JPS63233300A - Thermal conducting pipe for heat exchanging operation - Google Patents

Thermal conducting pipe for heat exchanging operation

Info

Publication number
JPS63233300A
JPS63233300A JP6594887A JP6594887A JPS63233300A JP S63233300 A JPS63233300 A JP S63233300A JP 6594887 A JP6594887 A JP 6594887A JP 6594887 A JP6594887 A JP 6594887A JP S63233300 A JPS63233300 A JP S63233300A
Authority
JP
Japan
Prior art keywords
resin
thickness
coating
copper
thermal conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6594887A
Other languages
Japanese (ja)
Inventor
Hiroshi Kunieda
国枝 博
Hiroshi Yamamoto
博司 山本
Yuji Nishikawa
勇二 西川
Toshiaki Hashizume
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6594887A priority Critical patent/JPS63233300A/en
Publication of JPS63233300A publication Critical patent/JPS63233300A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve anti-corrosion and thermal conducting characteristics and restrict a reduction in the thermal efficiency of a heat exchanging plant as less as possible by a method wherein silicone resin coating mixed with benzotriasole is spread on the inner surface of a copper or a copper alloy pipe to have a coating film having a thickness of a specified value. CONSTITUTION:Silicone resin coating mixed with benzotriasole is spread on an inner surface of a copper or a copper alloy pipe, a thickness of a coated film is made to have 5-20mum. Then, anti-corrosion and durability characteristics similar to or more than to these of coating with a thickness of about 20mum of alkid resin, epoxy resin, fluorine resin, polyurethane resin, vinyl resin and acryle resin coatings and further superior thermal conducting characteristic is applied. Thus, an amount of mixed benzotriasole is satisfactory with a few percent in respect to a silicone resin coating and a much higher volume mixing may decrease thermal conducting performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海水又は河海水を冷却水とする熱交換器の伝熱
管に関し、特に耐食性、耐久性及び伝熱性能を改善した
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger tube for a heat exchanger that uses seawater or river/seawater as cooling water, and in particular has improved corrosion resistance, durability, and heat transfer performance.

〔従来の技術〕[Conventional technology]

一般に火力・原子力発電所、化学工場、船舶又はその他
の各種熱交換器には、伝熱管として銅又は銅合金管を用
いている。このような熱交換器の冷却水には海水や河海
水が用いられる場合が多く、伝熱管の内面には腐食生成
物を含む付着物が付き、熱交換器の伝熱性能を低下する
Copper or copper alloy tubes are generally used as heat transfer tubes in thermal/nuclear power plants, chemical factories, ships, and other various heat exchangers. Seawater or river/seawater is often used as cooling water for such heat exchangers, and deposits containing corrosion products adhere to the inner surfaces of heat exchanger tubes, reducing the heat transfer performance of the heat exchanger.

このような腐食を抑制するため、冷却水中に微量のFe
イオンを注入すると伝熱管の内面に鉄化合物を含むイ」
着物が付き、熱交換器の伝熱性能を低下させる。
In order to suppress such corrosion, a trace amount of Fe is added to the cooling water.
When ions are implanted, the inner surface of the heat transfer tube contains iron compounds.
Kimono gets attached and reduces the heat transfer performance of the heat exchanger.

このため銅又は銅合金管の内面に合成樹脂塗料を塗装し
た伝熱管が特公昭56−45079号公報。
For this reason, Japanese Patent Publication No. 56-45079 discloses a heat exchanger tube in which the inner surface of a copper or copper alloy tube is coated with a synthetic resin paint.

特公昭59−50269号公報、特公昭61−5458
4号公報。
Special Publication No. Sho 59-50269, Special Publication No. Sho 61-5458
Publication No. 4.

特公昭61−54585号公報、特開昭59−1594
59号公報、特開昭59−212696号公報、特開昭
61−79998号公報等により提案されている。これ
等の伝熱管は銅又は銅合金管の内面にアルキド樹脂塗料
Japanese Patent Publication No. 61-54585, Japanese Patent Publication No. 59-1594
This method has been proposed in Japanese Patent Application Laid-Open No. 59-212696, Japanese Patent Application Laid-Open No. 61-79998, and the like. These heat exchanger tubes have alkyd resin paint on the inner surface of copper or copper alloy tubes.

