JPS63233084A - Manufacture of ceramic composite body - Google Patents

Manufacture of ceramic composite body

Info

Publication number
JPS63233084A
JPS63233084A JP62066993A JP6699387A JPS63233084A JP S63233084 A JPS63233084 A JP S63233084A JP 62066993 A JP62066993 A JP 62066993A JP 6699387 A JP6699387 A JP 6699387A JP S63233084 A JPS63233084 A JP S63233084A
Authority
JP
Japan
Prior art keywords
ceramic
fibers
molded body
particles
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62066993A
Other languages
Japanese (ja)
Inventor
晃 山川
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62066993A priority Critical patent/JPS63233084A/en
Publication of JPS63233084A publication Critical patent/JPS63233084A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス繊維を含むセラミックス複合体
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic composite containing ceramic fibers.

〔従来の技術〕[Conventional technology]

セラミックスは高温強度に優れているため高温構造材と
して、例えば切削工具やエンジン部材等の開発が進めら
れている。
Since ceramics have excellent high-temperature strength, they are being developed as high-temperature structural materials, such as cutting tools and engine parts.

しかしながら、セラミックスの強度及び信頼性はまだ十
分とは云えず、靭性の不足も指摘されている。そこで、
セラミックスの強化法が種々提案され、なかでもセラミ
ックス粒子中に高強度の分散剤を添加混合して焼結する
ことによって強度等の特性改善を図ることが広く行われ
、特に分散剤としてセラミックスの繊維やウィスカーの
添加が有効であるとされている。
However, the strength and reliability of ceramics are still not sufficient, and it has been pointed out that they lack toughness. Therefore,
Various methods for strengthening ceramics have been proposed, and among them, it is widely practiced to improve properties such as strength by adding and mixing a high-strength dispersant into ceramic particles and sintering.In particular, ceramic fibers are used as a dispersant. It is said that the addition of whiskers or whiskers is effective.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

己かるに、セラミックス粒子中に繊維やウィスカーを均
一に分散させることは極めて困難であり、通常のが一ル
ミル等による混合ではどうしても不均一な部分が発生す
る。そのだめ、これを焼結しても所望の特性が得られな
いばかりか、かえって強度等が低下する場合もあった。
It is extremely difficult to uniformly disperse fibers and whiskers in ceramic particles, and mixing using a conventional lumen or the like inevitably results in non-uniform areas. Unfortunately, even if this is sintered, not only the desired properties cannot be obtained, but also the strength etc. may be reduced.

本発明は、かかる従来の事情に鑑み、セラミックスの粒
子中に分散強化剤としてのセラミックスの繊維やウィス
カーが均一に分散しておシ、浸れた機械的特性を有する
セラミックス複合体を提供することを目的とする。
In view of such conventional circumstances, the present invention aims to provide a ceramic composite having ceramic fibers and whiskers as a dispersion reinforcing agent uniformly dispersed in ceramic particles and having excellent mechanical properties. purpose.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明のセラミックス複合体の調造方法は、導電性の又
は導電性処理を施したセラミックス繊維の成形体をセラ
ミックス粉末の懸濁液中に浸漬し、電気泳動により片方
の電極としたセラミックス繊維の成形体中にセラミック
ス粉末を電着充填させた後、これを加圧下で加熱して複
合化及び緻密化することを特徴としている。
The method for preparing a ceramic composite of the present invention involves immersing a molded body of ceramic fibers that are conductive or have undergone conductive treatment into a suspension of ceramic powder, and using electrophoresis to form one electrode of the ceramic fibers. The method is characterized in that after ceramic powder is electrodeposited into a molded body, it is heated under pressure to form a composite and become densified.

