JPS63233522A - Channeling ion implantation - Google Patents

Channeling ion implantation

Info

Publication number
JPS63233522A
JPS63233522A JP6858987A JP6858987A JPS63233522A JP S63233522 A JPS63233522 A JP S63233522A JP 6858987 A JP6858987 A JP 6858987A JP 6858987 A JP6858987 A JP 6858987A JP S63233522 A JPS63233522 A JP S63233522A
Authority
JP
Japan
Prior art keywords
crystal
ions
implanted
ion implantation
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6858987A
Other languages
Japanese (ja)
Other versions
JP2667979B2 (en
Inventor
Naoto Kobayashi
直人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62068589A priority Critical patent/JP2667979B2/en
Publication of JPS63233522A publication Critical patent/JPS63233522A/en
Application granted granted Critical
Publication of JP2667979B2 publication Critical patent/JP2667979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce frequency of collision between the implanted ion and crystal constituting atoms by implanting the accelerated ions along the crystal axis to a signal crystal material layer. CONSTITUTION:Ions are implanted from the direction parallel to the crystal axis of single crystal material. Therefore, the frequency of collision between the implanted ions and crystal constituting atoms is remarkably lowered. Therefore, the crystal constituting atoms receive repulsion by implanted ions and the probability of receiving displacement from the regular lattice position is remarkably reduced. Moreover, in the vicinity of crystal surface, damage is largely reduced and thereby the good single crystal property is kept. Meanwhile, the implanted ions reach the deeper region of the single crystal material substrate in comparison with the implantation in the random direction because probability of collision with the crystal constituting atoms is reduced and amount of energy to be lost per unit length is also reduced.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、電子材料をはじめとする工業材料の生産分野
で近年盛んに行われているイオン注入方法に関し、特に
工業材料の放射線損傷を低減することが可能なイオン注
入方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application J] The present invention relates to an ion implantation method that has been widely used in recent years in the field of producing industrial materials including electronic materials, and particularly relates to an ion implantation method that reduces radiation damage to industrial materials. The present invention relates to an ion implantation method that can be used to perform ion implantation.

[従来の技術] 最近、けい素等の半導体電子材料にMeV領域のエネル
ギーを有する各種のP形あるいはN形の不純物を導入し
て、深い埋込層を形成したり(例えば、J、 F、 Z
iegler: Nucl、 In5tr、 Meth
、、 B6(1985)pp、270 )することで電
気的特性を変化させたり、N”、 0”イオンを注入し
てSOI  (silicon−on−insulat
or)基板を形成させたり(P、 L、 F。
[Prior Art] Recently, various P-type or N-type impurities having energy in the MeV region are introduced into semiconductor electronic materials such as silicon to form deep buried layers (for example, J, F, Z
iegler: Nucl, In5tr, Meth
, B6 (1985) pp. 270) to change the electrical characteristics, or by implanting N" and 0" ions to form SOI (silicon-on-insulator).
or) to form a substrate (P, L, F.

Hemment et al : Appl、 phy
s、 Lett、、 vol、4B(1985) pp
、5s2)することにより、半導体内部に絶縁層を形成
する方法が注目されている。
Hemment et al: Appl, phy
Lett, vol. 4B (1985) pp
, 5s2), a method of forming an insulating layer inside a semiconductor is attracting attention.

[発明が解決しようとする問題点l 上述した従来のイオン注入方法の原理を示す模成因を第
3図に示す。図中、黒丸は単結晶材料の結晶構成原子を
示し、白丸は注入イオンを示し、白黒丸は反跳を受けて
変位した結晶構成原子を示す。従来のイオン注入方法に
おいては、第3図に示すように単結晶材料の結晶軸とず
れた方向(以下、ランダム方向と略記する)からイオン
が注入されてきたために、注入イオンが結晶構成原子に
衝突して、結晶構成原子は反跳を受けて変位する。その
結果、注入イオンによる損傷領域が形成せる等の工程が
必要であった。
[Problems to be Solved by the Invention 1] Fig. 3 shows the cause of the principle of the conventional ion implantation method described above. In the figure, black circles indicate crystal constituent atoms of a single crystal material, white circles indicate implanted ions, and black and white circles indicate crystal constituent atoms displaced by recoil. In the conventional ion implantation method, as shown in Figure 3, ions are implanted in a direction that is deviated from the crystal axis of the single crystal material (hereinafter abbreviated as random direction). Upon collision, the crystal constituent atoms receive recoil and are displaced. As a result, steps such as forming damaged regions due to implanted ions were required.

