unimaginable with the conventional slow cooling liquid phase growth method, which was created using an innovative crystal growth method called vapor pressure controlled 11I temperature difference liquid phase growth method. The present invention provides a battery-powered emergency FR1 device that uses diodes and consumes little reactive power and can be used for a long time. Regarding the vapor pressure controlled temperature difference liquid phase growth method, when the method shown in Patent No. 857545 "Method and manufacturing apparatus for manufacturing semiconductor devices by continuous liquid phase growth" is used, GaA4As light emitting diodes can be grown in the red region. 6650A, 30000ft-L (20m A
>, which was completely unimaginable using conventional crystal growth methods, was obtained. By using light emitting diodes made using this growth method, ¥1
The ffi power is less than 1/10, the R life of the light emitter is more than 100 times more, the duration is more than 10 times more, and high brightness can be easily realized.
発光ダイオードは使用づる半導体固有の発光波長を有し
、発光はキャリアの消失によっているため発光強度は順
方向電流にほぼ比例する性質を有する。発光ダイオード
の電力効率は近年著しく向上し白熱電球の発光効率を大
ぎく上田るようになった。さらに有色表示用としては無
駄な波長の光を放射しない為、実効効率はさらに高くな
る。A light emitting diode has an emission wavelength specific to the semiconductor used, and since light emission is caused by the disappearance of carriers, the emission intensity has a property that it is approximately proportional to the forward current. The power efficiency of light-emitting diodes has improved significantly in recent years, greatly surpassing the luminous efficiency of incandescent light bulbs. Furthermore, since no unnecessary wavelength light is emitted for colored display, the effective efficiency is further increased.
構成例を従来のものと比較しながら詳細に説明する。A configuration example will be explained in detail while comparing it with a conventional one.
第1図は従来の非常灯のごく一般に用いられているもの
の断面図である。電球(1)、着色ガラス等の色フイル
タ−(2)、反射&1(3)、乾電池(4)、スイッチ
(5)から成り、乾電池から供給される電流はスイッチ
を介して電球に供給され、着色ガラス等を通し、外部に
着色光を放射づる。FIG. 1 is a sectional view of a commonly used conventional emergency light. It consists of a light bulb (1), a color filter (2) such as colored glass, a reflective &1 (3), a dry battery (4), and a switch (5).The current supplied from the dry battery is supplied to the light bulb via the switch. Emit colored light to the outside through colored glass, etc.
本発明では従来の発光体電球にかわり、低電力消費、且
つ高輝度の発光ダイオードを使用する。The present invention uses low power consumption and high brightness light emitting diodes instead of conventional light emitter bulbs.
第2図に本発明の一実施例を示す。発光ダイオードはで
きるだけ高い発光層を有し、構成が簡単で製造価格が低
いことが望ましい。通常の白熱豆電球の口金部(51)
から1本の陰極線と2本の陽極線を引出し、1つのnf
r4域52の両面1.:2)(7)p領1M(53)、
(53)ヲ1けた発光ダイオードの2つの陽極と1つの
陰極へ結線し、全体をエポキシ樹脂等(54)でレジン
モールドし、円錐状のレジンモールド(54)の側面に
反!)18!(55)を設けである。反射iff (5
5)は、凹面型あるいは、放物面型のものを用い、発光
ダイオードの各層(52)、(53)、(53)はこの
反!)′l鏡のほぼ中心またはほぼ焦点付近に置かれ、
光の投射角度を制御し、接合面に平行な発光も垂直な発
光も有効に利用する。レジンモールド前面の形状で投射
角度をさらに調整することもできる。FIG. 2 shows an embodiment of the present invention. It is desirable that the light emitting diode has a light emitting layer as high as possible, is simple in construction, and has a low manufacturing cost. Ordinary incandescent miniature light bulb base (51)
One cathode ray and two anode rays are drawn from , one nf
Both sides of r4 area 52 1. :2) (7) p region 1M (53),
(53) Connect the two anodes and one cathode of a single-digit light emitting diode, mold the whole thing with epoxy resin (54), and wrap it around the side of the conical resin mold (54)! )18! (55) is provided. reflection iff (5
5) uses a concave or parabolic type, and each layer (52), (53), (53) of the light emitting diode is the opposite of this! )'l placed approximately at the center or approximately at the focal point of the mirror,
The projection angle of light is controlled to effectively utilize both light emission parallel to and perpendicular to the joint surface. The projection angle can also be further adjusted by changing the shape of the front surface of the resin mold.