エポキシ樹脂塗料、フッ素樹脂塗料、ポリウレタン樹脂
塗料、ビニル樹脂塗料、アクリル樹脂塗料等を塗装した
もので、耐食性及び耐久性を考慮してその塗膜厚さを約
20μmとしたものが実用化されている。
Paints coated with epoxy resin paints, fluororesin paints, polyurethane resin paints, vinyl resin paints, acrylic resin paints, etc., with a coating thickness of approximately 20 μm in consideration of corrosion resistance and durability, have been put into practical use. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記塗料を約20μmの厚さに塗装すると
、その熱貫流率が塗装しないものに比べ、約10%も低
下する。また塗膜厚さが20μm未満では十分な耐食性
と耐久性が得られない。
However, when the above-mentioned paint is applied to a thickness of about 20 μm, the heat transmission coefficient decreases by about 10% compared to that without coating. Further, if the coating film thickness is less than 20 μm, sufficient corrosion resistance and durability cannot be obtained.

熱交換器として伝熱性能が低下するとプラントの熱効率
を低下し、エネルギーのコスト上昇をもたらすため、伝
熱管の耐食性及び耐久性もさることながら伝熱性能の低
下が重要な問題となっている。
If the heat transfer performance of heat exchangers decreases, the thermal efficiency of the plant will decrease, leading to an increase in energy costs, so the decrease in heat transfer performance has become an important problem, as well as the corrosion resistance and durability of heat exchanger tubes.

上記各公報により提案されたものは、何れも耐食性や耐
久性とその施工性を問題とし、その改善を削ったもので
、プラントの熱効率までは十分な配慮がなされていない
ため、エネルギーのコスト上昇を招くものである。
All of the proposals proposed in the above publications focus on corrosion resistance, durability, and workability, and have only made improvements in these areas.They do not give sufficient consideration to the thermal efficiency of the plant, resulting in an increase in energy costs. It invites

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明はこれに鑑み種々検討の結果、銅又は銅合金管の
内面にシリコン樹脂塗料を5〜20μmの厚さに塗装す
ることにより、従来の内面塗装伝熱管と同等以上の耐食
性と耐久性を有し、かつはるかに優れた伝熱性能が得ら
れることを知見し、更に検討の結果、耐食性及び耐久性
と共に伝熱性能の優れた熱交換器用伝熱管を開発したも
のである。
In view of this, as a result of various studies, the present invention has been developed by coating the inner surface of copper or copper alloy tubes with silicone resin paint to a thickness of 5 to 20 μm, thereby achieving corrosion resistance and durability equivalent to or higher than conventional inner-coated heat exchanger tubes. As a result of further study, we developed a heat exchanger tube for heat exchangers that has excellent heat transfer performance as well as corrosion resistance and durability.

即ち本発明伝熱管は、銅又は銅合金管の内面に、ベンゾ
トリアゾールを配合したシリコン樹脂塗料を塗装し、管
内面に厚さ5〜20μmの塗膜を形成したことを特徴と
するものである。
That is, the heat exchanger tube of the present invention is characterized by coating the inner surface of a copper or copper alloy tube with a silicone resin paint containing benzotriazole to form a coating film with a thickness of 5 to 20 μm on the inner surface of the tube. .

〔作 用〕[For production]

