JPS6323254B2 - - Google Patents

Info

Publication number
JPS6323254B2
JPS6323254B2 JP55186410A JP18641080A JPS6323254B2 JP S6323254 B2 JPS6323254 B2 JP S6323254B2 JP 55186410 A JP55186410 A JP 55186410A JP 18641080 A JP18641080 A JP 18641080A JP S6323254 B2 JPS6323254 B2 JP S6323254B2
Authority
JP
Japan
Prior art keywords
copper
electrical contact
zinc oxide
encapsulation
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55186410A
Other languages
Japanese (ja)
Other versions
JPS57110642A (en
Inventor
Norimasa Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP55186410A priority Critical patent/JPS57110642A/en
Publication of JPS57110642A publication Critical patent/JPS57110642A/en
Publication of JPS6323254B2 publication Critical patent/JPS6323254B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、封入型リレー,リードスイツチ,マ
イクロスイツチ等の電気接点に用いる材料及びそ
の製造方法に関する。 従来封入型リレー,リードスイツチ,マイクロ
スイツチ等の電気接点材料としては、耐溶着性に
優れた銀−酸化カドミウムが使用されてきたが、
何分にも材料が高価である為、低廉な銅−酸化カ
ドミウムの使用が考えられていた。 然し、銅−酸化カドミウムは耐溶着性について
は銀−酸化カドミウムに比べ著しく劣つている。
これは接触時に局部的に異常発熱し、つまり諏触
開始時に最初に接触した部分に瞬間的に電流が集
中して流れて異常発熱し、これにより該部分の銅
の結晶粒が粗大化し頻繁な開閉により、銅地が劣
下する為、銅が微細なフレークとなつて剥落消耗
すると共に接点面が非常に荒れ耐溶着性を悪くし
ている。 この為、高価な銀−酸化カドミウムより成る封
入用電気接点材料と同等に耐溶着性に優れた低廉
な封入用電気接点材料の開発が要望されている。 本発明にかかる要望を満たすべく試験研究の結
果、満足できる封入用電気接点材料とその製造方
法を見い出したものである。 本発明の封入用電気接点材料は、酸化亜鉛0.5
〜25w/oと、鉄,コバルト,クロムの少くとも
1種が0.01〜1w/oと残部銅より成るものであ
る。 またこの封入用電気接点材料を作る本発明の製
造方法は、酸化亜鉛粉末と銅に鉄,コバルト,ク
ロムの少なくとも1種を添加した銅合金粉末を酸
化亜鉛が0.5〜25w/o,鉄,コバルト,クロム
の少なくとも1種が0.01〜1w/o,残部が銅と
なるような組成に混合し、圧縮して真空又は不活
性ガス雰囲気中で焼結し、然る後塑性加工と真空
又は不活性ガス雰囲気中での熱処理を繰返して所
要形状に成形することを特徴とするものである。 本発明の封入用電気接点材料に於いて主成分を
銅とした理由は、低廉にして銀と同様に電気伝導
度が高いからである。銅に対して酸化亜鉛0.5〜
25w/o添加した理由は、耐溶着性を銀−酸化カ
ドミウムと同等ならしめる為で0.5w/o未満で
はその効果が無く、25w/oを超えると接触抵抗
が大きく且つ不安定となるからである。また鉄,
コバルト,クロムの少くとも1種を0.01〜1w/
o添加した理由は、銅の発熱による結晶粒の粗大
化を防ぎ、銅の機械的強さを向上させ、劣化を防
止してフレークの剥落による消耗を防止すると共
に接点面の荒れによる耐溶着性を向上させる為
で、0.01w/o未満ではその効果が無く、1w/o
を超えると加工性が悪くなると共に材料が極めて
もろくなり、異常消耗が起きるからである。 また本発明の封入用電気接点材料の製造方法に
於いて、銅に鉄,コバルト,クロムの少くとも1
種を添加した銅合金粉末と酸化亜鉛粉末を混合圧
縮して焼結する理由は、鉄,コバルト,クロムの
少くとも1種を銅に溶解して銅合金粉末とするこ
とにより、銅合金粉末中の銅の結晶粒中に鉄,コ
バルト,クロムの少くとも1種の粒子が均一に分
散して、高温での結晶粒の粗大化が抑制され、そ
の後酸化亜鉛粉末と混合圧縮して焼結しても銅の
結晶粒が成長することがないからである。 以下本発明の封入用電気接点材料及びその製造
方法の効果を明瞭ならしめる為に、その具体的な
実施例の封入用電気接点材料と従来例の封入用電
気接点材料により作つた封入用電気接点の耐溶着
性について述べる。 実施例 1 CuにFeを0.56w/o添加して溶解し、この溶湯
を噴霧してCu−Fe合金粉末を作り、次いでこの
Cu−Fe合金粉末とZnO粉末10.2w/oを混合圧縮
して30mm口×150mmの圧粉体を作り、これをHe
ガス中850℃で焼結し、然る後溝ロール加工と真
空中850℃の熱処理を繰返し10mm口の棒になつた
ところでHeガス中850℃で熱処理し、スエージン
グ加工とHeガス中850℃の熱処理を繰返して5mm
のCu−ZnO10.2w/o−Fe0.51w/oより成る
線材となし、更にこの線材を旋盤加工により4.0
mm×1.2mmtのリベツトとなした。 実施例 2 CuにCO0.61w/oとCr0.23w/oを添加して溶
解し、この溶湯を噴霧してCu−Co−Cr合金粉末
を作り、次いでこのCu−Co−Cr合金粉末とZnO
粉末18.0w/oを混合圧縮して30mm口×150mm
の圧粉体を作り、これを窒素ガス雰囲気中850℃
で焼結し、然る後溝ロール加工と窒素ガス雰囲気
中850℃の熱処硫を繰返し10mm口の棒になつたと
ころで、窒素ガス雰囲気中850℃で熱処理し、ス
エージング加工と窒素ガス雰囲気中850℃の熱処
理を繰返して5mmのCu−ZnO18.0w/o−
Co0.50w/o−Cr0.19w/oより成る線材とな
し、更にこの線材を旋盤加工により4.0mm×1.2
mmtのリベツトとなした。 従来例 1 Cu粉末88w/oとCdO粉末12w/oを混合圧縮
して30mm□×150mmの圧粉体を作り、これを窒
素ガス雰囲気中830℃で焼結し、然る後溝ロール
加工と窒素ガス雰囲気中830℃の熱処理を繰返し、
10mm□の棒となつたところで、窒素ガス雰囲気中
830℃で熱処理し、スエージング加工と窒素ガス
雰囲気中830℃の熱処理を繰返して5mmのCu−
CdO12w/oより成る線材となし、更にこの線材
を旋盤加工して頭部4.0mm×1.2mmtのリベツト
となした。 従来例 2 Ag中にCd11w/o溶解してAg−Cd合金の2.3
mm×2.3mmの粒を作り、これを酸素ガス雰囲
気中8気圧800℃で内部酸化してAg−CdO12w/
oの粒となし、然る後この粒を圧縮,焼結,押出
加工し、次いで線引加工と大気中700℃の熱処理
を繰返して2.0mmのAg−CdO12w/oより成る
線材となし、更にこの線材をヘツダー加工により
頭部4.0mm×1.2mmtのリベツトとなした。 然してこれら実施例1,2及び従来例1,2の
リベツトを一般のヒンジ型リレーにカシメ付けし
て試験用リレーを組立てこれを夫々真空又は不活
性ガス(N2,Ar,N2−H2数%,Ar−H2,He,
N2−O2数%,Ar−O2,CO2,N2−CO2,Ar−
CO2,CO2−O2)充填容器,本例ではArガス充
填容器中に封入して下記の試験条件にて開閉試験
を行ない、封入用電気接点の溶着回数を測定した
処、下記の表に示すような結果を得た。 試験条件 負 荷 抵抗2段切換 電 圧 100V 周波数 50Hz 電 流 投入電流40A,定常電流10A 開閉頻度 20回/分 通電時間 0.62秒 休止時間 2.35秒 接触力 20g 開離力 40g 開閉回数 5万回
