JPS63232820A - Contact packing for fluid - Google Patents

Contact packing for fluid

Info

Publication number
JPS63232820A
JPS63232820A JP62067001A JP6700187A JPS63232820A JP S63232820 A JPS63232820 A JP S63232820A JP 62067001 A JP62067001 A JP 62067001A JP 6700187 A JP6700187 A JP 6700187A JP S63232820 A JPS63232820 A JP S63232820A
Authority
JP
Japan
Prior art keywords
packing
rod
fluid contact
fluid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62067001A
Other languages
Japanese (ja)
Other versions
JPH0583300B2 (en
Inventor
Katsuya Asai
克也 浅井
Kuniharu Kondo
邦治 近藤
Junichi Suzuki
純一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62067001A priority Critical patent/JPS63232820A/en
Publication of JPS63232820A publication Critical patent/JPS63232820A/en
Publication of JPH0583300B2 publication Critical patent/JPH0583300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32279Tubes or cylinders

Abstract

PURPOSE:To enhance the gas-liq. contact efficiency of the title packing by combining many ceramic bar-shaped bodies inclined to the axis of a packed tower to obtain an assembly wherein many voids through which a fluid circulates are formed between the respective bar-shaped bodies and using the assembly as the packing. CONSTITUTION:Innumerable fine particles are adhered to the surface of a round bar to form a rugged surface. The obtained round bars 11 and 12 are arranged at a specified inclination to the axis of the packed tower, at prescribed intervals, and almost in parallel. The round bars 11 and 12 are crossed at a symmetrical angle, and the intersections are bonded by an adhesive. Accordingly, since the packing has a three-dimensional reticular internal structure and has many voids, the gas-liq. contact efficiency can be enhanced. In addition, a ceramic material is used for the round bar.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無情塔、吸収塔、冷却塔、放散塔等流体接触用
の充填塔内に充填されて両気体、両液体、気液、気液と
触媒等の接触を効率的に行うための流体接触用充填物に
関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to packed towers for fluid contact, such as ruthless towers, absorption towers, cooling towers, and stripping towers, which are filled with gases, liquids, gas-liquids, gas-liquids, etc. The present invention relates to a fluid contact packing for efficiently contacting a liquid with a catalyst, etc.

〔従来技術〕[Prior art]

この種の充填物はセラミックス、ガラス、全屈、合成樹
脂等からなるビーズ、ベレフト、リング、プレート片、
その他の形状で不規則に充填される不規則充填物と、上
記した各材料からなる各種形状の繰返し構造で規則的に
充填される規則充填物とに大別される。
This type of filling is made of ceramics, glass, full bends, beads, bead, rings, plate pieces made of synthetic resin, etc.
They are roughly divided into irregular packings, which are filled irregularly with other shapes, and regular packings, which are regularly filled with repeating structures of various shapes made of the above-mentioned materials.

これらの充填物のうち前者の充填物においては、塔内へ
の充填が容易であるという利点があるものの圧力損失が
大きく、かつ流体のチャネリング現象が生じ易いという
問題がある。このため、塔内への充填に手数を要するも
のの圧力損失が少ない後者の充填物の使用が主流となっ
てきている。
Among these packings, the former packing has the advantage of being easy to fill into the column, but has the problem of large pressure loss and a tendency to cause fluid channeling. For this reason, the use of the latter type of packing, which requires time and effort to fill into the column but has low pressure loss, has become mainstream.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、後者の充填物すなわち規則充填物はその代表
例であるハニカム構造体からも明らかなように、塔の軸
線方向に略平行な多数の流路を備えているため圧力損失
は不規則充填物に比して小さい利点があるものの、特に
低温液量領域においてガスの吹き抜は現象が生じ易く、
流体接触効率が低下するという問題がある。
By the way, the latter type of packing, that is, regular packing, has a large number of flow passages that are approximately parallel to the axial direction of the column, as is clear from the honeycomb structure that is a typical example thereof, so the pressure loss is lower than that of irregular packing. Although it has the advantage of being smaller compared to
There is a problem that fluid contact efficiency is reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は後者の規則充填物である流体接触用充填物に関
するもので、当該充填物は充填塔の軸方向に対して傾斜
したセラミックス製の棒状体を結合して各棒状体間に流
体が流通する多数の空隙を備えた集合体であることを特
徴とするものである。
The present invention relates to the latter type of regular packing, which is a fluid contact packing, in which ceramic rods that are inclined with respect to the axial direction of the packed tower are joined together to allow fluid to flow between each rod. It is characterized by being an aggregate with a large number of voids.

