JPS63232801A - Device for drying liquid material - Google Patents

Device for drying liquid material

Info

Publication number
JPS63232801A
JPS63232801A JP6679687A JP6679687A JPS63232801A JP S63232801 A JPS63232801 A JP S63232801A JP 6679687 A JP6679687 A JP 6679687A JP 6679687 A JP6679687 A JP 6679687A JP S63232801 A JPS63232801 A JP S63232801A
Authority
JP
Japan
Prior art keywords
fluidization
fluidized bed
air
drying
dry powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6679687A
Other languages
Japanese (ja)
Inventor
Kenji Hamada
浜田 憲二
Masamitsu Nagao
長尾 正光
Masaaki Takahashi
正明 高橋
Takamasa Tanaka
貴將 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Machinery Co Ltd
Original Assignee
Nara Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Machinery Co Ltd filed Critical Nara Machinery Co Ltd
Priority to JP6679687A priority Critical patent/JPS63232801A/en
Publication of JPS63232801A publication Critical patent/JPS63232801A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/22Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration
    • F26B3/225Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration the materials or objects to be dried being immersed in a fluidised bed of heated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/088Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed using inert thermally-stabilised particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To produce dry powder with high heat efficiency by the title compact device by pulverizing a liq. material into dry powder in the fluidized bed wherein many fluidization mediums are blown up by hot air in the device for pulverizing the liq. material into dry powder using the fluidization medium. CONSTITUTION:The air cleaned by an air filter 1 is heated by an air heater 2, and introduced into a fluidization vessel 4. The liq. material M from a raw material tank 3 is brought into contact with the air in the vessel 4 through fluidization medium 16, and the liq. material is dried and pulverized into dry powder. The dry powder is sent out into a bag filter 6 through a cyclone 5, and recovered. The fluidization vessel 4 charged the liq. material M is provided with a hot-air chamber 11 and a fluidization chamber 12, a perforated diffusion plate 13 is furnished between both chambers, and a heat exchanger 25 is placed above the plate 13 and embedded in the fluidized bed. With respect to the heating by the heat exchanger 25, the exhaust loss is diminished to zero, only the heat quantity to be effectively used in drying is supplied, and hence the heat efficiency is improved.

Description

【発明の詳細な説明】 a、 産業上の利用分野 本発明は各種産業分野で取扱われている水、その他の溶
液(溶媒)に微粒子物質が懸濁した状態のもの(以下こ
れをスラリーという)、または、水その他の溶液(溶媒
)に物質を溶解したもの(以下これを溶解液という、ま
た、以下このスラリーとこの溶解液を総称して液状物質
と称す)を、あらかじめ熱風によって、流動層(流動化
)の状態にさせである流動化媒体粒子の表面に付着させ
ながら、同時にこの媒体粒子の流動層内に配備した熱交
換装置の加熱面に直接的に接触させて強制的に加熱、乾
燥し、この液状物質を連続的に乾燥して粉体として得る
ことのできる乾燥装置に関する。
[Detailed description of the invention] a. Industrial fields of application The present invention relates to a suspension of particulate matter in water or other solutions (solvents) that are used in various industrial fields (hereinafter referred to as slurry). Alternatively, a substance dissolved in water or other solution (solvent) (hereinafter referred to as a solution, and hereinafter this slurry and this solution will be collectively referred to as a liquid substance) is heated in advance in a fluidized bed using hot air. While adhering to the surface of the fluidized medium particles in a (fluidized) state, at the same time the medium particles are forcibly heated by being brought into direct contact with the heating surface of a heat exchanger installed in the fluidized bed. The present invention relates to a drying device capable of drying and continuously drying this liquid substance to obtain a powder.

b、 従来の技術 従来、前記液状物質を乾燥して直接乾燥粉体を得るため
の乾燥法として噴霧乾燥装置(スプレードライヤー)が
使われて来たが、この装置は真人なイニシャルコスト並
びにランニングコストを必要とす・るなどの欠点を有す
るため、これを解決する乾燥法として、近年媒体粒子を
利用した流動層乾燥法(!J置)が開発されている0例
えば次の文献に示された乾燥装置は、その何れもが有機
物。
b. Prior Art Conventionally, a spray dryer has been used as a drying method to directly obtain dry powder by drying the liquid substance, but this equipment has a very low initial cost and running cost. As a drying method to solve this problem, a fluidized bed drying method using media particles has been developed in recent years. All drying equipment uses organic materials.

無機物の何れかの媒体粒子を用いた流動化法であり、こ
れにより、液状物質を乾燥して直接乾燥粉体を得る装置
の構成が示されている。
This is a fluidization method using media particles of any inorganic material, and the configuration of an apparatus for drying a liquid substance to directly obtain a dry powder is shown.