The present invention relates to materials used for electrical contacts such as encapsulated relays, reed switches, microswitches, etc., and a method for manufacturing the same. Conventionally, silver-cadmium oxide, which has excellent welding resistance, has been used as an electrical contact material for encapsulated relays, reed switches, micro switches, etc.
Since the materials are quite expensive, the use of inexpensive copper-cadmium oxide was considered. However, copper-cadmium oxide is significantly inferior to silver-cadmium oxide in terms of adhesion resistance.
This is because when contact occurs, localized abnormal heat generation occurs. In other words, when contact begins, current is instantaneously concentrated and flows in the first contact area, causing abnormal heat generation. This causes the copper crystal grains in that area to coarsen, causing frequent As the copper base deteriorates due to opening and closing, the copper becomes fine flakes that peel off and wear out, and the contact surface becomes extremely rough, impairing welding resistance. For this reason, there is a demand for the development of an inexpensive electrical contact material for encapsulation that is as excellent in welding resistance as the expensive electrical contact material for encapsulation made of silver-cadmium oxide. As a result of testing and research to meet the needs of the present invention, a satisfactory electrical contact material for encapsulation and a manufacturing method thereof have been discovered. The electrical contact material for encapsulation of the present invention includes zinc oxide 0.5
~25w/o, at least one of iron, cobalt, and chromium, and 0.01~1w/o, the balance being copper. In addition, the manufacturing method of the present invention for making this electrical contact material for encapsulation is to mix zinc oxide powder and copper alloy powder, which is made by adding at least one of iron, cobalt, and chromium, with zinc oxide of 0.5 to 25 w/o, iron, and cobalt. , at least one kind of chromium is mixed to a composition of 0.01 to 1 w/o and the remainder is copper, compressed and sintered in a vacuum or inert gas atmosphere, followed by plastic working and vacuum or inert gas atmosphere. It is characterized by being formed into a desired shape by repeated heat treatment in a gas atmosphere. The reason why copper is used as the main component in the electrical contact material for encapsulation of the present invention is that it is inexpensive and has high electrical conductivity like silver. Zinc oxide 0.5 to copper
The reason for adding 25w/o is to make the welding resistance equal to that of silver-cadmium oxide.If it is less than 0.5w/o, it has no effect, and if it exceeds 25w/o, the contact resistance becomes large and unstable. be. Also iron,
At least one of cobalt and chromium 0.01~1w/
The reason for adding o is to prevent the coarsening of crystal grains due to copper heat generation, improve the mechanical strength of copper, prevent deterioration, prevent wear due to flakes falling off, and prevent welding due to rough contact surfaces. This is to improve the
This is because if it exceeds this, workability deteriorates and the material becomes extremely brittle, causing abnormal wear. Further, in the method for manufacturing the electrical contact material for encapsulation of the present invention, at least one of iron, cobalt, and chromium is added to copper.