従来の赤色発光ダイオードは、例えば、Gao7△J?
−o、3 A Sの場合、Ga As 基板上に、p−
n接合を形成している。この場合、発光は、p−n接合
界面で等方向に起こるためGaAsCJ板方向に出た光
は、基板に吸収されて、約半分の発光は使用できないと
いう状態にあった。そのため、基板をすべて取り除いた
形の構造などが考えられていた。本発明では、p−n接
合を2個逆向きに貼り合せた構造のD −n−f1構造
を持っており、単純に考えて光は単一p−n接合の2倍
の光が取り出せる。表裏両面から光が出ること又、へき
凹面からの光を有効に使える利点があり、単一p−n接
合の場合にくらべ、発光量を多くとれる。A conventional red light emitting diode is, for example, Gao7△J?
-o, 3As, p-
It forms an n-junction. In this case, since light emission occurs equidirectionally at the p-n junction interface, the light emitted toward the GaAs CJ plate is absorbed by the substrate, making about half of the light emission unusable. Therefore, a structure in which the substrate was completely removed was considered. The present invention has a D-n-f1 structure in which two p-n junctions are bonded in opposite directions, and in simple terms, twice as much light can be extracted as that of a single p-n junction. It has the advantage that light is emitted from both the front and back surfaces, and that light from the concave surface can be used effectively, and the amount of light emitted can be increased compared to the case of a single pn junction.
本発明の構造は、従来の豆電球と同じ規格のネジ込み部
及びソケット部を備えており従来の灯器への使用も可能
である。又、口金部(51)と反射gfl < 55
>の一体成形が可能であり、生産コス1−を大幅に減少
させることができる。The structure of the present invention has a screw-in part and a socket part of the same standard as a conventional small light bulb, and can be used in a conventional light bulb. Also, the cap part (51) and the reflection gfl < 55
> can be integrally molded, and production cost 1- can be significantly reduced.
)を電源とし、スイッチ(10)、過電流防止に電流制
限回路(12>、発光体として発光ダイオード(13)
を用いる。この発光ダイオード(13)は、第2図に示
した構造のものである。乾電池(11〉はマンガン電池
(公称定格゛重圧1.5Vのもの)を2個直列使用する
。電流山す限回路(12)は、電界ダJ果1〜ランジス
タ(FET) 、ツェナダイオード等によって、べ−ス
・エミッタバイアスを制御したバイポーラトランジスタ
等従来公知のもので構成される。) as a power source, a switch (10), a current limiting circuit (12) to prevent overcurrent, and a light emitting diode (13) as a light emitter.
Use. This light emitting diode (13) has the structure shown in FIG. The dry batteries (11) use two manganese batteries (nominal rating: pressure 1.5V) in series.The current peak limiter circuit (12) uses an electric field resistor (FET), Zener diode, etc. , a bipolar transistor with controlled base-emitter bias, and other conventionally known transistors.