本発明の充填物の原料としては普通磁器、ムライト、ア
ルミナ、シリカ、コーディエライト、ジルコニア等通宜
のセラミックス原料が使用され、各原料を例えば押出し
成形することにより棒状体が形成される。棒状体は所定
の長さに切断され、切断された各棒状体は互に所定の(
頃斜角に交差されて各交差部にて接着剤を介して結合さ
れる。本発明の充填物はかかる集合体を焼成することに
より形成される。
As raw materials for the filler of the present invention, commonly used ceramic raw materials such as porcelain, mullite, alumina, silica, cordierite, and zirconia are used, and rod-shaped bodies are formed by extruding each raw material, for example. The rod-like body is cut to a predetermined length, and each cut rod-like body has a predetermined (
They are crossed at an oblique angle and bonded at each intersection with an adhesive. The filler of the present invention is formed by firing such an aggregate.

当該充填物において、各棒状体は直線状のものであって
もまた螺旋状のものであってもよい。互に結合している
棒状体同志は充填塔の軸方向に対して互に対称の角度に
て傾斜し、かつ非結合状態で隣り合う棒状体同志は互に
平行する位置関係にあることが好ましい。棒状体は円柱
、楕円柱等曲面を有する棒状体であることが好ましく、
また中空状であってもよい。また、各棒状体の表面は細
い凹凸形状を呈していることが好ましく、かつ当該充填
物の容積当りの空隙率は少くとも50%で □あること
が好ましい。
In the filling, each rod-like body may be linear or helical. It is preferable that the rod-like bodies that are connected to each other be inclined at symmetrical angles with respect to the axial direction of the packed tower, and that the rod-like bodies that are adjacent to each other in a non-combined state are in a positional relationship that is parallel to each other. . The rod-shaped body is preferably a rod-shaped body having a curved surface such as a cylinder or an elliptical cylinder,
It may also be hollow. Moreover, it is preferable that the surface of each rod-shaped body exhibits a thin uneven shape, and the porosity per volume of the filling is preferably at least 50% □.

〔発明の作用・効果〕[Action/effect of the invention]

かかる構成の充填物においてはその内部が三次元的網目
構造を呈しており、充填塔の一端側から流入する流体お
よびその他端側から流入する流体が共に気体である場合
には、多数の空隙を三次元的に均一に分散してこれら両
者の接触効率が向上する。また、下降する流体が液体で
ありかつ上昇する流体が気体である場合には、下降する
液体は各棒状体の表面で薄膜状に分散しながら各棒状体
の結合点で隣接する各棒状体の表面に薄膜状に分散し、
一方上昇する気体は多数の空隙を三次元的に均一に分散
するため、これら両者の接触効率が向上する。従って、
低温液量領域においてもガスの吹き抜は現象の発生が抑
制され、かかる現象に起因して流体接触効率が低下する
ことはない。
The inside of a packing with such a structure has a three-dimensional network structure, and if the fluid flowing in from one end of the packed column and the fluid flowing in from the other end are both gases, the packing has a large number of voids. The contact efficiency between the two is improved by uniformly dispersing them three-dimensionally. In addition, when the descending fluid is a liquid and the rising fluid is a gas, the descending liquid is dispersed in a thin film on the surface of each rod-like body, and at the joining point of each rod-like body, the descending liquid is dispersed in a thin film form. Dispersed in a thin film on the surface,
On the other hand, since the rising gas uniformly disperses a large number of voids in three dimensions, the contact efficiency between the two is improved. Therefore,
Even in the low-temperature liquid volume region, the occurrence of the gas blow-out phenomenon is suppressed, and the fluid contact efficiency does not decrease due to such a phenomenon.