文献−1 文献名: FLUI[1IZAT[ON装置記載頁:5
88頁 12.16図(DRIERWITHFLUE口
IZ[!D  BED  OF  INBRT  GR
ANULARllATERIAL) 編集者: J、F、DAV[DSON D、HARRISON 発行年度? 1971年(昭和46年)発行所: AC
AD[!旧CPIIESS −LONDON AN[l
 NEW YORKOR−2 文献名:特公昭54−43747号 名称:化学薬品の粉砕流動化乾燥方法 C1発明が解決しようとする問題点 然し、前記の文献に示された乾燥技術の問題点はその何
れもが、乾燥に必要な熱量品供給を熱風のみに依存して
いる点にある。
Literature-1 Literature name: FLUI[1IZAT[ON device description page: 5
Page 88 Figure 12.16 (DRIERWITHFLUE mouth IZ[!D BED OF INBRT GR
ANULARllATERIAL) Editor: J, F, DAV [DSON D, HARRISON Publication year? 1971 (Showa 46) Publisher: AC
AD[! Old CPIIESS-LONDON AN [l
NEW YORKOR-2 Title of document: Japanese Patent Publication No. 54-43747 Title: Grinding fluidized drying method for chemicals C1 Problems to be solved by the invention However, none of the problems of the drying technology shown in the above-mentioned document However, it relies only on hot air to supply the necessary amount of heat for drying.

一般に、流動層を用いる前記乾燥技術の特徴の一つとし
て、吹込まれたガスと流動化粒子(N)との間の熱交換
性能が優れていることが挙げられるが、液状物質中の固
形分物質(例えば合成樹脂などの有機物)を乾燥する場
合は、物質そのものが備える熱的な特性のために乾燥に
使用する熱風の温度を低い水準(例えば100℃以下)
に保持しなければならず、そのため、乾燥に存効に利用
される熱量が比較的小さな割合となるケースが多い。
In general, one of the characteristics of the drying technology using a fluidized bed is that the heat exchange performance between the blown gas and the fluidized particles (N) is excellent, but the solid content in the liquid material When drying a substance (for example, an organic substance such as a synthetic resin), the temperature of the hot air used for drying should be kept at a low level (for example, below 100°C) due to the thermal properties of the substance itself.
Therefore, in many cases, only a relatively small proportion of the amount of heat is effectively utilized for drying.

例えば、塩化ビニル乳化重合品を乾燥する場合は、この
塩化ビニル樹脂の熱的特性により流動層に吹込む熱風温
度は80℃と低い水準に制限されるが、その反面、得よ
うとする乾燥粉末の水分を0.1 %以下に維持しなけ
ればならず、そのための操作条件として流動層通過直後
の空気温度を55℃に保持しなければならない。
For example, when drying a vinyl chloride emulsion polymer product, the temperature of the hot air blown into the fluidized bed is limited to a low level of 80°C due to the thermal properties of the vinyl chloride resin. The moisture content of the fluid must be maintained at 0.1% or less, and as an operating condition for this purpose, the air temperature immediately after passing through the fluidized bed must be maintained at 55°C.

流動層を通過する空気の重量速度と比熱は殆んど不変で
あるためこの場合、乾燥に存効に利用された熱量を簡単
に計算(熱効率の簡易計算法による)すると、 − X100−31.3% となり、非常に低い利用率となる。換言すれば、使用熱
風温度に制限のある場合(有機物の乾燥にあうでは殆ん
どがこのケースである)は、液状物質中の水分く溶媒)
を蒸発させるための熱量の利用割合が少ないため、一定
量の液状物質を乾燥するための熱量の供給を、結局は風
量(空気量)の増加でカバーしなければならず、乾燥容
器本体はもちろんのこと、熱風発生装置、粉末補集装置
Since the weight velocity and specific heat of the air passing through the fluidized bed are almost unchanged, in this case, the amount of heat effectively used for drying can be simply calculated (using a simple calculation method of thermal efficiency): -X100-31. 3%, which is a very low utilization rate. In other words, if there is a limit to the temperature of the hot air that can be used (this is the case in most cases when drying organic matter), it is possible to
Since the amount of heat used to evaporate is small, the supply of heat to dry a certain amount of liquid material must be compensated for by increasing the amount of air (air volume), and the drying container itself , hot air generator, powder collection device.

送・排風機等の付帯設備全般にわたって!a置が大型化
することになり、当然コストアップを招くことになる。
All ancillary equipment such as blowers and exhaust fans! The size of the space a will increase, which naturally leads to an increase in costs.

この様な理由のため、例えば前記文献−1に示された従
来技術にあっては、液状物質を媒体粒子流動層に供給す
る直前に、この液状物質を噴霧して液滴粒子とし、この
液滴粒子を熱風と接触させることにより予備乾燥(これ
は噴霧乾燥法の原理そのものである)を行なうことが示
されているが、この従来技術は、ますます熱効率を悪く
していることが明らかである。
For this reason, for example, in the prior art shown in the above-mentioned document 1, just before supplying the liquid substance to the medium particle fluidized bed, this liquid substance is sprayed to form droplets, and this liquid substance is It has been shown that pre-drying is carried out by contacting droplets with hot air (this is the very principle of spray drying), but it is clear that this prior art technique is becoming increasingly thermally inefficient. be.