バイアス用の抵抗の1直を可変にする等でバイアス電圧
を可変にすれば、電流制限回路をボタン1つで操作する
ことにより発光強度の調整が容易に行なえる。発光ダイ
オードは使用する半導体固有の立ち上り電圧があり、こ
れ以下では発光しない。赤色発光ダイオード点燈にはG
aASO,7P O,3の場合は約1.6■、G a
o、’y A 、f2..3ASでは約1,7V以上必
要で、Ga P緑色発光ダイオードの場合は約2.20
V以上必要である。立ち上り電圧以上になるとo、iv
の変化でも大きな電流の変化が生じてしまい、過電流と
なる。故に、電流制限回路(12)が必要となる。発光
体(13)は、赤色発光ダイオードでG aA So、
7 P o、3、またはG a O,7A l o3△
Sである。従来の白色電球では点燈時には数百mAの電
流が流れていたのに対し、数100μAでも充分使用可
能な発光を供するものも製品化された。乾電池で、発光
ダイオードを駆動する場合は使用フる半導体の立ち上り
電圧と使用側故による電源電圧との適合を考えなければ
ならない。ずなわち発光ダイオードへの供給電圧は使用
する発光ダイオードの実効立ち上り電圧以上でな(プれ
ばならない。乾電池2測置列接続使用の場合、電源電圧
は3vとなる。電流制限回路に必要な最小電圧は0.5
〜i、ovまたとえば発光ダイオード(Ga07Ago
、、As )を発光させる為には約1.7■必要である
から必要な電源電圧は約2.2V以上である。従って乾
電池を2測置列に用いると約0.8V余分に用いること
になるが、発光ダイオードは低電力消費であるから、乾
電池の端子電圧が約2.2V(1個当り1.1V)に下
がるまで長時間使用できることになり、非常に長寿命に
することができる。If the bias voltage is made variable by making one bias resistor variable, the light emission intensity can be easily adjusted by operating the current limiting circuit with a single button. Light-emitting diodes have a rise voltage unique to the semiconductor they are used in, and will not emit light below this voltage. G for red light emitting diode lighting
In the case of aASO,7P O,3, it is approximately 1.6■, Ga
o,'y A, f2. .. For 3AS, approximately 1.7 V or more is required, and for Ga P green light emitting diode, approximately 2.20 V is required.
V or more is required. o, iv when it exceeds the rising voltage
Even a change in the current causes a large change in the current, resulting in an overcurrent. Therefore, a current limiting circuit (12) is required. The light emitting body (13) is a red light emitting diode of GaA So,
7 P o, 3, or G a O, 7A l o3△
It is S. While conventional white light bulbs require a current of several hundred milliamperes to flow when turned on, products have been commercialized that provide usable light emission even with a few hundred microamperes. When driving a light emitting diode with a dry battery, consideration must be given to compatibility between the rise voltage of the semiconductor used and the power supply voltage due to a fault on the user side. In other words, the voltage supplied to the light emitting diode must be higher than the effective rise voltage of the light emitting diode used. When using two dry cell batteries connected in a row, the power supply voltage is 3 V. The minimum voltage is 0.5
~i, ov For example, a light emitting diode (Ga07Ago
,, As ) is required to emit light, approximately 1.7V is required, so the required power supply voltage is approximately 2.2V or more. Therefore, if dry batteries are used in two arrays, approximately 0.8V will be used extra, but since light-emitting diodes have low power consumption, the terminal voltage of the dry batteries will be approximately 2.2V (1.1V per diode). This means that it can be used for a long time until it degrades, making it possible to have a very long life.
乾電池の使用個数を増した場合の実施例を以下に)ホベ
る。乾電池3個の場合を第4図、乾電池4個の場合を第
5図にそれぞれ示す。第4図、第5図では電池(21)
、(31)と発光ダイオード(23)、(33)の数が
増加しているが基本的には第3図(a )と同様の回路
である。公称電圧1.5VのSUM−1のマンガン電池
三個直列接続使用の場合、発光ダイオードを二l[li
l直列接続使用し、四個の乾電池直列接続の場合は発光
ダイオードを三個直列接続使用とするのがよい。第3図
(C)と同様、電流値を可変にすることができる。前述
したように発光ダイオード(または直列接続した発光ダ
イオード)を並列接続することもできる。この場合電流
ル11限回路は並列接続した各発光ダイオード回路に設
けるのが好ましい。第4図及び第5図の場合にも第3図
(b)、(C)に示したような電流制限回路を用いるこ
とができる。通常のトランジスタやFETの耐圧は約2
0V以上はあり、耐圧はほとんど考慮する必要はないの
でほとんど同一の電流制限回路を用いることができる。An example of increasing the number of dry batteries used is shown below. The case with three dry batteries is shown in FIG. 4, and the case with four dry batteries is shown in FIG. 5, respectively. In Figures 4 and 5, the battery (21)
, (31) and light emitting diodes (23), (33), but the circuit is basically the same as that in FIG. 3(a). When using three SUM-1 manganese batteries with a nominal voltage of 1.5V connected in series, the light emitting diode
If four dry batteries are connected in series, it is better to use three light emitting diodes connected in series. Similar to FIG. 3(C), the current value can be made variable. As mentioned above, light emitting diodes (or light emitting diodes connected in series) can also be connected in parallel. In this case, it is preferable that the current limit circuit 11 is provided in each light emitting diode circuit connected in parallel. Also in the case of FIGS. 4 and 5, current limiting circuits as shown in FIGS. 3(b) and 3(C) can be used. The breakdown voltage of normal transistors and FETs is approximately 2
Since the voltage is 0V or more, there is almost no need to consider the withstand voltage, so almost the same current limiting circuit can be used.