当該充填物において、特に各棒状体の交差角を50〜7
5度の範囲に設定するとともに空隙率を50%以上に設
定すれば、流体接触効率を一層向上させることができ、
また各棒状体の表面を細かい凹凸形状に形成すれば、同
表面における流体の保持量が増大しさらに流体接触効率
を向上させることができる。
In particular, in the filling, the intersection angle of each rod-shaped body is 50 to 7.
If the porosity is set within the range of 5 degrees and the porosity is set to 50% or more, the fluid contact efficiency can be further improved.
Further, if the surface of each rod-shaped body is formed into a finely uneven shape, the amount of fluid held on the surface increases, and the fluid contact efficiency can be further improved.

〔実施例I〕[Example I]

(1)充填物の構造 本実施例における充裟物は添付図面に示すように、表面
に無数の微粒子を接着して同表面を細かい凹凸形状に形
成した多数p丸84!第1.12を採用して構成された
もので、各丸棒第1は所定の傾斜角、所定の間隔にて横
方向に略平行に配列されて群をなし、同様に各丸棒12
も所定の傾斜角、所定の間隔にて横方向に略平行に配列
されて群をなし、これら各群は縦方向に交互に配列され
ている。丸棒第1と12とは起立する充填塔の軸方向(
上下方向)に対して対称の角度にて交差し、各交差部は
接着剤を介して結合している。従って、かかる充填物は
三次元の網目状の内部構造を有し、多数の空隙を備えて
いる。
(1) Structure of the Filler As shown in the attached drawing, the filler in this embodiment has a large number of P-circles 84 with numerous fine particles adhered to the surface to form fine irregularities on the surface. 1.12, each round bar No. 1 is arranged in a horizontal direction substantially parallel at a predetermined inclination angle and a predetermined interval to form a group, and similarly, each round bar No. 1
are arranged substantially parallel in the horizontal direction at a predetermined angle of inclination and at predetermined intervals to form groups, and these groups are arranged alternately in the vertical direction. Round bars 1 and 12 are oriented in the axial direction of the standing packed tower (
They intersect at symmetrical angles with respect to the vertical direction), and each intersection is connected via an adhesive. Therefore, such a filling has a three-dimensional network-like internal structure and is provided with a large number of voids.

本実施例においては、かかる構造の充填物で各丸棒の交
差角、間隔、表面微粒子の径を異にする81[の充填物
を作製した。各充填物のこれらの値を第1表に示す。な
お、各充填物の外径は45儂、高さ73である。
In this example, 81 packings having such a structure were prepared in which the intersection angles of the round bars, the intervals, and the diameters of the surface particles were different. These values for each filling are shown in Table 1. The outer diameter of each filling member is 45° and the height is 73°.

(2)製造方法 丸棒の原料としてはムライト、アルミナ、シリカ、コー
ディエライト、ジルコニア等のセラミックス原料が使用
され、かつ微粒子としては丸棒と同で材料が使用される
。接着剤中有機接着剤としてはメチルセルロース、カル
ボキシメチルセルロース、その他の有限接着剤が使用さ
れ、かつ態様接着剤としてはシリカ−アルミナを主成分
とするものが使用される。これらの原料を用いて、−i
的には下記の■〜@の工程 ■丸棒押出し成形、■乾燥、■所定長に切断、■−次接
着(丸棒同志)、■乾燥、■一体接着(浸漬)、■微粒
子付着、■乾燥、■釉薬付与、[相]乾燥、■焼成 を適宜組合せることにより充填物が製造される。
(2) Manufacturing method Ceramic raw materials such as mullite, alumina, silica, cordierite, zirconia, etc. are used as raw materials for the round rod, and the same materials as for the round rod are used as the fine particles. As the organic adhesive in the adhesive, methylcellulose, carboxymethylcellulose, or other limited adhesives are used, and as the embodiment adhesive, one mainly composed of silica-alumina is used. Using these raw materials, -i
Specifically, the following ■ ~ @ processes ■ Round bar extrusion molding, ■ Drying, ■ Cutting to specified length, ■ Next adhesion (round bars together), ■ Drying, ■ Integral adhesion (immersion), ■ Particulate adhesion, ■ The filling is manufactured by appropriately combining drying, (1) glazing, [phase] drying, and (2) firing.