更にまた、文献−1の装置にあっては、乾燥されて媒体
粒子流動層を飛び出した乾燥粉末が、噴霧された液滴粒
子と衝突して再び漏れる危険性があるなどの欠点がある
Furthermore, the apparatus of Document 1 has the disadvantage that there is a risk that the dried powder that has flown out of the fluidized bed of medium particles collides with the sprayed droplet particles and leaks again.

また、文献−2に示された装置にあっても、前記文献−
1の場合と同様に、乾燥に必要な熱量の供給を熱風のみ
に依存しているため、媒体粒子流動層全体の乾燥速度が
緩慢であり、そのため流動化媒体粒子の表面に付着させ
た液状物質相互の、換言すれば媒体粒子相互の凝集や団
結現象を防止する必要があり、そのため強制的な機械式
撹拌手段を用いて、絶えず媒体粒子全体を攪拌しながら
解砕して安定な流動層を形成、維持する必要性のあるこ
とが示されている。しかし、流動層内に強制攪拌装置を
設けることは機械攪拌装置そのものが複雑で高価な機械
要素であるばかりでなく、攪拌することによって装置内
壁や媒体粒子の摩耗をもたらすなどの欠点を有している
Further, even in the device shown in Document-2, the device shown in Document-2
As in case 1, since the supply of heat required for drying relies only on hot air, the drying speed of the entire fluidized bed of media particles is slow, and therefore the liquid substance attached to the surface of the fluidized media particles In other words, it is necessary to prevent the agglomeration and agglomeration phenomenon of the media particles, and for this reason, a forced mechanical stirring means is used to constantly stir and disintegrate the entire media particles to form a stable fluidized bed. It has been shown that there is a need to form and maintain it. However, installing a forced stirring device in the fluidized bed has disadvantages such as not only is the mechanical stirring device itself a complicated and expensive mechanical element, but also agitation causes abrasion of the inner walls of the device and media particles. There is.

d、 問題点を解決するための手段 本願発明は、前記事情に鑑みてなされたもので、前記従
来技術のように液状物質を噴霧することなく、また、流
動層内に強制的な攪拌手段を設けることなく、この液状
物質をそのま一乾燥容器内で流動化の状態にある真人な
数の媒体粒子の表面に付着させながら、しかも同時に、
流動層内に配備した熱交換装置の伝熱面と直接的に接触
させることによって溶液を素早く加熱、蒸発させて、液
状物質中に含まれる固形分物質を連続的に乾燥し、該物
質を乾燥粉体として得ることのできる乾燥装置を提供す
ることを目的とする。
d. Means for Solving the Problems The present invention has been made in view of the above-mentioned circumstances, and does not require the spraying of a liquid substance as in the prior art, and does not require forcible stirring means in the fluidized bed. At the same time, this liquid substance is deposited on the surface of a real number of media particles in a fluidized state in a drying container without any drying process.
The solid substance contained in the liquid substance is continuously dried by rapidly heating and evaporating the solution by bringing it into direct contact with the heat transfer surface of the heat exchange device installed in the fluidized bed. The object of the present invention is to provide a drying device that can obtain the powder as a powder.

すなわち、本発明はガス分散板を備えた流動化容器にお
いて、分散板上に、多数の流動化媒体粒子を充填し、こ
れを熱風で吹きあげて前記媒体粒子の流動層を形成する
とともに、該流動層内に熱交換装置を配備し、さらに前
記流動層側面に開口する液状物質の供給口を設け、該液
状物質を流動化媒体粒子に付着させながら乾燥すること
を特徴とする液状物質の乾燥装置である。
That is, the present invention provides a fluidization container equipped with a gas distribution plate, in which a large number of fluidization medium particles are filled on the distribution plate, and hot air is blown up to form a fluidized bed of the medium particles. Drying of a liquid substance, characterized in that a heat exchange device is provided in the fluidized bed, a supply port for the liquid substance is provided that opens on the side surface of the fluidized bed, and the liquid substance is dried while being attached to the fluidizing medium particles. It is a device.

本発明に係る装置で乾燥処理できる代表的な物質は、#
粉、塩化ビニル、ポリエチレン、ポリプロピレン樹脂、
有機薬品等の有機物のスラリーまたは溶解液、及び二酸
化チタン、石灰、炭酸カルシウム、無機薬品等の無機物
のスラリー、また、酸化鉄、酸化鉛、fa化亜鉛等の金
属微粒子のスラリー等であるが、ここに記載した物質に
限定されることなく、各種のを接物、無機物5金属の液
状物質に適用することができる。
Typical substances that can be dried with the apparatus according to the present invention are #
powder, vinyl chloride, polyethylene, polypropylene resin,
Slurries or solutions of organic substances such as organic chemicals, slurries of inorganic substances such as titanium dioxide, lime, calcium carbonate, and inorganic chemicals, and slurries of fine metal particles such as iron oxide, lead oxide, and zinc oxide, etc. The present invention is not limited to the substances described here, and can be applied to various liquid substances such as contact materials, inorganic materials, and five metals.