抵抗で電流制限を行う場合は各電圧、電流値に合ゼて選
ぶ必要がある。電圧利用効率を問題にしない場合(は発
光ダイオードの数を減少ざぜてもJ:いことは自明であ
ろう。When limiting current with a resistor, it is necessary to select a resistor that matches each voltage and current value. It is obvious that if voltage utilization efficiency is not an issue (J: it is not possible even if the number of light emitting diodes is reduced).
赤色発光に関しては以下の利点が生じる。すなわち第4
図の乾電池3tj直列接続使用の場合は、電源電圧は、
4.5vとなり、電流制限回路に必要な電圧は約0.5
V以上、発光ダイオード2測置列接続の為発光させるの
に必要な電圧は約3.4vであるから、電圧効率は(3
゜4+0.5>/4.5=0.87以上と高(なる。第
5図の乾電池4測置列接続使用の揚台は電8電圧が6と
なり、発光ダイオード3測置列接続で発光させる為には
電流も11限回路に必要な電圧を含み約5.6■必要な
ので電圧効率は5.6/6−0.93とさらに高くなる
。Regarding red light emission, the following advantages arise. That is, the fourth
When using 3tj dry batteries connected in series as shown in the figure, the power supply voltage is:
4.5v, and the voltage required for the current limiting circuit is approximately 0.5v.
Since the voltage required to emit light is approximately 3.4 V due to the connection of two light emitting diodes in a row, the voltage efficiency is (3
゜4+0.5>/4.5=0.87 or more.The platform shown in Figure 5 uses four dry cell batteries connected in a row, and the voltage of 8 is 6, and when three light emitting diodes are connected in a row, it emits light. In order to do so, the current, including the voltage required for the 11th limit circuit, is required to be about 5.6 µm, so the voltage efficiency becomes even higher at 5.6/6-0.93.
第3図、第4図、第5図の実施例を通して赤色発光ダイ
オードをQa、ア△L03△Sとし一〇説明したが、発
光ダイオードをGaASo、7PO,3にすると立ち上
り電圧は発光ダイオード1W当り約0.1V減少できる
。ただしそれによって発光ダイオードの個数を増加させ
ることはできないので、現在G aQ、7△旦。3AS
の発光効率が他のものと較べ非常に優れていることを考
える時G a o了△之。3△Sを使用するのが好まし
い。電流制限回路は前記したようにソース・ゲート直結
のFETに限らないが、電流値固定型では消費電圧、構
造の簡単さの点からはソース・ゲート直結型FETが好
ましい。Through the embodiments shown in Figs. 3, 4, and 5, we have explained that the red light emitting diode is Qa, A△L03△S, but if the light emitting diode is made of GaASo, 7PO, 3, the rise voltage will be per 1W of the light emitting diode. It can be reduced by about 0.1V. However, it is not possible to increase the number of light emitting diodes by doing so, so GaQ is currently 7△dan. 3AS
When you consider that the luminous efficiency of this product is very superior compared to other products, it makes sense. Preferably, 3ΔS is used. The current limiting circuit is not limited to the source-gate directly connected FET as described above, but in the current value fixed type, the source-gate directly connected type FET is preferable in terms of voltage consumption and simple structure.
以上のように、本発明による発光ダイオードを用いた電
池駆動非常炉装置1.t、従来の非常燈と比較して著し
く長寿命かつ高効率であるので安全対策上の効果も大き
く工業的社会的価値の高いものである。なお、「非常燈
」の用語は赤色発光の可能な光源の意味で用いており、
伯の用途に用いるものを除外するものではない。As described above, the battery-powered emergency reactor device using light emitting diodes according to the present invention 1. t) Compared to conventional emergency lights, they have a significantly longer lifespan and higher efficiency, so they have great safety effects and are of high industrial and social value. The term "emergency light" is used to mean a light source capable of emitting red light.
This does not exclude those used for official purposes.