本発明は銅又は銅合金管の内面にベンゾトリアゾールを
配合したシリコン樹脂塗料を塗装し、その塗膜の厚さを
5〜20μmとすることにより、従来から提案されてい
るアルキド樹脂塗料、エポキシ樹脂塗料、フッ素樹脂塗
料、ポリウレタン樹脂塗料、ビニル樹脂塗料、アクリル
樹脂塗料等を約20μmの厚さに塗装したものと同等以
上の耐食性及び耐久性を付与し、かつはるかに優れた伝
熱性能を付与したものである。しかしてベンゾトリアゾ
ールの配合量はシリコン樹脂塗料に対して数%程度で十
分であり、多量に配合すると逆に伝熱性能を低下させる
。また本発明において、塗膜の厚さを5〜20μmと限
定したのは、塗膜の厚さが5μm未満では均一な塗膜の
形成が困難となり、十分な耐食性と耐久性が得られず、
20μmを越えると上記塗料を20μmの厚さに塗装し
た従来伝熱管と比較し、伝熱性能の改善が認められなく
なるためである。
The present invention coats the inner surface of a copper or copper alloy tube with a silicone resin paint containing benzotriazole and makes the coating film 5 to 20 μm thick. Provides corrosion resistance and durability equal to or greater than that of paints, fluororesin paints, polyurethane resin paints, vinyl resin paints, acrylic resin paints, etc. applied to a thickness of approximately 20 μm, and provides far superior heat transfer performance. This is what I did. However, it is sufficient to add benzotriazole to the silicone resin paint in an amount of about several percent, and if it is added in a large amount, the heat transfer performance will deteriorate. In addition, in the present invention, the thickness of the coating film is limited to 5 to 20 μm, because if the thickness of the coating film is less than 5 μm, it will be difficult to form a uniform coating film, and sufficient corrosion resistance and durability will not be obtained.
This is because if the thickness exceeds 20 μm, no improvement in heat transfer performance will be recognized compared to a conventional heat transfer tube coated with the above paint to a thickness of 20 μm.

〔実施例〕〔Example〕

市販のシリコン樹脂塗料(ガンマ−化学株式会社製フジ
・ガンマ−#1100)を用い、これにメヂルアルコー
ルに溶解したベンゾ1〜リアゾールを1%(シリコン樹
脂塗料99%:ベンゾトリアゾール1%)添加し、均一
に混和した。これを内面サンドブラスト処理した復水器
用黄銅継目無管(JIS H3300−C6780)の
内面全長にエアーレススプレー塗装し、管内面に厚さ3
〜30μmの塗膜を形成して伝熱管とした。これ等につ
いて熱貫流率評価2分極抵抗値評価、耐ジェット噴流性
試験、塗膜の密着性評価を行ない、これを従来伝熱管と
比較して第1表に示す。尚塗膜の厚さは塗膜形成前後の
重量差により算出した。
Using a commercially available silicone resin paint (Fuji Gamma #1100 manufactured by Gamma Kagaku Co., Ltd.), 1% of benzo 1 to lyazole dissolved in alcohol was added to it (99% silicone resin paint: 1% benzotriazole). and mixed uniformly. This is airless spray painted on the entire length of the inner surface of a brass seamless pipe for condenser (JIS H3300-C6780) whose inner surface has been sandblasted, and the inner surface of the pipe is coated with a thickness of 3.
A heat exchanger tube was formed by forming a coating film of ~30 μm. These were subjected to heat transmission coefficient evaluation, polarization resistance value evaluation, jet jet resistance test, and coating film adhesion evaluation, and the results are shown in Table 1 in comparison with conventional heat exchanger tubes. The thickness of the coating film was calculated from the difference in weight before and after the coating film was formed.

従来伝熱管としてはアルキド樹脂塗料(中国塗料株式会
社製LZIプライマー)、エポキシ樹脂塗料(関西ペイ
ント株式会社製ミリオンNα1A)、ポリウレタン樹脂
塗料(関西ペイント株式会社製ニューガーメット#50
00) 、ポリウレタン樹脂塗料(関西ペイント株式会
社製レタンNα4000) 、ビニル樹脂塗料(中国塗
料株式会社製中国ビニル鉛円プライマー)、アクリル樹
脂塗料(東亜ペイント株式会社製ドアアクロンH3O0
)を用い、上記と同様にして復水器黄銅継目無管の内面
全長にエアーレススプレー塗装し、管内面に厚さ20μ
mの塗膜を形成した。
Conventional heat transfer tubes include alkyd resin paint (LZI Primer manufactured by Chugoku Paint Co., Ltd.), epoxy resin paint (Million Nα1A manufactured by Kansai Paint Co., Ltd.), and polyurethane resin paint (New Garmet #50 manufactured by Kansai Paint Co., Ltd.).
00), polyurethane resin paint (Rethane Nα4000 manufactured by Kansai Paint Co., Ltd.), vinyl resin paint (China Vinyl Lead Yen Primer manufactured by Chugoku Paint Co., Ltd.), acrylic resin paint (Door Acron H3O0 manufactured by Toa Paint Co., Ltd.)
), apply airless spray coating to the entire length of the inner surface of the condenser brass seamless pipe in the same manner as above, and coat the inner surface of the pipe with a thickness of 20 μm.
A coating film of m was formed.