The reason why seeded copper alloy powder and zinc oxide powder are mixed, compressed, and sintered is that at least one of iron, cobalt, and chromium is dissolved in copper to form a copper alloy powder. Particles of at least one of iron, cobalt, and chromium are uniformly dispersed in the copper crystal grains, suppressing coarsening of the crystal grains at high temperatures, and then mixed with zinc oxide powder and compressed and sintered. This is because copper crystal grains do not grow even if In order to clarify the effects of the electrical contact material for encapsulation of the present invention and the method for manufacturing the same, electrical contacts for encapsulation made from the electrical contact material for encapsulation of specific examples and the electrical contact material for encapsulation of the conventional example will be described below. We will discuss the welding resistance of Example 1 Add 0.56 w/o of Fe to Cu, melt it, spray this molten metal to make a Cu-Fe alloy powder, and then
Cu-Fe alloy powder and ZnO powder 10.2w/o were mixed and compressed to make a 30mm opening x 150mm compact, which was then heated using He
Sintering at 850°C in gas, followed by groove rolling and heat treatment at 850°C in vacuum are repeated until a bar with a diameter of 10 mm is obtained, then heat treated at 850°C in He gas, followed by swaging and heat treatment at 850°C in He gas. 5mm by repeating the heat treatment.
The wire rod is made of Cu-ZnO10.2w/o-Fe0.51w/o, and then this wire is lathed to a
It was made into a rivet of mm x 1.2mmt. Example 2 CO0.61w/o and Cr0.23w/o are added to Cu and melted, this molten metal is sprayed to make Cu-Co-Cr alloy powder, and then this Cu-Co-Cr alloy powder and ZnO
Mix and compress powder 18.0w/o to 30mm opening x 150mm
A green compact is made and heated at 850℃ in a nitrogen gas atmosphere.
After sintering, subsequent groove rolling and heat treatment at 850℃ in a nitrogen gas atmosphere were repeated until the rod had a diameter of 10 mm.Heat treatment was performed at 850℃ in a nitrogen gas atmosphere, followed by swaging and swaging in a nitrogen gas atmosphere. 5mm Cu-ZnO18.0w/o- by repeating heat treatment at 850℃
A wire rod made of Co0.50w/o-Cr0.19w/o is made, and then this wire is processed on a lathe to 4.0mm x 1.2
Made with mmt rivets. Conventional example 1 Cu powder 88w/o and CdO powder 12w/o are mixed and compressed to make a 30mm x 150mm green compact, which is sintered at 830℃ in a nitrogen gas atmosphere, followed by trailing groove rolling. Repeated heat treatment at 830℃ in nitrogen gas atmosphere,
At the point where it becomes a 10 mm square rod, place it in a nitrogen gas atmosphere.
Heat treated at 830℃, swaging process and heat treatment at 830℃ in a nitrogen gas atmosphere were repeated to form a 5mm Cu-
A wire rod made of CdO12w/o was made, and this wire rod was further processed on a lathe to form a rivet with a head size of 4.0 mm x 1.2 mm. Conventional example 2 2.3% of Ag-Cd alloy is made by dissolving Cd11w/o in Ag.
Ag-CdO12w/
The particles were then compressed, sintered, and extruded, and then wire-drawn and heat-treated at 700°C in the atmosphere to make a 2.0 mm wire rod made of Ag-CdO12w/o. This wire was processed into a rivet with a head size of 4.0 mm x 1.2 mm. However, the rivets of Examples 1 and 2 and Conventional Examples 1 and 2 were caulked to a general hinge type relay to assemble a test relay, which was then heated in vacuum or inert gas (N 2 , Ar, N 2 -H 2 ) , respectively. Several %, Ar−H 2 , He,
N 2 −O 2 several %, Ar−O 2 , CO 2 , N 2 −CO 2 , Ar−
CO 2 , CO 2 −O 2 ) filled containers, in this example Ar gas filled containers, were sealed and opened and closed tests were conducted under the following test conditions, and the number of times the electrical contacts for the filling were welded was measured, as shown in the table below. The results shown are obtained. Test conditions Load 2-step resistance switching Voltage 100V Frequency 50Hz Current Closing current 40A, steady current 10A Switching frequency 20 times/minute Energizing time 0.62 seconds Resting time 2.35 seconds Contact force 20g Breaking force 40g Number of switching times 50,000 times