以下、本発明の実施例について図面を参照しながら詳細
に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図〜第4図は本発明に係る液状物質の乾燥装置の概
要を示し、1はエアフィルタ、2はエアフィルタ1によ
り清浄化された空気を加熱するエアヒータ、3は乾燥処
理すべき液状物MMを貯留する原料タンク、4は流動化
乾燥をおこなう流動化容器で、該流動化容器4は原料タ
ンク3がらの液状物質Mとエアヒータ2がらの加熱され
た空気を導入し、そこで液状物質Mを流動化処理して乾
燥し、これをサイクロン5.バックフィルタロへ送出し
て最終的に乾燥粉体を回収するように構成しである。
1 to 4 show an outline of a drying device for liquid substances according to the present invention, in which 1 is an air filter, 2 is an air heater that heats the air purified by the air filter 1, and 3 is a liquid substance to be dried. A raw material tank 4 for storing the material MM is a fluidization container for performing fluidization drying. M is fluidized and dried, and this is passed through a cyclone 5. The dry powder is sent to a back filter and finally recovered.

前記流動化容器4は熱風室11と流動化室12とを備え
、画室の間に多孔板状の分散板13を配設しである。な
お、この分散板13は下方の熱風室11より吹き上げる
熱風を効率よく分散するものであれば、必ずしも多孔板
の構造に限定されない。llaは熱風室11に設けた加
熱空気の導入口、12aは流動化室12の側壁に開口す
る液状物’fMの供給口、16は分散板13上の流動化
室12に充填された多数の媒体粒子、12bは媒体粒子
16を流動化室12へ供給する供給口、12cは必要時
に開口する媒体粒子16の排出口、12dは流動化室1
2上部の空間部、12gは乾燥分離した微粉体の送出口
、17は流動化容器4の外壁に周設した外部加熱手段で
ある。
The fluidization container 4 includes a hot air chamber 11 and a fluidization chamber 12, and a perforated distribution plate 13 is disposed between the compartments. Note that the distribution plate 13 is not necessarily limited to a perforated plate structure as long as it can efficiently disperse the hot air blown up from the hot air chamber 11 below. lla is an inlet for heated air provided in the hot air chamber 11; 12a is a supply port for the liquid 'fM opened on the side wall of the fluidization chamber 12; 16 is a large number of inlets filled in the fluidization chamber 12 on the distribution plate 13; 12b is a supply port for supplying media particles 16 to the fluidization chamber 12; 12c is a discharge port for the media particles 16 that is opened when necessary; 12d is a fluidization chamber 1;
In the space above 2, 12g is a delivery port for the dried and separated fine powder, and 17 is external heating means provided around the outer wall of the fluidization container 4.

この流動化容器4は更に流動化室12内の分散板13の
直上に温室に充填した媒体粒子16で形成される流動層
に埋設される状態に熱交換装置125を配設しである。
This fluidization container 4 further has a heat exchange device 125 disposed directly above the dispersion plate 13 in the fluidization chamber 12 so as to be embedded in a fluidized bed formed by the medium particles 16 filled in the greenhouse.

この熱交換装置25は、次のように構成しである。This heat exchange device 25 is constructed as follows.

すなわち、第2図〜第3図において26は熱媒体、例え
ば温水の入口管、27は入ロヘソグー、28は分岐管、
29は集配管、30は出口へラダー、31は出口管であ
り、多数の熱交換管32が前記分岐管28と集配管29
との間に所定の間隔を置いて並列に立設され、入口管2
6から入った温水が分岐管28から多数の熱交換管32
を通り集配管29.出口ヘッダ−30を経て出口管31
へ送られるようになっている。
That is, in FIGS. 2 to 3, 26 is a heat medium, for example, a hot water inlet pipe, 27 is an inlet pipe, 28 is a branch pipe,
29 is a collection pipe, 30 is a ladder to the outlet, 31 is an exit pipe, and a large number of heat exchange pipes 32 are connected to the branch pipe 28 and the collection pipe 29.
The inlet pipe 2 is erected in parallel with a predetermined interval between the
6, the hot water enters from the branch pipe 28 to a large number of heat exchange pipes 32.
29. Outlet pipe 31 via outlet header 30
It is now sent to.

なお、この熱交換管32は多数の垂直管群として構成さ
れ、前記分散板13の直上部位から媒体粒子16で形成
される流動層直上部の流動層の全域にわたって配備され
るが、処理すべき液状物質の性質を適用する媒体粒子の
材質および直径によって、この熱交換管32の配列や間
隔を其他の態様に、例えば千鳥配列の水平管群とするこ
ともできる。また、熱交換装置25へ通す熱媒体が水蒸
気のような気体である場合には、awM水排出などの理
由で、前記温水の入口と出口を丁度逆の関係とすること
もある。
The heat exchange tubes 32 are configured as a group of a large number of vertical tubes, and are arranged over the entire area of the fluidized bed from directly above the distribution plate 13 to just above the fluidized bed formed by the medium particles 16. Depending on the material and diameter of the medium particles to which the properties of the liquid substance are applied, the arrangement and spacing of the heat exchange tubes 32 may be arranged in other manners, for example, in a staggered horizontal tube group. Further, when the heat medium passed through the heat exchange device 25 is a gas such as water vapor, the inlet and outlet of the hot water may be in an exactly opposite relationship for reasons such as awM water discharge.