熱貫流率評価としては、熱貫流率測定装置に内面塗膜付
伝熱管と塗装していない伝熱管を並列に取付け、管外に
約100℃の水蒸気を流し、管内に冷却水として約90
℃の温水を2TrL/SeCの流速で流し、冷却水の入
口と出口の温度及び水蒸気の温度を測定し、次式より熱
貫流率低下率n(%)を求めた。
To evaluate the heat transfer coefficient, heat transfer tubes with internal coatings and uncoated heat transfer tubes were installed in parallel in a heat transfer coefficient measurement device, water vapor at about 100℃ was flowed outside the tubes, and water vapor at about 90℃ was poured into the tubes as cooling water.
C. hot water was flowed at a flow rate of 2 TrL/SeC, the temperature at the inlet and outlet of the cooling water and the temperature of water vapor were measured, and the rate of decrease in heat transfer coefficient n (%) was determined from the following equation.

に)=y−r−Cp(θ2−01) θ2−θ1 (aし、Qは交換熱量(Kcal/11) 、Kは熱貫
流率(Kcal/TrLh’c) 、Vは冷却水i(m
/h)、rは冷却水比重量<Kg/rtl> 、Cpは
冷却水比熱(Kcal/Ny°C)、Aは管の表面積(
コ)、θ1は冷却水の入口温度(℃〉、θ2は冷却水の
出口温度(°C)、θSは水蒸気の飽和温度(℃)、K
Oは塗装していない継目無管の熱貫流率(Kcal/m
k’c)、に1は内面塗膜付継目無管の熱貫流率(Kc
al/ i h ’C)を示す。
) = y-r-Cp(θ2-01) θ2-θ1 (a, Q is the amount of heat exchanged (Kcal/11), K is the heat transmission coefficient (Kcal/TrLh'c), V is the cooling water i (m
/h), r is the specific weight of the cooling water <Kg/rtl>, Cp is the specific heat of the cooling water (Kcal/Ny°C), A is the surface area of the tube (
), θ1 is the inlet temperature of the cooling water (°C), θ2 is the outlet temperature of the cooling water (°C), θS is the saturation temperature of water vapor (°C), K
O is the heat transmission coefficient of unpainted seamless pipe (Kcal/m
k'c), 1 is the heat transmission coefficient (Kc
al/ih'C).

分極抵抗値評価は供試管を半割し、表面積100肩の塗
装皮膜面を残して他は絶縁コーティングした試験片をマ
グネットスターラーで撹拌した30°Cの人工向水(A
STM−D−114,1−75>中に浸漬し、ルギン管
と塩橋を介して外部に設置した飽和カロメル電極に対す
る自然電位を測定した後、対極として白金線を用いて、
試験片を自然電位より陰分極させ、その時に流れる定常
電流値を読み取り、次式により分極抵抗値R(Ω〜)を
算出した。
To evaluate the polarization resistance value, the test tube was divided in half, and the test piece was coated with an insulating coating, leaving the painted film surface with a surface area of 100 kg.
STM-D-114, 1-75> After measuring the natural potential with respect to a saturated calomel electrode placed outside via the Luggin tube and a salt bridge, using a platinum wire as a counter electrode,
The test piece was cathodically polarized from its natural potential, the value of the steady current flowing at that time was read, and the polarization resistance value R (Ω~) was calculated using the following formula.