【表】 上記の表で明らかなように実施例1,2のリレ
ーに於ける電気接点は、従来例1のリレーに於け
る電気接点よりも溶着回数は一段と少ない。また
従来例2のリレーに於ける高価な電気接点と同等
に溶着回数が少なく、耐溶着性に優れていること
が判る。 以上詳詳記した通り本発明の封入用電気接点材
料は、貴金属を全く使用しない安価な材料であつ
てしかも銀−酸化カドミウムより成る高価な封入
用電気接点材料と同等の優れた耐溶着性を有する
ので、これにとつて代わることのできる画期的な
封入用電気接点材料と言える。 また本発明の封入用電気接点材料の製造方法に
よれば、上記の如き耐溶着性,耐消耗性に優れた
封入用電気接点材料を簡単に製造することができ
るという利点がある。
[Table] As is clear from the table above, the electrical contacts in the relays of Examples 1 and 2 are welded a much smaller number of times than the electrical contacts in the relay of Conventional Example 1. Furthermore, it can be seen that the number of times of welding is as small as that of the expensive electrical contacts in the relay of Conventional Example 2, and the welding resistance is excellent. As detailed above, the electrical contact material for encapsulation of the present invention is an inexpensive material that does not use any precious metals, and yet has excellent welding resistance equivalent to the expensive electrical contact material for encapsulation made of silver-cadmium oxide. Therefore, it can be said to be an innovative encapsulating electrical contact material that can replace this. Further, according to the method for producing an electrical contact material for encapsulation of the present invention, there is an advantage that the electrical contact material for encapsulation having excellent welding resistance and wear resistance as described above can be easily produced.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛0.5〜25w/oと鉄,コバルト,ク
ロムの少なくとも1種が0.01〜1w/oと、残部
銅より成る封入用電気接点材料。 2 酸化亜鉛粉末と銅に鉄,コバルト,クロムの
少なくとも1種を添加した銅合金粉末と酸化亜鉛
粉末を酸化亜鉛が0.5〜25w/o、鉄,コバルト,
クロムの少なくとも1種が0.01〜1w/o、残部
が銅となるような組成に混合し、圧縮して真空又
は不活性ガス雰囲気中で焼結し、然る後塑性加工
と真空又は不活性ガス雰囲気中での熱処理を繰返
して所要形状に成形することを特徴とする封入用
電気接点の製造方法。
[Scope of Claims] 1. An electrical contact material for encapsulation consisting of 0.5 to 25 w/o of zinc oxide, 0.01 to 1 w/o of at least one of iron, cobalt, and chromium, and the balance copper. 2 Zinc oxide powder and copper alloy powder with at least one of iron, cobalt, and chromium added to zinc oxide powder and zinc oxide powder with 0.5 to 25 w/o of zinc oxide, iron, cobalt,
At least one kind of chromium is mixed to a composition of 0.01 to 1 w/o and the rest is copper, compressed and sintered in a vacuum or inert gas atmosphere, followed by plastic working and vacuum or inert gas atmosphere. A method for manufacturing an electrical contact for encapsulation, characterized by forming the electrical contact into a desired shape by repeating heat treatment in an atmosphere.
JP55186410A 1980-12-26 1980-12-26 Electrical contact material for sealing and its manufacture Granted JPS57110642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55186410A JPS57110642A (en) 1980-12-26 1980-12-26 Electrical contact material for sealing and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55186410A JPS57110642A (en) 1980-12-26 1980-12-26 Electrical contact material for sealing and its manufacture