例えば第1の方法としては ■、■、■、■、■、■、■、■、■の工程筒2の方法
としては ■、■、■、■、■、■、■、■の工程筒3の方法とし
ては ■、■、■、■、■、■、■の工程 筒4の方法としては ■、■、■、■、■、■の工程 からなる製造方法が採用され、また充填物の耐腐食性を
向上させるとともに吸水性を低下させたい場合には、各
製造方法に■、[相]工程を付加する。
For example, the first method is the process cylinder ■, ■, ■, ■, ■, ■, ■, ■, ■, and the second method is the process cylinder ■, ■, ■, ■, ■, ■, ■, ■. As method 3, a manufacturing method consisting of the steps of ■, ■, ■, ■, ■, ■, ■ is adopted as method 4, and the manufacturing method consisting of the steps of ■, ■, ■, ■, ■, If you want to improve the corrosion resistance and reduce the water absorption of the material, add the [phase] step to each manufacturing method.

本実施例においては、■工程においてムライト質の長さ
250 i+mの丸棒を押出し成形し、■工程において
105℃で2時間乾燥し、■工程において長さ8csに
切断し、■工程においてシリカ−アルミナ、メチルセル
ロース、ムライト粉末および水からなる接着剤を用いて
各丸棒を交差部にて結合し、■工程において105℃で
2時間乾燥し、■工程においてシリカ−アルミナ系の釉
薬に10秒間浸漬し、■工程において丸棒集合体にムラ
イト粒子をふりかけて丸棒表面に付着させるとともに余
剰の粒子を振動により除去し、■工程において80℃で
1時間、さらに105℃で2時間乾燥し、■工程におい
てシリカ−アルミナ系の釉薬に10秒間浸漬し、[相]
工程において105℃で2時間乾燥した後、■工程にお
いて1 、240℃にて3時間焼成した。
In this example, a round bar made of mullite with a length of 250 i+m was extruded in step (2), dried at 105°C for 2 hours in step (2), cut into a length of 8 cs in step (2), and made of silica in step (2). Each round bar is bonded at the intersection using an adhesive consisting of alumina, methyl cellulose, mullite powder, and water, dried at 105°C for 2 hours in step (1), and immersed in a silica-alumina glaze for 10 seconds in step (2). Then, in step (2), mullite particles are sprinkled on the round bar aggregate to make them adhere to the surface of the round bar, and excess particles are removed by vibration; in step (2), mullite particles are dried at 80°C for 1 hour and then at 105°C for 2 hours; In the process, immerse in silica-alumina glaze for 10 seconds, [phase]
After drying at 105°C for 2 hours in step (2), it was fired at 1,240°C for 3 hours.

(3)アンモニア吸収試験 内径路45cmの吸収塔内に同一の充填物を円周方向に
90°偏位して8(第1i1積層し、塔下部からN第1
:を約1 、000ppm合宜した空気を流入しかつ塔
上部から水を第1表に示す回流下して気液向流接触操作
を行った。この時のN H,l’&収効率(%)、圧力
損失(鰭^q/m)を同表の実施例の欄に示す、なお、
同じ吸収塔内に吐″のラシヒリングを上記充填物の8個
の充填高さと同じ高さに充填して上記気液向流接触操作
を行った結果を第1表の比較例の欄に示す。
(3) Ammonia absorption test In an absorption tower with an inner path of 45 cm, the same packing was shifted by 90° in the circumferential direction and stacked 8 (No. 1i1).
A gas-liquid countercurrent contact operation was carried out by injecting air containing about 1,000 ppm of water and flowing water from the upper part of the column as shown in Table 1. The N H, l'& yield rate (%) and pressure loss (fin^q/m) at this time are shown in the example column of the same table.
The comparative example column of Table 1 shows the results of carrying out the above gas-liquid countercurrent contact operation by filling the same absorption tower with a discharged Raschig ring at the same height as the filling height of the 8 above-mentioned packings.