R−ΔEXS/I 但し八Eは分極時の電位と自然電位との電位差(V) 
、Sは表面積(10cffl)、■は分極時に流れる定
常電流値(A) 耐ジェット噴流性試験は、供試管を半割し、供試管片の
塗膜面から2mm離れたノズル先端部より塗膜面に直角
に3容量%の空気を含む3%食塩水を流速12m/se
cで衝突ざゼ、これを30日間施した。
R-ΔEXS/I However, 8E is the potential difference (V) between the potential during polarization and the natural potential
, S is the surface area (10 cffl), ■ is the value of the steady current flowing during polarization (A). For the jet jet resistance test, the test tube was cut in half, and the coating film was measured from the tip of the nozzle 2 mm away from the coating surface of the test tube piece. 3% saline solution containing 3% air by volume perpendicular to the surface at a flow rate of 12m/se
C caused a collision, and this was applied for 30 days.

密着性は供試管を半割し、その塗装皮膜面に約10rM
rの長さでX字をナイフで刻み、その上に粘着テープを
貼り付けた後、これを勢いよく剥がずことにより、塗膜
の剥離部を次の三段階に評価した。
Adhesion was determined by cutting the test tube in half and applying approximately 10 rM to the painted film surface.
After cutting an X character with a length r with a knife and pasting an adhesive tape on it, the peeled part of the coating film was evaluated in the following three grades by peeling it off vigorously.

○印:健全(剥離なし) △印:点状又は部分剥離 ×印二面状剥離 D − 第1表から明らかなようにベンゾトリアゾールを配合し
たシリコン樹脂塗料を5〜20μmの厚さに塗装した本
発明品No、 1〜4は、何れも従来品No、 8〜N
o、 13と比較し、はぼ同等以上の耐食性と耐久性を
示し、かつはるかに優れた伝熱性能を有することが判る
○ mark: Good condition (no peeling) △ mark: dotted or partial peeling Inventive products No. 1 to 4 are all conventional products No. 8 to N.
It can be seen that compared to No. 0 and No. 13, No. 13 has corrosion resistance and durability equivalent to or better than No. 13, and has far superior heat transfer performance.

これに対しヘンシトリアゾールを配合したシリコン樹脂
の塗膜厚さが5μm未満の比較量Nα5では、優れた伝
熱性能を示すも耐食性が劣り、塗膜厚さが20μ瓦を越
える比較量では伝熱性能の向」二が認められない。まI
こベンゾトリアゾールを配合しないシリコン樹脂塗料を
塗装した比較量No、 7は、伝熱性能が向上するも、
本発明品よりは劣り、かつ耐食性や耐久性も劣ることが
判る。
On the other hand, a comparison amount Nα5 with a coating thickness of less than 5 μm of silicone resin containing hensitriazole shows excellent heat transfer performance but poor corrosion resistance, and a comparison amount with a coating thickness of more than 20 μm shows heat transfer performance. Performance improvement is not recognized. Ma I
Comparative amount No. 7, which was coated with a silicone resin paint that did not contain benzotriazole, had improved heat transfer performance, but
It can be seen that this product is inferior to the products of the present invention, and also has inferior corrosion resistance and durability.

〔発明の効果〕〔Effect of the invention〕

銅又は銅合金管の内面にベンゾトリアゾールを配合した
シリコン樹脂塗料を塗装し、その塗膜の厚さを5〜20
μ瓦とした本発明伝熱管は、従来より提案されている伝
熱管と同等以上の耐食性と耐久性を有し、かつはるかに
優れた伝熱性能を有するもので、熱交換プラントの熱効
率の低下を最小限に抑え、かつ信頼性の高い運転を可能
にする等工業上顕著な効果を奏するものである。
A silicone resin paint containing benzotriazole is applied to the inner surface of a copper or copper alloy tube, and the thickness of the coating is 5 to 20 mm.
The heat exchanger tube of the present invention made of μ tiles has corrosion resistance and durability equivalent to or higher than conventionally proposed heat exchanger tubes, and has far superior heat transfer performance, which reduces the reduction in thermal efficiency of heat exchange plants. It has remarkable industrial effects, such as minimizing the amount of damage and enabling highly reliable operation.