従って、本発明の目的は、注入イオンによる単結晶材料
の損傷が小さく、アニーリング工程を省略することがで
きるイオン注入方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an ion implantation method in which damage to a single crystal material by implanted ions is small and an annealing step can be omitted.

E問題点を解決するための手段] かかる目的を達成するために、本発明のチャネリングイ
オン注入法は、けい素単結晶中に、加速されたイオンを
けい素早結晶の結晶軸に沿って注入して、けい素単結晶
中に注入層を形成することを特徴とする。
Means for Solving Problem E] In order to achieve the above object, the channeling ion implantation method of the present invention implants accelerated ions into a silicon single crystal along the crystal axis of a silicon fast crystal. The method is characterized in that an injection layer is formed in a silicon single crystal.

[作 用] 第1図は、本発明のイオン注入方法の原理を示と略記す
る)からイオンが入射する。従って、注入イオンと結晶
構成原子とが衝突する頻度が極端に低減する。このため
、結晶構成原子が注入イオンによる反跳を受けて、正規
の格子位置から変位を受ける確率が大きく減少する。こ
の効果により結晶表層付近では、損傷が大きく低減する
ために単結晶性が良好に保たれる。一方、注入イオンは
、結晶構成原子と衝突する確率が減少し、単位。
[Function] Ions are incident from the ion implantation device (abbreviated as “FIG. 1 shows the principle of the ion implantation method of the present invention”). Therefore, the frequency of collisions between implanted ions and crystal constituent atoms is extremely reduced. Therefore, the probability that the crystal constituent atoms will be displaced from their normal lattice positions due to recoil from the implanted ions is greatly reduced. Due to this effect, damage is greatly reduced near the surface layer of the crystal, so that single crystallinity is maintained well. On the other hand, the implanted ions have a reduced probability of colliding with the constituent atoms of the crystal.

長さあたりに失うエネルギーの量(物質のイオンに対す
る阻止能)が減少するために、ランダム方向注入の場合
と比較して、単結晶材料基板中奥深くまで到達しうる。
Because the amount of energy lost per length (the stopping power of the material for ions) is reduced, it can reach deeper into the single crystal material substrate compared to random direction implantation.

すなわちイオンがエネルギーをすべて失って停止する深
さく飛程)が長くな□る。しかし、チャネリング方向か
ら入射したイオンも、結晶構成原子との相互作用により
、結晶の中を進む間に次第にチャネリング方向からずれ
て、ランダム方向注入の条件に近くなる。このような深
さ領域では、結晶構成原子が注入イオンとの衝突により
変位を受ける確率が上昇し、損傷が増大するために、引
き続き注入されたイオンに対する阻止能が上昇する。注
入イオン量が増加してくると、この阻止能の上昇が益々
大きくなり、化合物や合金を形成するほどの注入イオン
量では、注入されたイオンのほとんどは、ランダム方向
注入の場合と比較してそれほど変化のない深さに停止す
るようになる。従って、チャネリング方向からイオンを
注入した場合でも、ランダム方向からイオンを注入した
場合とほぼ等しい注入エネルギーを選択すれば、同じ深
さ領域に注入イオン元素を分布させることができる。こ
のように、チャネリング方向イオン注入法が単結晶基板
表層の結晶性の保持として作用し、しかも、希望する深
さ領域に注入イオン元素を分布させることを可能にする
。これらの作用のために、この方法を単結晶基板表層の
損傷を大きく低減したままで、基板層内に、化合物層1
合金層や非晶質層等を形成する技術として利用すること
ができる。
In other words, the depth and range at which the ions lose all their energy and stop becomes longer. However, ions incident from the channeling direction gradually deviate from the channeling direction as they travel through the crystal due to interactions with crystal constituent atoms, resulting in conditions approaching random direction implantation. In such a depth region, the probability that atoms constituting the crystal will be displaced due to collisions with implanted ions increases and damage increases, so that the stopping power for subsequently implanted ions increases. As the amount of implanted ions increases, this increase in stopping power becomes increasingly large, and when the amount of implanted ions is large enough to form a compound or alloy, most of the implanted ions are It will stop at a depth that does not change much. Therefore, even when ions are implanted from the channeling direction, by selecting an implantation energy that is approximately the same as when ions are implanted from a random direction, the implanted ion elements can be distributed in the same depth region. In this way, the channeling direction ion implantation method functions to maintain the crystallinity of the surface layer of the single crystal substrate, and also makes it possible to distribute the implanted ion elements in a desired depth region. Because of these effects, this method can be applied to a compound layer 1 within the substrate layer while greatly reducing damage to the surface layer of the single crystal substrate.
It can be used as a technique for forming alloy layers, amorphous layers, etc.