使用するセラミックス繊維としては、AQ 203、A
、eN、 SiC,Si3N4 、ZrO2、TiC,
TiN等の繊維のほか炭素繊維があり、繊維の形状はウ
ィスカーやテヨツゾト°ファイノぐ−等の単繊維でも長
繊維でもよい。これ等のセラミックス繊維のなかで炭素
繊維以外は電気絶縁性であるので、その繊維表面にCV
D法により炭素薄膜や金属薄膜を形成する等の導電性処
理を施す必要がある。
The ceramic fibers used are AQ 203 and A
, eN, SiC, Si3N4, ZrO2, TiC,
In addition to fibers such as TiN, there are carbon fibers, and the fibers may be in the form of single fibers such as whiskers or fibers, or long fibers. Among these ceramic fibers, all other than carbon fibers are electrically insulating, so CV
It is necessary to perform conductive treatment such as forming a carbon thin film or metal thin film by method D.

これ等のセラミックス繊維は、単独で又はセルロース、
繊維等と一緒に、紙すき法、プレス法、押出法等の通常
の方法によりノート状に成形するが、電気泳動によるセ
ラミックス粒子の侵入深さに隅間があるので通常は成形
体の厚さをl ax以下とすることが好ましい。
These ceramic fibers can be used alone or with cellulose,
Together with fibers, etc., it is formed into a notebook shape using conventional methods such as paper making, pressing, and extrusion. However, since there are gaps in the penetration depth of ceramic particles due to electrophoresis, the thickness of the molded product is usually limited. It is preferable to set it to below lax.

又、セラミックス粉末としては、AQ203、Af!N
In addition, as ceramic powder, AQ203, Af! N
.

SiC,Si3N4、ZrO2、TiC,TiNをはじ
めあらゆるセラミックスを使用でき、これ等のセラミッ
クス粉末と共に金属その他の粉末を使用することも可能
である。尚、使用する粉末の粒径は、セラミックス繊維
の成形体中への侵入を容易にするため、一般的には10
μm以下とすることが好ましい。
All kinds of ceramics including SiC, Si3N4, ZrO2, TiC, and TiN can be used, and it is also possible to use metal and other powders together with these ceramic powders. The particle size of the powder used is generally 10 to facilitate the penetration of the ceramic fiber into the molded body.
It is preferable to set it to below micrometer.

これ等のセラミックスの粒子は、通常は電解液中に分散
懸濁して正負いずれかの電荷をもち得るが、TiC及び
TiN以外は一般に電荷の密度が小さく能率的な電気泳
動が難しい。そこで、好ましくはセラミックス粉末の粒
子表面に、液中で解離してセラミックス粒子に電荷を付
与する物質を付着させる。具体的な表面処理方法として
は、セラミックス粉末をポリアクリロニトリルと機械的
に混合することにより、セラミックス粒子表面にポリア
クリロニトリルを付着させる方法が簡便且つ有効である
These ceramic particles are usually dispersed and suspended in an electrolytic solution and can have either positive or negative charges, but particles other than TiC and TiN generally have low charge densities and are difficult to perform efficient electrophoresis. Therefore, preferably, a substance that dissociates in a liquid and imparts an electric charge to the ceramic particles is attached to the particle surface of the ceramic powder. As a specific surface treatment method, a simple and effective method is to mechanically mix ceramic powder with polyacrylonitrile to adhere polyacrylonitrile to the surface of ceramic particles.

〔作用〕[Effect]

本発明方法では、セラミックスの成形体中にマトリック
スとなるセラミックス粉末を電気泳動法を利用して電着
充填させる。
In the method of the present invention, ceramic powder serving as a matrix is electrodeposited and filled into a ceramic molded body using electrophoresis.

電解液中に懸濁されたセラミックス粉末の粒子は電荷を
有するので、この懸濁液中にセラミックス繊維の成形体
を浸漬してセラミックス粒子の電荷とは逆の電極として
直流電圧を印加すれば、セラミックス粒子はセラミック
ス繊維成形体中に泳動により次々に侵入し、成形体に電
着して充填される。セラミックス繊維成形体中に電着し
たセラミックス粉末の量は電荷移動量により推定でき、
通常はセラミックス粉末が20〜90体積チとなるまで
電気泳動を行うことが好ましい。
Since the ceramic powder particles suspended in the electrolytic solution have an electric charge, if a ceramic fiber molded body is immersed in this suspension and a DC voltage is applied as an electrode opposite to the electric charge of the ceramic particles, The ceramic particles enter the ceramic fiber molded body one after another by electrophoresis, and are electrodeposited and filled into the molded body. The amount of ceramic powder electrodeposited in the ceramic fiber compact can be estimated from the amount of charge transfer.
Usually, it is preferable to perform electrophoresis until the ceramic powder reaches 20 to 90 volumes.