= 12 −= 12 -

Claims (1)

【特許請求の範囲】[Claims] 銅又は銅合金管の内面に、ベンゾトリアゾールを配合し
たシリコン樹脂塗料を塗装し、管内面に厚さ5〜20μ
mの塗膜を形成したことを特徴とする熱交換器用伝熱管
Coat the inner surface of a copper or copper alloy tube with a silicone resin paint containing benzotriazole to a thickness of 5 to 20 μm on the inner surface of the tube.
A heat exchanger tube for a heat exchanger, characterized by forming a coating film of m.
JP6594887A 1987-03-20 1987-03-20 Thermal conducting pipe for heat exchanging operation Pending JPS63233300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6594887A JPS63233300A (en) 1987-03-20 1987-03-20 Thermal conducting pipe for heat exchanging operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6594887A JPS63233300A (en) 1987-03-20 1987-03-20 Thermal conducting pipe for heat exchanging operation

Publications (1)

Publication Number Publication Date
JPS63233300A true JPS63233300A (en) 1988-09-28

Family

ID=13301705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6594887A Pending JPS63233300A (en) 1987-03-20 1987-03-20 Thermal conducting pipe for heat exchanging operation

Country Status (1)

Country Link
JP (1) JPS63233300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012862A (en) * 1990-09-12 1991-05-07 Jw Aluminum Company Hydrophilic fins for a heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012862A (en) * 1990-09-12 1991-05-07 Jw Aluminum Company Hydrophilic fins for a heat exchanger

Similar Documents

Publication Publication Date Title
JPS5950269B2 (en) Coating composition for corrosion protection on the inner surface of heat exchanger tubes
CN108395808A (en) A kind of high heat conductance high temperature resistant heavy anti-corrosion paint and preparation method thereof
CN104266958A (en) Test method for evaluating corrosion resistance of coating
JPS63233300A (en) Thermal conducting pipe for heat exchanging operation
JPS63233299A (en) Thermal conducting pipe with inner coated layer for heat exchanger
CN203976914U (en) Aluminum pipe heat exchanger and heat-exchange equipment
JPH024195A (en) Copper or copper alloy u-tube coated with inner surface anti-corrosion coating film for heat exchanger
JPH01296095A (en) Heat transfer steel tube for heat exchanger, whose inner surface is coated with corrosion-resistant film
JPS6277600A (en) Heat transfer tube for use in heat exchanger
JPH0445394A (en) Heat transmitting pipe for heat exchanger
CN103275526B (en) A kind of Non-chromium Zn-al Coating protective system of nickel-manganese-contained-silicon
CN103059616B (en) Nickel-magnesium-titanium-manganese-containing chromium-free zinc aluminum coating corrosion-resistant coating
JPH02282699A (en) Thermal conducting pipe for heat exchanger
JPS62258998A (en) Heat transfer pipe for heat exchanger
JPH03133632A (en) Heat transfer pipe for u-shape type heat exchanger and manufacture therefor
JPH0599588A (en) Heat transfer tube for heat exchanger and manufacture thereof
JPS63118598A (en) Copper alloy pipe for heat exchanger with anti-corrosion paint film on inner surface
JPS6179998A (en) Corrosion prevention of heat exchanging tube
JPH03156298A (en) Heat transfer tube for heat exchanger
JPS61282796A (en) Heat transfer pipe used in heat exchanger
CN103275528B (en) A kind of Non-chromium Zn-al Coating protective system of titaniferous-manganese
Lapshin et al. Mechanism of Corrosion of Low Carbon Steel Under Varnish Coatings[Previously Titled: Investigation of Mechanism of Low Carbon Steel Corrosion Under Lacquer Coatings.]
CN103232739B (en) Chrome-free zinc-aluminum coating anticorrosive paint comprising nickel-magnesium-titanium
CN103044992B (en) Nickel-manganese-containing chromium-free zinc-aluminum coating anti-corrosive paint
CN103044983B (en) Nickel-containing chromium-free zinc-aluminum coating anti-corrosive paint