本発明のイオン注入法の原理を立証するために、単結晶
材料としてけい素を選択して、窒素イオンN9の注入量
を変化させてチャネリング方向注入とランダム方向注入
を行って、チャネリング後方散乱測定法により結果を比
較した。Si(シリコン)単結晶材料は結晶軸の角度を
任意に変えることができるゴニオメータ上に装着され、
イオン注入前にチャネリング後方散乱法により入射イオ
ンの方向に対する結晶軸の角度を測定しておく。チャネ
リング方向注入の場合は、入射軸方向に対して結晶軸が
平行になるように角度を設定する。また、ランダム方向
注入の場合は、入射軸方向に対して結晶軸が、5°〜1
0’ずれるように角度を設定する。この実施例では、結
晶面としてけい素単結晶の(111)面を選択し、<1
11>軸がチャネリング方向になるように、角度設定を
行った。
In order to prove the principle of the ion implantation method of the present invention, silicon was selected as the single crystal material, and channeling direction implantation and random direction implantation were performed by varying the implantation amount of nitrogen ions N9, and channeling backscattering measurements were performed. The results were compared using the method. The Si (silicon) single crystal material is mounted on a goniometer that can arbitrarily change the angle of the crystal axis.
Before ion implantation, the angle of the crystal axis with respect to the direction of the incident ions is measured by the channeling backscattering method. In the case of channeling direction injection, the angle is set so that the crystal axis is parallel to the direction of the incident axis. In addition, in the case of random direction injection, the crystal axis is 5° to 1° with respect to the incident axis direction.
Set the angle so that it shifts by 0'. In this example, the (111) plane of silicon single crystal is selected as the crystal plane, and <1
The angle was set so that the 11> axis was in the channeling direction.

本実施例を述べる前に、比較のために従来のイオン注入
法による測定結果をまず示す。
Before describing this example, measurement results using a conventional ion implantation method will be shown for comparison.

第2A図に示すのは、室温でI MeVの窒素イオンN
゛を7.5Xl″017個/cm2の注入量でランダム
方向からSt(シリコン)単結晶にイオン注入した前後
、2.7MeVの高速ヘリウムイオンHe+をランダム
方向で測定したランダム方向スペクトルと、2.7Me
Vの高速ヘリウムイオンHe″″をチャネリング方向で
測定したチャネリング方向スペクトルである。図中、1
はイオン注入前のアラインド方向スペクトル、2はイオ
ン注入前のランダム方向スペクトル、3は注入後のアラ
インド方向スペクトル、4は注入後のランダム方向スペ
クトルである。上記のスペクトルの他に、注入量が5 
X 10′5個/cm2゜である注入初期のアラインド
方向スペクトルを5に示した。
Figure 2A shows a nitrogen ion N of I MeV at room temperature.
2. Random direction spectra of 2.7 MeV fast helium ions He+ measured in random directions before and after ion implantation into St (silicon) single crystal from random directions at an implantation dose of 7.5Xl''017/cm2; 7Me
This is a channeling direction spectrum measured in the channeling direction of V high-velocity helium ions He''''. In the figure, 1
is an aligned direction spectrum before ion implantation, 2 is a random direction spectrum before ion implantation, 3 is an aligned direction spectrum after implantation, and 4 is a random direction spectrum after implantation. In addition to the above spectra, the injection amount is 5
The aligned direction spectrum at the initial stage of injection, which is 10'5 pieces/cm2°, is shown in Figure 5.

