JPS63232975A - Fluid polishing method - Google Patents

Fluid polishing method

Info

Publication number
JPS63232975A
JPS63232975A JP62062586A JP6258687A JPS63232975A JP S63232975 A JPS63232975 A JP S63232975A JP 62062586 A JP62062586 A JP 62062586A JP 6258687 A JP6258687 A JP 6258687A JP S63232975 A JPS63232975 A JP S63232975A
Authority
JP
Japan
Prior art keywords
polishing
tool
circumferential surface
workpiece
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62062586A
Other languages
Japanese (ja)
Inventor
Junji Takashita
順治 高下
Mikio Nakasugi
幹夫 中杉
Sekinori Yamamoto
山本 碩徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62062586A priority Critical patent/JPS63232975A/en
Publication of JPS63232975A publication Critical patent/JPS63232975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To suppress damage to a minimum limit on a polished surface and to enhance quality of the finish polished surface, by forming an utmost limited polishing circumferential section on the peripheral surface of a rotary unit polishing tool by a fluid pressure increase-concentrating means so that a high dynamic pressure of fluid is generated in a fine polishing point even if the tool rotates in a low speed. CONSTITUTION:A rotary unit polishing tool 15 opposes its rotary circumferential surface approaching to a workpiece surface provided being arranged and immersed in polishing fluid, and this tool 15, which rotates its rotary circumferential surface relatively with the workpiece surface generating a dynamic pressure of the polishing fluid in a fine clearance between the rotary circumferential surface and the workpiece surface, polishes a fine amount of the workpiece surface. Here the rotary unit polishing tool 15 arranges in an equal space grooves 20 or protruding walls which converge in an opposite direction to the rotation toward the central part from the sideward peripheral edge of the rotary circumferential surface of the tool 15, and the tool 15, which increases a pressure of the polishing fluid to be converged along this rotary circumferential surface by these grooves 20 or protruding walls, enables a high dynamic pressure of fluid to be generated in a fine polishing point and a finished surface of high quality to be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、研削加工または研磨加工などの、加工物の加
工面の表面の局所微小量加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for locally micro-machining the surface of a machined surface of a workpiece, such as grinding or polishing.

(従来の技術〉 研磨用硬質微粉懸濁液中に被加工物および加工工具を浸
漬した状態で、被加工物表面を微小量ずつ除去する方法
ならびに装置が知られている。これは一般にE E M
 (Elastic Emissior Machin
ing)と称せられるもので、たとえば第5図にその原
理を示すように、ポリウレタン球30を懸濁液中で回転
しつつ加工面に沿って移動させることによって、懸濁液
中の微細粉末粒子(0,1〜0.O1μ)31はポリウ
レタン球30と加工面34との間の間隙33を通つ加速
駆動されて、加工面と衝突し0.1μ以下の微粒子のご
く一部が被加工表面の原子に接触し小数の原子を除去す
る。図から分かるように加工工具30と被加工面とは非
接触状態に保たれる。第6図はこの技術を実施する装置
の一実施例で、移動テーブル35上に加工懸濁液35を
満たした容器36中に被加工物32およびポリウレタン
球30が浸漬され、ポリウレタン球30を回転させて微
小量の原子を加工面から除去させる。図において、ポリ
ウレタン球30はモータ37によって回転駆動され、モ
ータ37およびポリウレタン球30は所望加工形態にも
とずいてNC装置38によって自動的に制御される。こ
の方法は非接触加工であるため、加工現象が安定しポリ
ウレタン球の反覆走査によってその回数と直線的に比例
した加工量が得られる。図においてPは懸濁液循環ポン
プである。
(Prior Art) A method and an apparatus are known for removing minute amounts of the surface of a workpiece while the workpiece and processing tool are immersed in a suspension of hard fine powder for polishing. M
(Elastic Emissior Machine
For example, as shown in FIG. (0.1~0.O1μ) 31 is accelerated through the gap 33 between the polyurethane ball 30 and the processing surface 34, collides with the processing surface, and a small part of the fine particles of 0.1μ or less are processed. It contacts atoms on the surface and removes a small number of atoms. As can be seen from the figure, the processing tool 30 and the surface to be processed are maintained in a non-contact state. FIG. 6 shows an example of a device implementing this technique, in which a workpiece 32 and a polyurethane ball 30 are immersed in a container 36 filled with a processing suspension 35 on a moving table 35, and the polyurethane ball 30 is rotated. to remove minute amounts of atoms from the machined surface. In the figure, a polyurethane ball 30 is rotationally driven by a motor 37, and the motor 37 and the polyurethane ball 30 are automatically controlled by an NC device 38 based on a desired processing pattern. Since this method is non-contact processing, the processing phenomenon is stable, and by repeated scanning of the polyurethane ball, a processing amount linearly proportional to the number of times of scanning can be obtained. In the figure, P is a suspension circulation pump.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記方法はポリウレタン球の回転が不十分の場
合には該球と被加工面間と流通する研磨用懸濁液に作用
する動圧が不足し、所望の研削効果が得られず、はなは
だしいときは、球と液加1物との直接接触を起こし、加
工面にjP1傷を午えることがあり、全体として不安定
な仕上り研磨面となる欠点がある。
However, in the above method, if the rotation of the polyurethane ball is insufficient, the dynamic pressure acting on the polishing suspension flowing between the ball and the workpiece surface is insufficient, and the desired grinding effect cannot be obtained, which is extremely problematic. In some cases, direct contact between the ball and the liquid additive may occur, resulting in jP1 scratches on the machined surface, resulting in an unstable finished polished surface as a whole.