(以下余白) 第1表 第1表を参照すれば、実施別品である各充填物は比較別
品であるラシヒリングに比し吸収効率、圧力損失共に優
れており、水の流量が4.0(m3/♂hr)である場
合、実施例品中最も優れている試験N002の充填物は
ラシヒリングに比し吸収効率がそれ自体の%で15%向
上し、かつ圧力損失が1低くなっている。また、水の流
量が1.0今 (m)/♂hr)である場合上記充填物はラシヒリング
に比し吸収効率がそれ自体の%で27%向上する。
(Left below) Table 1 Referring to Table 1, each of the packings, which are different products, has better absorption efficiency and pressure loss than the comparative product Raschig Ring, and the water flow rate is 4.0%. (m3/♂hr), the packing of Test No. 002, which is the best among the example products, has an absorption efficiency that is 15% higher than that of the Raschig ring and a pressure drop that is 1 lower. . Further, when the water flow rate is 1.0 m/♂hr), the above-mentioned packing improves the absorption efficiency by 27% in terms of its own percentage compared to the Raschig ring.

一般的には、丸棒の交差角は50〜75度特に60度前
後が好ましい。交差角が75度を越えると気液の接触効
率が低下し、かつ交差角が50度未満になると圧力損失
が大きくなるとともに液が丸棒の結合部にて滴下して濡
れ面積が減少するため気液の接触効率が低下する。先棒
の径は2〜IQ xm特に5〜6鰭が好ましい。径が2
1m未満になると液が丸棒表面でi膜状では流れずに滴
下するため濡れ面積が減少するとともに、基土径方向の
液分散が悪化して気液のチャネリング現象が生じ、かつ
径がlQwを越えると充填物表面積が減少して性能が低
下する。先棒の間隔は充填物の容積当りの空隙率と密接
に関係し、特に圧力損失の関係で空隙率が50%以上で
あることが好ましいことから2〜10龍であることが好
ましい。粒子の径は0.3〜2龍特に0.5鶴前後が好
ましい。粒径が0.3鶴未満になると丸棒表面での液の
保持量が低下し、かつ粒径が2鶴を越えると粒子の回り
を液が流れるためその保持量が低下する。
Generally, the intersection angle of the round bars is preferably 50 to 75 degrees, particularly around 60 degrees. If the crossing angle exceeds 75 degrees, the gas-liquid contact efficiency will decrease, and if the crossing angle is less than 50 degrees, the pressure loss will increase and the liquid will drip at the joint of the round bar, reducing the wetted area. The gas-liquid contact efficiency decreases. The diameter of the tip rod is preferably 2 to IQ x m, particularly 5 to 6 fins. Diameter is 2
If it is less than 1 m, the liquid will drip instead of flowing in an i-film form on the surface of the round bar, resulting in a decrease in the wetted area, and the liquid dispersion in the radial direction of the base will deteriorate, causing a gas-liquid channeling phenomenon. If it exceeds this value, the surface area of the packing will decrease and the performance will deteriorate. The spacing between the tip rods is closely related to the porosity per volume of the filler, and in particular, it is preferable that the porosity is 50% or more in relation to pressure loss, so it is preferably 2 to 10 mm. The diameter of the particles is preferably 0.3 to 2 dragons, particularly around 0.5 dragons. When the particle size is less than 0.3 tsuru, the amount of liquid retained on the surface of the round bar decreases, and when the particle size exceeds 2 tsuru, the amount of liquid retained decreases because the liquid flows around the particles.