スペクトル3.4において、散乱イオンエネルギーが約
0.75MeV近傍に広がる散乱収量のくぼみの位置と
電子阻止能から、表面層からの深さを計算すると約1.
5μmとなった。このくぼみ領域が存在することは、窒
化けい素層が形成されたために、注入イオンに対して同
じ阻止能を与えるのに必要なけい素原子の密度が減少し
ていることを示している。一方、表面領域では、第2八
図示の矢印の幅で示される散乱イオンエネルギー差と電
子阻止能とから、単結晶領域の深さを計算すると、約0
.3μmの深さまでしか単結晶領域が残存しておらず、
表面から数百オングストローム(スペクトル3の高散乱
イオンエネルギーのピークの半値幅から換算した)の領
域も損傷を受けていることが図から理解される。
In spectrum 3.4, the depth from the surface layer is calculated from the position of the depression in the scattering yield where the scattered ion energy spreads around 0.75 MeV and the electron stopping power to approximately 1.
It became 5 μm. The presence of this depressed region indicates that the formation of the silicon nitride layer reduces the density of silicon atoms required to provide the same stopping power for implanted ions. On the other hand, in the surface region, the depth of the single crystal region is calculated from the scattered ion energy difference and the electron stopping power shown by the width of the arrow in Figure 28 to be approximately 0.
.. The single crystal region remains only to a depth of 3 μm,
It can be seen from the figure that a region several hundred angstroms from the surface (calculated from the half width of the peak of highly scattered ion energy in spectrum 3) is also damaged.

次に従来のランダム方向イオン注入とは違ってチャネリ
ング方向、今の場合Si(シリコン)単結晶の<111
>軸方向、かうイオンを注入した前後゛の後方散乱エネ
ルギー分布曲線を第2B図に示す。イオン注入の条件と
散乱収量の測定方法は、ランダム方向からイオンを注入
した場合と同様である。
Next, unlike conventional random direction ion implantation, the channeling direction, in this case <111 of Si (silicon) single crystal
Figure 2B shows backscattered energy distribution curves before and after such ion implantation in the axial direction. The conditions for ion implantation and the method for measuring scattering yield are the same as those for the case where ions are implanted from random directions.

図中、6はイオン注入前のアラインド方向スペクトル、
7はイオン注入前のランダム方向スペクトル、8はイオ
ン注入後のアラインド方向スペクトル、9はイオン注入
後のランダム方向スペクトルである。上記のスペクトル
の他に、注入量が5×1015個/cm2である注入初
期のアラインド方向スペクトルを10に示した。
In the figure, 6 is the aligned direction spectrum before ion implantation.
7 is a random direction spectrum before ion implantation, 8 is an aligned direction spectrum after ion implantation, and 9 is a random direction spectrum after ion implantation. In addition to the above spectra, 10 shows an aligned direction spectrum at the initial stage of implantation when the implantation amount was 5×10 15 particles/cm 2 .