C問題点を解決するための手段〕 本発明は、−ヒ述の欠点を解決し、特に非球面レンズま
たはミラーのような被加工面の研磨を対象としたもので
、すなわち、 研磨用微粉懸濁液中に浸漬配設された被加工物表面に、
回転体加工工具の円周面を近接対向させ、前記加工工具
の回転円周面と前記加工物表面間の微小間隙内に1胃記
懸濁液の流動動圧を発生させて加工物表面の微小量を研
磨する液体研磨方法において、 加工物表面との相対回転によって、前記回転体加工工具
の表面に、前記懸濁液の液圧を円周に沿って収れん的に
上昇させる手段を形成させた液体研磨方法である。
Means for Solving Problem C] The present invention solves the above-mentioned drawbacks and is particularly aimed at polishing surfaces to be processed such as aspherical lenses or mirrors. On the surface of the workpiece immersed in the turbid liquid,
Circumferential surfaces of rotary processing tools are closely opposed to each other, and a dynamic pressure of the liquid suspension is generated within a minute gap between the rotating circumferential surface of the processing tool and the surface of the workpiece, thereby forming a fluid on the surface of the workpiece. In a liquid polishing method for polishing a minute amount, a means for convergently increasing the liquid pressure of the suspension along the circumference is formed on the surface of the rotary processing tool by relative rotation with the surface of the workpiece. This is a liquid polishing method.

本発明による上記方法によって、加工物の被加工面の極
限された小範囲を局部的に微小量(0,lμ程度)の除
去が可能となり、極めてすぐれた表面粗さをもつ任意の
非球面形状を創成できる。
By the above-mentioned method according to the present invention, it is possible to locally remove a minute amount (about 0.1μ) from a small area on the surface of the workpiece, and it is possible to remove any aspherical shape with extremely excellent surface roughness. can be created.

〔実施例〕〔Example〕

図面を参照して本発明による液体研磨方法を実施例につ
いて以下に説明する。
Examples of the liquid polishing method according to the present invention will be described below with reference to the drawings.

第1図は、本発明による研磨方法を実施するのに用いら
れる研磨装置の一実施例を示し、図においてベースプレ
ート1上に矢印X方向に移動するX方向移動テーブル2
、該テーブル上に載置されてY方向に移動するY方向移
動テーブル3およびY方向移動テーブル3上に液槽4が
固定されている。X方向およびY方向移動テーブル2お
よび3はそれぞれ駆動モータM、およびM2によって駆
動される。液JfI4の内側底部に垂直に固設された垂
直板5には揺動軸6を介して加工物保持板7が揺IJJ
M6まわりに揺動可能に保持されている。加工物保持板
7はL形状を成し、その垂直面部は垂直板5と接し、か
つその水平面部は液槽4の底部と揺動に必要な空隙を保
って配置されている。加工物8は前記水平面部上に設置
され、加工物保持板7はモータM3によって揺動される
。なお、本研磨方法においては、研磨懸濁液中で回転体
工具を高速で回転させるので、必然的に懸濁液の周囲へ
の飛散を伴なうので、これを防止するために、図におい
て仮想線で示した包囲体18を配設することが好適であ
る。
FIG. 1 shows an embodiment of a polishing apparatus used to carry out the polishing method according to the present invention.
, a Y-direction moving table 3 placed on the table and moving in the Y direction, and a liquid tank 4 fixed on the Y-direction moving table 3. The X-direction and Y-direction moving tables 2 and 3 are driven by drive motors M and M2, respectively. A workpiece holding plate 7 is oscillated via a oscillating shaft 6 to a vertical plate 5 fixed vertically to the inner bottom of the liquid JfI4.
It is held so as to be able to swing around M6. The workpiece holding plate 7 has an L-shape, and its vertical surface is in contact with the vertical plate 5, and its horizontal surface is arranged with a gap necessary for rocking from the bottom of the liquid tank 4. The workpiece 8 is placed on the horizontal surface, and the workpiece holding plate 7 is swung by a motor M3. In addition, in this polishing method, since the rotary tool is rotated at high speed in the polishing suspension, the suspension inevitably scatters around, so in order to prevent this, the Preferably, an enclosure 18, shown in phantom, is provided.