電気泳動によりセラミックス粉末を電着充填させたセラ
ミックス繊維成形体は、その後加圧下において組成に応
じた温度で加熱することにより複合化され且つ緻密化さ
れる。特に緻密化のためには、ホットプレスや熱間静水
圧プレス等による焼結が好ましい。
The ceramic fiber molded body filled with ceramic powder by electrodeposition by electrophoresis is then heated under pressure at a temperature depending on the composition to be composited and densified. In particular, for densification, sintering by hot pressing, hot isostatic pressing, etc. is preferable.

〔実施例〕〔Example〕

下表に示す各セラミックス繊維に少量のセルロース繊維
を加え、厚さQ、 l armの薄板状にプレス成形し
た。尚、炭素繊維以外のセラミックス繊維には、CVD
法により膜厚0.2μmの炭素薄膜を前もって被覆した
。又、使用するセラミックス粒子は、前もってポリアク
リロニトリルと機械的に混合し、粒子表面にポリアクリ
ロニトリルを付着させておいた。
A small amount of cellulose fiber was added to each of the ceramic fibers shown in the table below, and the mixture was press-molded into a thin plate having a thickness of Q and 1 arm. Furthermore, for ceramic fibers other than carbon fibers, CVD
A thin carbon film with a thickness of 0.2 μm was coated in advance by the method. Further, the ceramic particles used were mechanically mixed with polyacrylonitrile in advance, so that the polyacrylonitrile was adhered to the particle surface.

下表に示す組合せで、各成形体を夫々のセラミックス粉
末を懸濁させた電解液中に浸漬し、成形体を各々のセラ
ミックス粒子のもつ電荷と反対の電極とし、他の電極と
の間に100vの直流電圧を印加することにより、液中
のセラミックス粉末全成形体中に電着させて充填した。
In the combinations shown in the table below, each molded body is immersed in an electrolytic solution in which each ceramic powder is suspended, and the molded body is used as an electrode opposite to the electric charge of each ceramic particle, and between it and the other electrode. By applying a DC voltage of 100 V, the ceramic powder in the liquid was electrodeposited and filled into the entire molded body.

その後、セラミックス粉末を電着充填したセラミックス
繊維成形体を下表に示す温度でホットプレスてより2時
間焼結した。
Thereafter, the ceramic fiber molded bodies filled with ceramic powder by electrodeposition were hot pressed at the temperatures shown in the table below and sintered for 2 hours.

比較のために、各試料と夫々同一のセラミックスの繊維
と粉末を用いて、これ等をゴールミルにより8時間混合
した後、各々の試料と同一条件で焼結した。各実施例及
び比較例のセラミックス複合体の特性を下表に併せて示
しだ。
For comparison, ceramic fibers and powders identical to those of each sample were mixed in a gall mill for 8 hours, and then sintered under the same conditions as each sample. The characteristics of the ceramic composites of each example and comparative example are also shown in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、セラミックス繊維を極めて均一に分散
させることができる結果、強度等の機械的特性に優れた
緻密なセラミックス複合体を製造することができる。
According to the present invention, ceramic fibers can be dispersed extremely uniformly, and as a result, a dense ceramic composite with excellent mechanical properties such as strength can be manufactured.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性の又は導電性処理を施したセラミックス繊
維の成形体をセラミックス粉末の懸濁液中に浸漬し、電
気泳動により片方の電極としたセラミックス繊維の成形
体中にセラミックス粉末を電着充填させた後、これを加
圧下で加熱して複合化及び緻密化することを特徴とする
セラミックス複合体の製造方法。
(1) A molded body of ceramic fiber that is conductive or has been treated to be conductive is immersed in a suspension of ceramic powder, and the ceramic powder is electrodeposited into the molded body of ceramic fiber as one electrode by electrophoresis. A method for manufacturing a ceramic composite, which comprises filling the ceramic composite and then heating it under pressure to compose and densify the composite.
(2)セラミックス粉末の粒子表面に、液中で解離して
セラミックス粒子に電荷を付与する物質を予め付着させ
ることを特徴とする、特許請求の範囲(1)項記載のセ
ラミックス複合体の製造方法。
(2) A method for producing a ceramic composite according to claim (1), characterized in that a substance that dissociates in a liquid and imparts an electric charge to the ceramic particles is attached to the surface of the ceramic powder particles in advance. .
JP62066993A 1987-03-20 1987-03-20 Manufacture of ceramic composite body Pending JPS63233084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62066993A JPS63233084A (en) 1987-03-20 1987-03-20 Manufacture of ceramic composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62066993A JPS63233084A (en) 1987-03-20 1987-03-20 Manufacture of ceramic composite body