スペクトル8.9において、散乱イオンエネルギーが約
0.75MeV近傍に広がる散乱収量のくぼみの位置と
電子阻止能とから、表面層からの深さを計算すると約1
.5μmとなった。このくぼみはランダム方向イオン注
入と同様に、けい素原子の密度が減少していることを示
している。注入初期のチャネリング方向スペクトルの損
傷層は、阻止能が小さいために注入初期のランダム方向
スペクトルの損傷層よりも約0.2μm深い領域にシフ
トしているが、高フルエンス注入により形成される窒化
層はほぼ同じ深さ領域に形成されている。これは、イオ
ン注入量の増加に伴い、損傷を受ける領域が拡大し、チ
ャネリング入射の条件からずれてくるためである。一方
、表面領域では第2B図の矢印の幅で示される単結晶領
域は、約0.7μmである。また、χ1n=8%であり
、良好な単結晶性を示している。
In spectrum 8.9, the depth from the surface layer is calculated from the position of the depression in the scattering yield where the scattered ion energy spreads around 0.75 MeV and the electron stopping power to be approximately 1.
.. It became 5 μm. This depression indicates a decrease in the density of silicon atoms, similar to random directional ion implantation. The damaged layer in the channeling direction spectrum at the initial stage of implantation is shifted to a deeper region by about 0.2 μm than the damaged layer in the random direction spectrum at the initial stage of implantation due to the small stopping power, but the nitride layer formed by high-fluence implantation is are formed at approximately the same depth. This is because as the amount of ion implantation increases, the area that is damaged expands, and the conditions for channeling injection are deviated from. On the other hand, in the surface region, the width of the single crystal region indicated by the arrow in FIG. 2B is about 0.7 μm. Moreover, χ1n=8%, indicating good single crystallinity.

本実施例では窒素イオンN“を注入したが、酸素原子イ
オン、ホウ素イオン: リンイオン、ひ素イオン等をS
i(シリコン)単結晶層に注入することも勿論可能であ
る。
In this example, nitrogen ions N'' were implanted, but oxygen atom ions, boron ions, phosphorus ions, arsenic ions, etc.
Of course, implantation into the i (silicon) single crystal layer is also possible.

[発明の効果] 以上説明したように、本発明によれば、単結晶材料層に
、加速されたイオンを材料の結晶軸に沿って注入するこ
とにより、注入イオンと結晶構成原子とが衝突する顕度
が小さくでき、また結晶構成原子が変位する等の損傷も
低減できる。
[Effects of the Invention] As explained above, according to the present invention, by implanting accelerated ions into a single crystal material layer along the crystal axis of the material, the implanted ions collide with crystal constituent atoms. The degree of sensitivity can be reduced, and damage such as displacement of crystal constituent atoms can also be reduced.

さらに、本発明によれば、室温でイオン注入してもけい
素単結晶表層における損傷量が低いために、アニーリン
グ工程を省略することや、アニーリング温度の低温化、
アニーリング時間の短縮化が可能となる。また単結晶材
料を高温に保ってイオン注入すれば、はとんどその後の
工程を経ずに単結晶を必要とする材料を利用することが
可能となる。
Furthermore, according to the present invention, even if ions are implanted at room temperature, the amount of damage to the silicon single crystal surface layer is low, so it is possible to omit an annealing process, lower the annealing temperature,
It becomes possible to shorten the annealing time. Furthermore, if a single crystal material is kept at a high temperature and ions are implanted, it becomes possible to use a material that requires a single crystal without going through any subsequent steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のイオン注入法の原理を示す模式図、 第2A図は、従来のイオン注入前後の散乱エネルギー分
布を示す図、 第2B図は、本発明の一実施例であるイオン注入前後の
散乱エネルギー分布を示す図、 第3図は、従来のイオン注入方法の原理を示す模式図で
ある。 1.3,5,6,8.10・・・アラインド方向スペク
トル、2.4,7.9・・・ランダム方向スペクトル。 指定代理人 工業技術院電子技術総合研究所長第1図 歓舌し収量(任意単位) 散乱収量(仕を帽巧
Fig. 1 is a schematic diagram showing the principle of the ion implantation method of the present invention, Fig. 2A is a diagram showing the scattering energy distribution before and after conventional ion implantation, and Fig. 2B is an ion implantation method according to an embodiment of the present invention. FIG. 3, which shows the scattered energy distribution before and after implantation, is a schematic diagram showing the principle of the conventional ion implantation method. 1.3, 5, 6, 8.10... aligned direction spectrum, 2.4, 7.9... random direction spectrum. Designated agent Director, Electronics Technology Research Institute, Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims]  けい素単結晶中に、加速されたイオンを前記けい素単
結晶の結晶軸に沿って注入して、前記けい素単結晶中に
注入層を形成することを特徴とするチャネリングイオン
注入法。
A channeling ion implantation method, characterized in that accelerated ions are implanted into a silicon single crystal along the crystal axis of the silicon single crystal to form an implanted layer in the silicon single crystal.
JP62068589A 1987-03-23 1987-03-23 Channeling ion implantation Expired - Lifetime JP2667979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068589A JP2667979B2 (en) 1987-03-23 1987-03-23 Channeling ion implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068589A JP2667979B2 (en) 1987-03-23 1987-03-23 Channeling ion implantation