ベース支柱9はベースプレート1の後部側端から垂直に
延び、その垂直面10にはハウジング11が該垂直面1
0に沿って摺動するスライドレール12が配設されてい
る。エアシリンダ13がベース支柱9の垂直面上端に固
設され、そのピストンロッド14の下端はハウジング1
1と固定されている。加工物8の加工面に研磨流体を噴
射する本発明に係る回転工具15は、ホルダ16に支持
されかつホルダ内の軸受手段を介してモータM4によっ
て揺動可能である。17は各モータM、、M2 、M3
 、M、の制御装置である。
The base column 9 extends perpendicularly from the rear end of the base plate 1, and the housing 11 is attached to the vertical surface 10 thereof.
A slide rail 12 that slides along 0 is provided. An air cylinder 13 is fixed to the upper end of the vertical surface of the base support 9, and the lower end of the piston rod 14 is connected to the housing 1.
It is fixed at 1. A rotary tool 15 according to the present invention that injects a polishing fluid onto the processing surface of the workpiece 8 is supported by a holder 16 and is swingable by a motor M4 via bearing means within the holder. 17 is each motor M, , M2, M3
, M, is a control device.

なお、以上のように構成された液体研磨装置は、従来か
ら既に採用されている方式のものに準するので、その機
能についての説明は省略する。
Note that the liquid polishing device configured as described above is based on a system that has already been adopted in the past, so a description of its functions will be omitted.

つぎに、本発明による液体研磨方法に使用する回転体に
ついて述べる。
Next, the rotating body used in the liquid polishing method according to the present invention will be described.

第2図において、加工物保持板7に取付けられた位置お
よび姿勢が変更される加工物8に、本発明に係わる回転
体加工工具15は回転駆動軸16を介して加工表面と最
適非接触状態に保持されるように空圧シリンダにより保
持されている。
In FIG. 2, a rotary body machining tool 15 according to the present invention is attached to a workpiece 8, which is attached to a workpiece holding plate 7 and whose position and orientation are changed, through a rotary drive shaft 16, and is placed in an optimal non-contact state with the machining surface. It is held by a pneumatic cylinder so that it is held in place.

第3図および第4図は、加工工具円周面に形成されだ液
圧上昇手段の2種の実m例を示し、前者は溝20および
後者は突出壁21形状の手段をそれぞれ示す。なおこれ
らの手段は直線状の山形であるが、第5図に示すように
円弧形状の溝または突出壁22とすることもできる。
3 and 4 show two examples of hydraulic pressure increasing means formed on the circumferential surface of a processing tool, the former showing a groove 20 and the latter a projecting wall 21, respectively. Although these means are linear chevron shapes, they may also be arcuate grooves or protruding walls 22 as shown in FIG.

使用時には、これらの工具は大むね毎分数百ないし数千
回転で回転し、被加工面への液圧はエアシリンダで調節
しながら一定値で加圧する。工具の自重が大きくて放置
すれば接触加工状態となるおそれがあるときは、エアシ
リンダに逆圧をかけて常に適切な荷重(たとえば数百グ
ラム)を維持させる。加工物は、加工物保持板上で加工
点の法線方向に常に加工圧力が作用するようにNC制御
される。さらに、加工量は時間に比例するので、正確な
削り代を定めるために時間制御を行なう。
During use, these tools generally rotate at several hundred to several thousand revolutions per minute, and the hydraulic pressure applied to the workpiece surface is adjusted at a constant value using an air cylinder. If the weight of the tool is large and there is a risk of contact machining if left unattended, counter pressure is applied to the air cylinder to maintain an appropriate load (for example, several hundred grams) at all times. The workpiece is NC-controlled so that machining pressure is always applied on the workpiece holding plate in the normal direction of the machining point. Furthermore, since the amount of machining is proportional to time, time control is performed to determine accurate machining allowance.