36は熱媒体の調整タンクで、該タンクで温度調節され
た温水(または蒸気)を循環ポンプ37によって、前記
熱交換装置25へ強制的に循環させるようになっている
Reference numeral 36 denotes a heat medium adjustment tank, in which hot water (or steam) whose temperature is adjusted in the tank is forcibly circulated to the heat exchange device 25 by a circulation pump 37.

なお、40は加熱媒体(水蒸気など)の供給管で、該供
給管40は分岐して前記エアヒータ2と前記調整タンク
36とにそれぞれ加熱媒体を供給する。41゜42はそ
れぞれの分岐した供給管40a、40bに設けた温度制
御装置で、検出温度に対応して各供給管に設けたバルブ
の開閉制御をおこなう。
Note that 40 is a supply pipe for a heating medium (such as water vapor), and the supply pipe 40 branches to supply the heating medium to the air heater 2 and the adjustment tank 36, respectively. Reference numerals 41 and 42 designate temperature control devices provided in the respective branched supply pipes 40a and 40b, which control the opening and closing of valves provided in each supply pipe in response to detected temperatures.

45は定量供給ポンプで、該定量供給ポンプ45は前記
原料タンク3と前記流動化容器4の流動化室12との間
に設けた供給管に介設し、原料タンク3内の液状物WM
を流動化室12に送出する。
Reference numeral 45 denotes a quantitative supply pump, which is installed in a supply pipe provided between the raw material tank 3 and the fluidization chamber 12 of the fluidization container 4, and is connected to the liquid material WM in the raw material tank 3.
is delivered to the fluidization chamber 12.

なお、5aはサイクロン5の下部に設けたロータリパル
プ、6aはバックフィルタロの下部に設けたロータリバ
ルブ、46は排風機、47は圧縮空気源に接続する供給
管、48は時限側m装置をそれぞれ示す。
In addition, 5a is a rotary pulp provided at the bottom of the cyclone 5, 6a is a rotary valve provided at the bottom of the back filter, 46 is an exhaust fan, 47 is a supply pipe connected to a compressed air source, and 48 is a timer side m device. Each is shown below.

前記媒体粒子16は乾燥処理すべき液状物質の性質、運
転操作温度、耐摩耗性、充填總重量などによって、その
形状と材質を選定するが、形状としては通常、その直径
が0.5〜5鰭の録状粒子が最も好ましく、其他同寸法
範囲の楕円体、正方体。
The shape and material of the medium particles 16 are selected depending on the properties of the liquid substance to be dried, operating temperature, abrasion resistance, packed weight, etc.; Most preferred are fin grains, and ellipsoids and squares with the same size range.

長方体1円柱体、不定形体、及び其他本発明の処理に適
した他の形体の粒子並びに前記各形状の粒子の混合物を
用いてもよい、また、材質としては各種のセラミックス
等の無機物、ゴム、テフロン。
Particles of rectangular, cylindrical, irregularly shaped bodies, and other shapes suitable for the treatment of the present invention, as well as mixtures of particles of each of the above shapes, may be used.As for the material, inorganic materials such as various ceramics, Rubber, Teflon.

ナイロンなどの有機物、ステンレス、炭素鋼1合釡鋼な
どの金属、及び其他本発明の処理に適した材質からなる
粒子、並びに前記各材質の混合物からなる粒子を用いて
もよい。
Particles made of organic materials such as nylon, metals such as stainless steel and carbon steel, and other materials suitable for the treatment of the present invention, as well as particles made of mixtures of the above-mentioned materials, may be used.

e、 作用 本発明に係る液状物質の乾燥装置は以上のように構成さ
れており、次の要領で操作する。
e. Function The liquid substance drying apparatus according to the present invention is constructed as described above, and is operated in the following manner.

まず、あらかじめ流動化容器4の供給口12bより流動
化室12に所定量の、すなわち、流動層上面の高さが前
記熱交換管32群の最上部より高くなるように媒体粒子
16を収容しておく0次にフィルタ1からエアヒータ2
を経て加熱された熱風を導入口11aより熱風室11に
送り、分散板13の下部から熱風を吹きあげて流動化室
12内の媒体粒子16を流動化の状態、すなわち媒体粒
子16の流動層を形成しながら加熱する。そして同時に
前記熱交換装置25を作動させる。
First, a predetermined amount of media particles 16 are stored in advance in the fluidization chamber 12 from the supply port 12b of the fluidization container 4, that is, so that the height of the top surface of the fluidized bed is higher than the top of the heat exchange tube group 32. Next, from filter 1 to air heater 2
The heated air is sent to the hot air chamber 11 through the inlet 11a, and the hot air is blown up from the lower part of the dispersion plate 13 to transform the medium particles 16 in the fluidization chamber 12 into a fluidized state, that is, a fluidized bed of the medium particles 16. Heat while forming. At the same time, the heat exchange device 25 is activated.