Publications (2)

Publication Number Publication Date
JPS63233522A true JPS63233522A (en) 1988-09-29
JP2667979B2 JP2667979B2 (en) 1997-10-27

Family

ID=13378131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068589A Expired - Lifetime JP2667979B2 (en) 1987-03-23 1987-03-23 Channeling ion implantation

Country Status (1)

Country Link
JP (1) JP2667979B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939235A (en) * 1972-08-24 1974-04-12
JPS61272970A (en) * 1985-05-29 1986-12-03 Hitachi Ltd Manufacture of semiconductor device
JPS6268590A (en) * 1985-09-20 1987-03-28 Hitachi Kiden Kogyo Ltd Aeration apparatus for preventing spoilage of building drain tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939235A (en) * 1972-08-24 1974-04-12
JPS61272970A (en) * 1985-05-29 1986-12-03 Hitachi Ltd Manufacture of semiconductor device
JPS6268590A (en) * 1985-09-20 1987-03-28 Hitachi Kiden Kogyo Ltd Aeration apparatus for preventing spoilage of building drain tank

Also Published As

Publication number Publication date
JP2667979B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US3622382A (en) Semiconductor isolation structure and method of producing
US9564495B2 (en) Semiconductor device with a semiconductor body containing hydrogen-related donors
RU2173003C2 (en) Method for producing silicon nanostructure, lattice of silicon quantum conducting tunnels, and devices built around them
US5661043A (en) Forming a buried insulator layer using plasma source ion implantation
Hopkins et al. Further measurements of random telegraph signals in proton irradiated CCDs
Nakashima et al. Practical reduction of dislocation density in SIMOX wafers
US5013673A (en) Implantation method for uniform trench sidewall doping by scanning velocity correction
CA1162326A (en) Forming impurity regions in semiconductor bodies by high energy ion irradiation, and semiconductor devices made thereby
Ziegler et al. Channeling of ions near the silicon< 001> axis
CN107680905A (en) Including activating the manufacture method of dopant and there is the semiconductor device of precipitous knot
Berencén et al. CMOS‐Compatible Controlled Hyperdoping of Silicon Nanowires
Yi et al. Formation of total-dose-radiation hardened materials by sequential oxygen and nitrogen implantation and multi-step annealing
JPS63233522A (en) Channeling ion implantation
JPS63233523A (en) Channeling ion implantation
Chang et al. Fabrication of radiation hardened SOI with embedded Si nanocrystal by ion-cut technique
Nazarov et al. Hydrogen plasma treatment of silicon thin-film structures and nanostructured layers
CN100560790C (en) Control method for ionic beam electric charge
Lu et al. Synthesis of SiGe and SiGeC alloys formed by Ge and C implantation
US6136673A (en) Process utilizing selective TED effect when forming devices with shallow junctions
JP6265291B2 (en) Bonded wafer manufacturing method and bonded wafer
US4415372A (en) Method of making transistors by ion implantations, electron beam irradiation and thermal annealing
Grob Ion implantation
Bhuyan A review of the fabrication process of the pocket implanted MOSFET structure
Villani et al. Design and development of Low Gain Avalanche Detectors using Teledyne e2v process
Spinelli et al. Critical aspects of high energy implants for CMOS technology: Channeling effects and masking problems

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term