Publications (1)

Publication Number Publication Date
JPS63233084A true JPS63233084A (en) 1988-09-28

Family

ID=13332037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62066993A Pending JPS63233084A (en) 1987-03-20 1987-03-20 Manufacture of ceramic composite body

Country Status (1)

Country Link
JP (1) JPS63233084A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019569A1 (en) * 1991-05-09 1992-11-12 Mitsui Mining Company, Limited Alumina-fiber-reinforced ceramic material and method of manufacturing said material
JPH05104506A (en) * 1991-10-17 1993-04-27 Toda Constr Co Ltd Manufacture of carbon fiber reinforced inorganic composite
US5554271A (en) * 1991-11-22 1996-09-10 Rolls-Royce Plc Method of manufacturing a composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019569A1 (en) * 1991-05-09 1992-11-12 Mitsui Mining Company, Limited Alumina-fiber-reinforced ceramic material and method of manufacturing said material
JPH05104506A (en) * 1991-10-17 1993-04-27 Toda Constr Co Ltd Manufacture of carbon fiber reinforced inorganic composite
US5554271A (en) * 1991-11-22 1996-09-10 Rolls-Royce Plc Method of manufacturing a composite material

Similar Documents

Publication Publication Date Title
Wu et al. Fabrication of oriented SiC‐whisker‐reinforced mullite matrix composites by tape casting
JPS6364968A (en) Silicon carbide base composite ceramics
EP1934156A1 (en) Ceramic from preceramic paper or board structures, process for producing it and its use
CN1479659A (en) Method for making thin film in metal/ceramic composite
JPS63233084A (en) Manufacture of ceramic composite body
Alford et al. Engineering ceramics–the process problem
EP0675091B1 (en) Composite material for sliding purposes, process for its preparation and use thereof
EP0613455B1 (en) Method of manufacturing a composite material
US5320989A (en) Boron nitride-containing bodies and method of making the same
US5928583A (en) Process for making ceramic bodies having a graded porosity
US5273941A (en) Fiber reinforced silicon carbide ceramics and method of producing the same
JP3404498B2 (en) Method for producing short fiber reinforced C / C composite
JP2508157B2 (en) Method for joining silicon carbide ceramics
JPH0424310B2 (en)
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JPH0483767A (en) Production of whisker-reinforced ceramic composite material
JPS62216969A (en) Fiber reinforced si3n4 ceramics and manufacture
Chen et al. Fibre Reinforced Alumina Ceramic Composites by Sol-Gel Processing
JPS6042287A (en) Porous ceramic partial minuting process
JPS6042282A (en) Method of bonding porous ceramics
JPH07102994B2 (en) Method for producing fiber-reinforced ceramics
JPS6360165A (en) Manufacture of fiber reinforced ceramics
JPS5926972A (en) Manufacture of nitride carbide ceramic
JPH03109263A (en) Piezoelectric ceramics
JPS61281059A (en) Manufacture of electroconductive ceramic sintered body