Publications (2)

Publication Number Publication Date
JPS57110642A JPS57110642A (en) 1982-07-09
JPS6323254B2 true JPS6323254B2 (en) 1988-05-16

Family

ID=16187922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55186410A Granted JPS57110642A (en) 1980-12-26 1980-12-26 Electrical contact material for sealing and its manufacture

Country Status (1)

Country Link
JP (1) JPS57110642A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456797B (en) * 2018-03-27 2019-08-30 河南理工大学 A kind of Cu-Ag-Fe-C system alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS57110642A (en) 1982-07-09

Similar Documents

Publication Publication Date Title
US3785810A (en) Silver-metal oxide composite and method of manufacturing the same
US4681702A (en) Sintered, electrical contact material for low voltage power switching
US6524525B2 (en) Method for producing a contact material for contact pieces for vacuum switch devices, and a contact material and contact pieces therefor
JPS6320899B2 (en)
JPS6323254B2 (en)
JPS6323255B2 (en)
JPH0135904B2 (en)
JPS6323256B2 (en)
JPS6335694B2 (en)
JPH0124217B2 (en)
JPH0135903B2 (en)
JPH026816B2 (en)
JPH026817B2 (en)
JPS6018734B2 (en) electrical contact materials
JPS6244541A (en) Manufacture of silver-tin oxide-type electric contact point material
JPS6320902B2 (en)
JPS6335697B2 (en)
JPS6320900B2 (en)
JPS6335698B2 (en)
JPH0123536B2 (en)
JPS58193333A (en) Electric contact material
JPS6335696B2 (en)
JPS6337175B2 (en)
JPH029096B2 (en)
JPS6021302A (en) Production of electrical contact point material