〔実施例2〕 外径30cmで実施例1の試験N0第1に対応する充填
物(直線型充填物)と、丸棒を螺旋状に押出し成形して
高さ50cmとした以外は上記直線型充填物と略同じ交
差角、間隔、径、粒径の充填物(螺旋型充填物)を使用
し、内径時30cmの無情塔内に前者を29個、後者を
4個それぞれ別々積層し、メタノール無情試験を行った
。試験においては、リボイラーにてメタノール10mo
I1%、水90mojl!%の混合液をl’mtwJ製
し、この混合液をスチーム加熱により気体として塔下部
から流入させると、ともに、塔上部から流出する気体を
コンデンサーにて凝縮して液体となし、この液体を塔上
部から流下させた。この無情操作を6時間継続し、その
後のりボイラー(A)およびコンデンサー(B)におけ
る混合液中のメタノールの濃度、圧力h1失を測定した
。この結果を第2表に示すとともに、ラシヒリング(1
丁)を同一高さに充瞑した場合の結果を比較例として示
す。
[Example 2] The above linear type except for the filling (linear type filling) with an outer diameter of 30 cm and corresponding to Test No. 1 of Example 1, and a round bar extruded into a spiral shape to a height of 50 cm. Using packings (spiral packings) with approximately the same intersection angle, spacing, diameter, and particle size as the packings, 29 pieces of the former and 4 pieces of the latter were separately stacked in a relentless column with an inner diameter of 30 cm, and methanol A heartless test was conducted. In the test, 10 mo of methanol was used in the reboiler.
I1%, water 90 mojl! % of the mixed liquid is made into l'mtwJ, and this mixed liquid is heated with steam and turned into a gas and introduced from the bottom of the tower. At the same time, the gas flowing out from the top of the tower is condensed in a condenser to become a liquid, and this liquid is transferred to the tower. It flowed down from the top. This relentless operation was continued for 6 hours, and then the concentration of methanol in the mixed liquid and the loss of pressure h1 in the glue boiler (A) and condenser (B) were measured. The results are shown in Table 2, and the Raschig ring (1
As a comparative example, we show the results obtained when the specimens were filled to the same height.

第2表 第2表を参照すれば、実施別品である直線型、螺旋型の
充填物は共に同等の性能を備え、特にラシヒリングと比
較した場合には無情性能をメタノール濃度で10moβ
%前後向上させ、かつ圧力損失を1/4に低下させる。
Table 2 Referring to Table 2, it can be seen that the linear and spiral packings, which are different products, have equivalent performance, and especially when compared with Raschig rings, the merciless performance is 10 moβ at methanol concentration.
% and reduce pressure loss to 1/4.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例に係る直線型充填物の斜視図で
ある。
The drawing is a perspective view of a linear packing according to an embodiment of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)流体接触用の充填塔内に充填される流体接触用充
填物であり、当該充填物は、充填塔の軸方向に対して傾
斜したセラミックス製の多数の棒状体を結合して各棒状
体間に流体が流通する多数の空隙を備えた集合体である
ことを特徴とする流体接触用充填物。
(1) A packing for fluid contact that is packed in a packed tower for fluid contact. 1. A fluid contact packing characterized by being an aggregate having a large number of voids through which fluid flows between bodies.
(2)互に結合している棒状体同志は充填塔の軸方向に
対して互に対称の角度にて傾斜し、かつ非結合状態で隣
り合う棒状体同志は互に平行する位置関係にある特許請
求の範囲第1項に記載の流体接触用充填物。
(2) The rod-like bodies that are connected to each other are inclined at symmetrical angles with respect to the axial direction of the packed tower, and the rod-like bodies that are adjacent to each other in a non-combined state are in a parallel positional relationship. A fluid contact filler according to claim 1.
(3)棒状体の表面が細かい凹凸形状を呈している特許
請求の範囲第1項または第2項に記載の流体接触用充填
物。
(3) The fluid contact filler according to claim 1 or 2, wherein the surface of the rod-shaped body has a finely uneven shape.
(4)棒状体が直線状または螺旋状を呈している特許請
求の範囲第1項、第2項または第3項に記載の流体接触
用充填物。
(4) The fluid contact filler according to claim 1, 2, or 3, wherein the rod-like body has a linear or spiral shape.
(5)集合体の容積当りの空隙率が少くとも50%であ
る特許請求の範囲第1項、第2項、第3項または第4項
に記載の流体接触用充填物。
(5) The fluid contact packing according to claim 1, 2, 3, or 4, wherein the porosity per volume of the aggregate is at least 50%.
JP62067001A 1987-03-20 1987-03-20 Contact packing for fluid Granted JPS63232820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067001A JPS63232820A (en) 1987-03-20 1987-03-20 Contact packing for fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067001A JPS63232820A (en) 1987-03-20 1987-03-20 Contact packing for fluid