本発明の方法に使用される回転体工具は、ナイロン、ウ
レタン、デルリンなどの硬質樹脂で造ることが好適であ
る。
The rotary tool used in the method of the present invention is preferably made of hard resin such as nylon, urethane, Delrin, or the like.

■具の形状は、球の一部に限定せず、回転体(回転だ同
体や、トーリック面体など)を用いることができる。
■The shape of the tool is not limited to a part of a sphere, and a rotating body (such as a rotating dowel or a toric surface) can be used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明による液体研磨方法において
、回転円周面に液圧上昇集中手段によって極限された研
磨加工円周区域が形成されることによフて、回転工具が
比較的低い回転でも微小な加工点に高い液体動圧が発生
し、被接触状態が保証されて、加工面への損傷が最小限
に押えられ。
As described above, in the liquid polishing method according to the present invention, the polishing circumferential area limited to the limit by the liquid pressure increase concentration means is formed on the rotating circumferential surface, so that the rotating tool rotates at a relatively low speed. However, high liquid dynamic pressure is generated at the minute machining point, ensuring contact status and minimizing damage to the machining surface.

高品質の研磨仕上げ面が得られる。A high quality polished surface can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による液体研磨方法を実施するのに用
いられる液体研磨装置の概略構成を示す斜視図、第2図
は、本発明の方法に係わる回転体研磨工具と加工物との
加工時の相対配置例、第3図および第4図は、回転研磨
工具の周面に形成された液圧−F昇手段の異なる実施例
、第5図は前記液圧上昇手段の別の実施例、第6図およ
び第7図は、既知のEEM法による液体研削方法の作用
原理および該原理を実施する装置の概略構造それぞれを
示す図である。 1・・・・・・ベースプレート、2.3・・・移動テー
ブル、4・・・・・・液槽、      7・・・・・
・加工物保持板、8・・・・・・加工物、    9・
・・・・・ベース支柱、12・・・・・・エアシリンダ
、 15・・・・・・回転体工具、17・・・・・・制
御装置、   18・・・・・・液囲い、zO・・・・
・・液圧上昇溝、 21・・・・・・液圧上昇突出壁、 22−・・・・・円孤形液圧上昇手段。
FIG. 1 is a perspective view showing a schematic configuration of a liquid polishing device used to carry out the liquid polishing method according to the present invention, and FIG. 2 is a perspective view showing the processing of a rotary polishing tool and a workpiece according to the method of the present invention. FIGS. 3 and 4 show different embodiments of the hydraulic pressure -F increasing means formed on the circumferential surface of the rotary polishing tool, and FIG. 5 shows another embodiment of the hydraulic pressure increasing means. , 6 and 7 are diagrams respectively showing the working principle of a known EEM liquid grinding method and the schematic structure of an apparatus implementing the principle. 1...Base plate, 2.3...Moving table, 4...Liquid tank, 7...
・Workpiece holding plate, 8...Workpiece, 9・
...Base strut, 12 ... Air cylinder, 15 ... Rotating tool, 17 ... Control device, 18 ... Liquid enclosure, zO・・・・・・
...Hydraulic pressure rising groove, 21...Hydraulic pressure rising protruding wall, 22-...Fluid pressure rising means.

Claims (1)