すなわち、供給管40bを経て加熱媒体を供給し、所定
温度に調整された温水調整タンク36内の温水を熱交換
装置25の入口管26から分岐管28.熱交換管32.
集配管29を経て出口管31へ送り、温水を循環させて
流動層の直接加熱をおこなう。
That is, a heating medium is supplied through the supply pipe 40b, and the hot water in the hot water adjustment tank 36, which has been adjusted to a predetermined temperature, is transferred from the inlet pipe 26 of the heat exchange device 25 to the branch pipe 28. Heat exchange tube 32.
The hot water is sent to the outlet pipe 31 via the collection pipe 29, and the hot water is circulated to directly heat the fluidized bed.

以上のようにして媒体粒子16の温度が所定の水準に達
して安定した時点で、前記原料タンク3内の乾燥処理す
べき液状物質Mを定量供給ポンプ45を作動して一定量
の割合で強制的に送出する。液状物質Mは流動化容器4
の側壁に開口する供給012aから流動化室12内へ強
制的に押し出され、そこで活発な沸騰状の運動を保ちな
がら流動化の状態にある真人な数の媒体粒子16の夫々
の表面に次々と付着し、連続的に媒体粒子16の表面に
分配・分散される。そして液状物質Mを構成する溶液と
固形分(一般に微粒子が多い)は媒体粒子16の表面で
下の熱風室11から吹きあげる熱風と熱交換装置25の
熱交換管32の伝熱面との両方の加熱手段により、より
迅速に、より効率的に加熱され、乾燥作用を受ける。
When the temperature of the medium particles 16 reaches a predetermined level and stabilizes as described above, the liquid substance M to be dried in the raw material tank 3 is forced at a constant rate by operating the metering pump 45. Send it out. The liquid substance M is in the fluidization container 4
is forcibly pushed out into the fluidization chamber 12 from the supply 012a opening on the side wall of the fluidization chamber 12, where it is successively deposited on the surface of each of the true number of media particles 16 in a state of fluidization while maintaining an active boiling motion. It adheres and is continuously distributed and dispersed on the surface of the media particles 16. The solution and solid content (generally containing many fine particles) constituting the liquid substance M are exposed to both the hot air blowing up from the hot air chamber 11 below on the surface of the medium particle 16 and the heat transfer surface of the heat exchange tube 32 of the heat exchange device 25. This heating means allows for faster and more efficient heating and drying.

なお、この際、熱交換装置25の内部に通す温水などの
熱媒体の温度を、−熱風の温度より数度乃至数十度(’
e)高めることによって媒体粒子16並びに媒体粒子1
6の表面に付着した液状物質をより迅速に、より効率的
に加熱することができる。
In addition, at this time, the temperature of the heat medium such as hot water passed through the inside of the heat exchange device 25 is set to several degrees to several tens of degrees (') below the temperature of the hot air.
e) By increasing media particle 16 as well as media particle 1
The liquid substance attached to the surface of 6 can be heated more quickly and more efficiently.

媒体粒子16の夫々の表面で乾燥作用を受けた液状物質
M中の水その他の溶液は、前記の加熱作用によって急速
に蒸発し、乾燥した固形分は、流動層内における媒体粒
子16同志及び媒体粒子16と熱交換管32(群)並び
に流動化室12内壁の衝突や摩擦によって剥離作用を受
けて媒体粒子16の表面から離脱し、乾燥した粉体粒子
の状態で順次流動層から上部空間部12dに連続的に飛
び出す。そして、流動層から飛び出した粉体粒子は流動
層を通過して上昇する空気に同伴されて上部の送出口1
2eからサイクロン5.バックフィルター6へ送られ、
そこで分離、捕集され、乾燥粉体として回収される。
The water and other solutions in the liquid substance M subjected to the drying action on the surface of each medium particle 16 are rapidly evaporated by the heating action, and the dried solid content is absorbed by the medium particles 16 and the medium in the fluidized bed. The particles 16 are detached from the surface of the medium particles 16 due to a peeling action due to collision and friction between the heat exchange tubes 32 (group) and the inner wall of the fluidization chamber 12, and are sequentially transferred from the fluidized bed to the upper space in the state of dry powder particles. Continuously pops out on 12d. Then, the powder particles flying out of the fluidized bed pass through the fluidized bed and are carried by the rising air to the upper delivery port 1.
Cyclone 5 from 2e. sent to back filter 6,
There, it is separated, collected, and recovered as a dry powder.

流動層を形成する媒体粒子16は、前記の如く付着した
乾燥粉体を剥離、放出しながら流動層特育の層内対流現
象により、いわば確率論的な結果として流動層内の前記
供給口12aの位置に次々と到達し、再びそこで媒体粒
子16の表面に押出された液状物質Mが付着し、以後同
様な作動が繰返されることになる。
The medium particles 16 forming the fluidized bed peel off and release the adhering dry powder as described above, and due to the intralayer convection phenomenon of the fluidized bed special development, the supply port 12a in the fluidized bed is produced as a so-called stochastic result. The extruded liquid substance M adheres to the surface of the medium particles 16 one after another, and the same operation is repeated thereafter.