Publications (2)

Publication Number Publication Date
JPS63232820A true JPS63232820A (en) 1988-09-28
JPH0583300B2 JPH0583300B2 (en) 1993-11-25

Family

ID=13332267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067001A Granted JPS63232820A (en) 1987-03-20 1987-03-20 Contact packing for fluid

Country Status (1)

Country Link
JP (1) JPS63232820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445846A (en) * 1990-06-08 1992-02-14 Tokyo Tokushu Kanaami Kk Vapor-liquid contact packing material
EP0639402A1 (en) * 1993-08-16 1995-02-22 The Boc Group, Inc. Ordered packing
CN105536681A (en) * 2015-12-14 2016-05-04 江西省萍乡市方上化工填料有限责任公司 Structured square-mesh ceramic packing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445846A (en) * 1990-06-08 1992-02-14 Tokyo Tokushu Kanaami Kk Vapor-liquid contact packing material
EP0639402A1 (en) * 1993-08-16 1995-02-22 The Boc Group, Inc. Ordered packing
CN105536681A (en) * 2015-12-14 2016-05-04 江西省萍乡市方上化工填料有限责任公司 Structured square-mesh ceramic packing

Also Published As

Publication number Publication date
JPH0583300B2 (en) 1993-11-25

Similar Documents

Publication Publication Date Title
CN101126335B (en) Honeycomb filter for purifying exhaust gases
US4157929A (en) Method of making a porous dimensionally stable heat-resistant and corrosion-resistant plate-like structure
JPH0569561B2 (en)
US4283210A (en) Ceramic honeycomb filter and a method of producing the same
JP4216174B2 (en) COATING MATERIAL, CERAMIC HONEYCOMB STRUCTURE, AND ITS MANUFACTURING METHOD
CA1302906C (en) Adsorption process
JPWO2009141895A1 (en) Exhaust gas purification device
CN109070046B (en) Contactor
US6699562B2 (en) Ceramic packing element
JP2014195784A5 (en)
US3167600A (en) Packing material
JP2003024726A (en) Honeycomb structural body and canning structural body
EP2845646A2 (en) Honeycomb catalyst and exhaust gas purifying apparatus
US20210349065A1 (en) Direct capture substrate, device and method
KR20020061649A (en) Spiral cut honeycomb body for fluid mixing
JP2004113887A (en) Honeycomb catalyst carrier and its production method
JPS63232820A (en) Contact packing for fluid
JP6534900B2 (en) Honeycomb structure
RU2288778C2 (en) Ceramic element of packing
CN101678347B (en) Honeycomb structure and exhaust gas purification apparatus
EP1658134B1 (en) Ceramic packing element with enlarged fluid flow passages
US6206675B1 (en) Extrusion die for the manufacture of monolithic adsorption tubes
CA2552998A1 (en) Ceramic packing element for mass transfer applications
CN1062249C (en) Microporous porcelain filler of silicon-carbide series
JP2017064608A (en) Honeycomb structure