【特許請求の範囲】 1、研磨用微粉懸濁液中に浸漬配設された被加工物表面
に、回転体加工工具の円周面を近接対向させ、前記加工
工具の回転円周面と前記加工物表面間の微小間隙内に前
記懸濁液の流動動圧を発生させて加工物表面の微小量を
研磨する液体研磨方法において、 加工物表面との相対回転によって、前記回転体加工工具
の表面に、前記懸濁液の液圧を円周に沿って収れん的に
上昇させる手段を形成させたことを特徴とする液体研磨
方法。 2、回転体加工工具の、液圧を収れん的に上昇させる前
記手段が、回転体の円周面の側方周縁から中央部に向っ
て反回転方向に収れんする、円周面に等間隔に配列され
た複数の懸濁液配向部分である特許請求の範囲第1項記
載の液体研磨方法。 3、前記懸濁液配向部分が、円周面上の複数の大むね山
形状の突出壁である特許請求の範囲第2項記載の液体研
磨方法。 4、前記懸濁液配向部分が、円周面上の複数の大むね山
形状の溝である特許請求の範囲第2項記載の液体研磨方
法。
[Scope of Claims] 1. The circumferential surface of a rotating body processing tool is closely opposed to the surface of a workpiece immersed in a polishing fine powder suspension, and the rotating circumferential surface of the processing tool and the In a liquid polishing method in which a dynamic pressure of the suspension is generated in a minute gap between the surfaces of the workpiece to polish a minute amount of the workpiece surface, the rotary processing tool is rotated relative to the workpiece surface. A liquid polishing method characterized in that a means for convergently increasing the liquid pressure of the suspension along the circumference is formed on the surface. 2. The means for convergently increasing the hydraulic pressure of the rotating body processing tool is arranged at equal intervals on the circumferential surface of the rotating body, converging in the counter-rotational direction from the side periphery toward the center of the circumferential surface of the rotating body. The liquid polishing method according to claim 1, wherein the liquid polishing method is a plurality of arranged suspension orientation parts. 3. The liquid polishing method according to claim 2, wherein the suspension orienting portion is a plurality of large mountain-shaped protruding walls on a circumferential surface. 4. The liquid polishing method according to claim 2, wherein the suspension orienting portion is a plurality of large mountain-shaped grooves on a circumferential surface.
JP62062586A 1987-03-19 1987-03-19 Fluid polishing method Pending JPS63232975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062586A JPS63232975A (en) 1987-03-19 1987-03-19 Fluid polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062586A JPS63232975A (en) 1987-03-19 1987-03-19 Fluid polishing method

Publications (1)

Publication Number Publication Date
JPS63232975A true JPS63232975A (en) 1988-09-28

Family

ID=13204572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062586A Pending JPS63232975A (en) 1987-03-19 1987-03-19 Fluid polishing method

Country Status (1)

Country Link
JP (1) JPS63232975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425499A (en) * 2005-04-25 2006-11-01 Zeiss Carl Smt Ag Working a surface in a fluid bath
JP2009083063A (en) * 2007-10-01 2009-04-23 Canon Inc Machining device
JP2009279737A (en) * 2008-05-26 2009-12-03 Nikon Corp Polishing device
KR101007102B1 (en) * 2010-04-19 2011-01-10 허근 Slot cutting roller for stone and products by the slot cutting roller
JP2013252612A (en) * 2013-09-24 2013-12-19 Nikon Corp Grinding device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425499A (en) * 2005-04-25 2006-11-01 Zeiss Carl Smt Ag Working a surface in a fluid bath
JP2009083063A (en) * 2007-10-01 2009-04-23 Canon Inc Machining device
JP2009279737A (en) * 2008-05-26 2009-12-03 Nikon Corp Polishing device
KR101007102B1 (en) * 2010-04-19 2011-01-10 허근 Slot cutting roller for stone and products by the slot cutting roller
JP2013252612A (en) * 2013-09-24 2013-12-19 Nikon Corp Grinding device

Similar Documents

Publication Publication Date Title
KR0168672B1 (en) Double side finishing machine
US4232485A (en) Apparatus for polishing curved surfaces
CN109605186B (en) Sphere polishing machine
US4607460A (en) Grinding machine with a reciprocable column for work supporting devices
JP3973751B2 (en) Grinder
JPS63232975A (en) Fluid polishing method
KR100781026B1 (en) Super-abrasive machining tool and method of use
JPS63267155A (en) Polishing device
JP4458235B2 (en) Concave end machining method and apparatus
JP2005279902A (en) Polishing device and polishing method
KR102068538B1 (en) Polishing system using magnetorheological fluid and polishing method using the same
JPH05329762A (en) Method and device for polishing curved surface
JPH10175150A (en) Curved surface polishing method and device thereof
US2278657A (en) Tool vibrating means
JPH02131851A (en) Polishing device for curved face
JP5084421B2 (en) Lapping tool
US4837979A (en) Polishing device
JPH04183569A (en) Self profiling polishing equipment
JPS5845852A (en) Index table type wafer grinder
JPS62107964A (en) Superfine polishing machine
JPH0426210Y2 (en)
JPS63221966A (en) Noncontact polishing method
JPH0761606B2 (en) Optical lenses, mirrors, etc.
JPS61209874A (en) Spherical body working device
JPS6133858A (en) Accurate polishing device