乾燥処理すべき液状物質中の固形分は、上述のような作
用で一様な微粉体として媒体粒子の表面から離脱するが
、該乾燥粉体と媒体粒子のそれぞれの粒子径には大きな
差(一般に、乾燥粉体の平均粒子径に対する媒体粒子径
は、10倍ないし100倍の関係にある)があるため、
換言すれば、両者の終端速度に大きな差があるため、乾
燥粉体は流動層を通過した空気に同伴して容易に流動化
室12外へ運ばれてゆくが、流動化媒体粒子16自身は
該室12の外部へ飛び出すことは全くない。
The solid content in the liquid substance to be dried separates from the surface of the media particles as a uniform fine powder due to the above-mentioned action, but there is a large difference in particle size between the dry powder and the media particles ( In general, the average particle size of the dry powder is 10 to 100 times larger, so
In other words, since there is a large difference in the terminal velocity between the two, the dry powder is easily carried out of the fluidization chamber 12 along with the air that has passed through the fluidized bed, but the fluidization medium particles 16 themselves are There is no possibility of it jumping out of the chamber 12.

f、 発明の効果 以上詳述した如(、本願発明に係る液状物質の乾燥装置
によれば従来装置にはない下記の如き効果かえられる。
f. Effects of the Invention As detailed above, the liquid substance drying apparatus according to the present invention provides the following effects that are not available in conventional apparatuses.

即ち、 ■ 熱交換装置!25による媒体粒子16ならびに該媒
体粒子の表面に付着した液状物質の直接的な加熱に関し
ては、同装置の熱交換管321分岐管2B。
Namely, ■ Heat exchange device! 25 for direct heating of the media particles 16 and the liquid substance adhering to the surface of the media particles, the heat exchange tube 321 branch tube 2B of the device.

集配管29の各伝熱面から流動層に与えた熱量のみが消
費される (すなわち排気損失が零である)ため、乾燥
に有効に使われた熱量のみの補給を行なえばよいので熱
効率の高い乾燥操作となる。
Since only the amount of heat given to the fluidized bed from each heat transfer surface of the collecting pipe 29 is consumed (that is, the exhaust loss is zero), only the amount of heat effectively used for drying needs to be replenished, resulting in high thermal efficiency. This is a drying operation.

■ 従って、また、乾燥に必要な全熱量のうち、内装の
熱交換装置によって直接的な加熱をする熱量の割合だけ
(通常乾燥に必要な全熱量の20%乃至60%に相当す
る)使用する空気量(熱風M)を低減することができる
ため、流動化容器本体はもちろん、熱風発生装置、サイ
クロン、バンクフィルターなどの粉末補集装置、送・俳
風機等の付帯設備全般にわたって装置を小型化すること
ができる。従ってイニシャルコスト、ランニングコスト
を低減することができる。
■ Therefore, of the total heat required for drying, only the proportion of heat directly heated by the internal heat exchange device is used (usually equivalent to 20% to 60% of the total heat required for drying). Since the amount of air (hot air M) can be reduced, the equipment can be downsized not only for the fluidization container itself, but also for all ancillary equipment such as hot air generators, cyclones, powder collection devices such as bank filters, and blowers/air blowers. can do. Therefore, initial costs and running costs can be reduced.

■ 更に、熱交換装置の伝熱表面はもとより、流動化容
器内の主要部は、流動化媒体粒子によって絶えず摩擦さ
れているので、処理物質の付着がな(、さらにこの自己
清掃性が内装の熱交換装置よりの受熱性能を高めている
。また反面、媒体粒子の表面は絶えず処理物質(粉体)
で覆われている状態にあるため、媒体粒子自体や熱交換
管並びに流動化容器内壁等の摩耗は殆んど問題とならな
い。
■ In addition, the heat transfer surfaces of the heat exchanger, as well as the main parts inside the fluidization vessel, are constantly rubbed by the fluidization medium particles, which prevents the adhesion of treated substances (furthermore, this self-cleaning property improves the inner surface of the fluidization vessel). This improves the heat receiving performance from the heat exchange device.On the other hand, the surface of the media particles is constantly exposed to the processing material (powder).
Since the medium particles themselves, the heat exchange tubes, and the inner walls of the fluidization vessel are covered with water, wear of the media particles itself, the heat exchange tubes, and the inner walls of the fluidization vessel hardly poses a problem.