第1図は従来の懐中電灯の断面図、第2図は発光ダイオ
ードの断面図、第3図(a )乃至(C)は本発明の1
実施例の回路図、第4図及び第5図は他の実施例の回路
図を示す。
第7図
第3 図
醪+ 図 尊ゴ 図
w’2− 図Fig. 1 is a cross-sectional view of a conventional flashlight, Fig. 2 is a cross-sectional view of a light emitting diode, and Fig. 3 (a) to (C) are a cross-sectional view of a conventional flashlight.
Embodiment Circuit Diagrams FIGS. 4 and 5 show circuit diagrams of other embodiments. Figure 7 3 Figure Moromi+ Figure Songo Figure w'2- Figure
Claims (1)
型を有する領域を蒸気圧制御温度差液相成長法により製
作した発光ダイオード対を形成し、発光をある方向に集
光するための、凹面型又は放物面型の反射鏡を持ち該発
光ダイオード対を該反射鏡のほぼ中心又はほぼ焦点に該
発光ダイオード対の断面を出射方向に向けて配置し、両
方の電気伝導型を有する領域を絶縁物を介して、口金部
に電極を持ち、前記反射鏡及び前記口金部内部をレジン
モールドした発光ダイオードを用いた電池駆動非常燈。On both sides of a region with one electrical conductivity type, a pair of light emitting diodes fabricated by vapor pressure controlled temperature difference liquid phase epitaxy is formed, with regions having the opposite electrical conductivity type, to focus light emitted in a certain direction. , having a concave or parabolic reflecting mirror, disposing the light emitting diode pair at approximately the center or almost the focal point of the reflecting mirror, with the cross section of the light emitting diode pair facing the emission direction, and having both electrical conductivity types. A battery-operated emergency light using a light emitting diode, which has an electrode on the base part through an insulating material, and has the reflecting mirror and the inside of the base part molded with resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62160735A JPS6323378A (en) | 1987-06-27 | 1987-06-27 | Battery-driven emergency light using light emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62160735A JPS6323378A (en) | 1987-06-27 | 1987-06-27 | Battery-driven emergency light using light emitting diode |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15396578A Division JPS5580376A (en) | 1978-12-11 | 1978-12-11 | Battery driven emergency lamp using luminous diode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6323378A true JPS6323378A (en) | 1988-01-30 |
Family
ID=15721323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62160735A Pending JPS6323378A (en) | 1987-06-27 | 1987-06-27 | Battery-driven emergency light using light emitting diode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6323378A (en) |
-
1987
- 1987-06-27 JP JP62160735A patent/JPS6323378A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2596709B2 (en) | Illumination light source device using semiconductor laser element | |
KR100468256B1 (en) | Vertical cavity surface emitting laser arrays for illumination | |
US6903380B2 (en) | High power light emitting diode | |
EP1963743B1 (en) | Lighting device | |
US20050007772A1 (en) | Flashlight with heat-Dissipation device | |
JPWO2004095590A1 (en) | Self-luminous device | |
JP2013527589A (en) | Lighting device with reverse tapered heat sink | |
WO2013152362A1 (en) | High flux high brightness led lighting devices | |
US20240097084A1 (en) | Led array package | |
US20080158864A1 (en) | Monolithic photo-chip with solar device and light-emitting device and manufacturing method thereof | |
US8960955B2 (en) | LED lamp having a large illumination angle | |
US9147811B2 (en) | Light emitting device and lighting system | |
RU2170995C1 (en) | Light-emitting diode device | |
JPS6323378A (en) | Battery-driven emergency light using light emitting diode | |
US11796137B1 (en) | Corn lamp convenient to assemble and disassemble | |
US9410676B1 (en) | LED light bulb | |
CN210219487U (en) | Annular LED street lamp | |
US20130134898A1 (en) | Light Emitting Diode Producing Any Desired Color | |
US20130235571A1 (en) | Recessed multicolored led lamp | |
CN220366297U (en) | COB light source and lighting device | |
CN211529949U (en) | LED light-emitting device and lighting equipment | |
KR101136975B1 (en) | Led lamp radiation structure of heat with hole | |
KR102190740B1 (en) | Light emitting apparatus | |
CN212029190U (en) | LED point light source structure with waterproof function | |
JP3369896B2 (en) | LED display and signal light using the same |