このように本発明装置は、各種産業分野で取扱われてい
る有機物、無機物、金属等の各種の液状物質の乾燥に広
く、効率よく使用することができる。
As described above, the apparatus of the present invention can be widely and efficiently used for drying various liquid substances such as organic substances, inorganic substances, and metals that are handled in various industrial fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、本発明の一実施例を示し、第1図
は本実施例に係る液状物質の乾燥装置の全体を示す概念
図、第2図は熱交換装置の構成を示す概念図、第3図は
第2図のA−A矢視図、第4図は第2図のB−B矢視図
を夫々示す。 4・・・流動化容器、     11・・・熱風室、1
1a・・・加熱空気の導入口、 12・・・流動化室、
12a・・・液状物質の供給口、 13・・・分散板、
16・・・媒体粒子、      25・・・熱交換装
置、32・・・熱交換管。 第2図 「8      第4図 B 第3図
1 to 4 show one embodiment of the present invention, FIG. 1 is a conceptual diagram showing the entire liquid substance drying device according to the present embodiment, and FIG. 2 shows the configuration of the heat exchange device. A conceptual diagram, FIG. 3 shows a view taken along the line A-A in FIG. 2, and FIG. 4 shows a view taken along the line B-B in FIG. 2. 4...Fluidization container, 11...Hot air chamber, 1
1a... Heated air inlet, 12... Fluidization chamber,
12a... Liquid substance supply port, 13... Dispersion plate,
16... Medium particles, 25... Heat exchange device, 32... Heat exchange tube. Figure 2 "8 Figure 4B Figure 3

Claims (1)

【特許請求の範囲】 1)ガス分散板を備えた流動化容器において、分散板上
に、多数の流動化媒体粒子を充填し、これを熱風で吹き
あげて前記媒体粒子の流動層を形成するとともに、該流
動層内に熱交換装置を配備し、さらに前記流動層側面に
開口する液状物質の供給口を設け、該液状物質を流動化
媒体粒子に付着させながら乾燥することを特徴とする液
状物質の乾燥装置。 2)前記流動層内に配備する熱交換装置は、流動層内の
全域にわたり空隙を置いて配列した多数の熱交換管から
なることを特徴とする特許請求の範囲第1項に記載の液
状物質の乾燥装置。
[Claims] 1) In a fluidization container equipped with a gas distribution plate, a large number of fluidization medium particles are filled on the distribution plate and are blown up with hot air to form a fluidized bed of the medium particles. In addition, a heat exchange device is provided in the fluidized bed, and a liquid material supply port opening on the side surface of the fluidized bed is provided, and the liquid material is dried while adhering to the fluidizing medium particles. Equipment for drying substances. 2) The liquid substance according to claim 1, wherein the heat exchange device disposed within the fluidized bed is comprised of a large number of heat exchange tubes arranged with gaps throughout the fluidized bed. drying equipment.
JP6679687A 1987-03-20 1987-03-20 Device for drying liquid material Pending JPS63232801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6679687A JPS63232801A (en) 1987-03-20 1987-03-20 Device for drying liquid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6679687A JPS63232801A (en) 1987-03-20 1987-03-20 Device for drying liquid material

Publications (1)

Publication Number Publication Date
JPS63232801A true JPS63232801A (en) 1988-09-28

Family

ID=13326188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6679687A Pending JPS63232801A (en) 1987-03-20 1987-03-20 Device for drying liquid material

Country Status (1)

Country Link
JP (1) JPS63232801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136334A (en) * 2003-07-31 2011-07-14 Delavau Llc Calcium carbonate granulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011562U (en) * 1973-05-28 1975-02-06
JPS613987A (en) * 1984-06-18 1986-01-09 株式会社大川原製作所 Fluidized bed drier with heat transfer pipe
JPS6212498B2 (en) * 1981-02-03 1987-03-19 Fuji Photo Film Co Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011562U (en) * 1973-05-28 1975-02-06
JPS6212498B2 (en) * 1981-02-03 1987-03-19 Fuji Photo Film Co Ltd
JPS613987A (en) * 1984-06-18 1986-01-09 株式会社大川原製作所 Fluidized bed drier with heat transfer pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136334A (en) * 2003-07-31 2011-07-14 Delavau Llc Calcium carbonate granulation

Similar Documents

Publication Publication Date Title
CA2006507C (en) Method for drying sludge
Van't Land Drying in the process industry
Syahrul et al. Energy analysis in fluidized‐bed drying of large wet particles
US5522156A (en) Drying apparatus and method
US6880263B2 (en) Fluid/solid interaction apparatus
JPH05104098A (en) Method for drying water-containing sludge and apparatus therefor
US20200348078A1 (en) Modular System and Process of Drying Solids and Liquid-Solid Mixtures
US2889874A (en) Thermal treatment of finely divided substances
EP0974385A1 (en) Method and device for drying solid suspensions or dissolved solid
JPH0515900A (en) Method and device for drying water-containing sludge
CN109140905B (en) Drying device and drying method for vibrating fluidized bed
Markowski Quality interaction in a jet spouted bed dryer for bio-products
RU2228496C2 (en) Gear to remove liquid from disperse material
JPS63232801A (en) Device for drying liquid material
US3313035A (en) Apparatus for drying particulate material
US4523906A (en) Device for drying gypsum
Kannan et al. Some drying aspects of multistage fluidized beds
JP2547023B2 (en) Liquid material powderizer
EP1409938A1 (en) Fluid/solid interaction apparatus
US6767520B2 (en) Cooling system for polymer processing
JP2619876B2 (en) Spray drying agitation granulator
JPS6230539A (en) Granulation coating apparatus
Watano et al. Heat transfer and the mechanism of drying in agitation fluidized bed
CN216497519U (en) Closed circulation disc drying system
Dhadwal et al. An overview on fluidized bed dryer