JPS6323247B2 - - Google Patents

Info

Publication number
JPS6323247B2
JPS6323247B2 JP14365882A JP14365882A JPS6323247B2 JP S6323247 B2 JPS6323247 B2 JP S6323247B2 JP 14365882 A JP14365882 A JP 14365882A JP 14365882 A JP14365882 A JP 14365882A JP S6323247 B2 JPS6323247 B2 JP S6323247B2
Authority
JP
Japan
Prior art keywords
steel
amount
enameling
less
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14365882A
Other languages
Japanese (ja)
Other versions
JPS5935633A (en
Inventor
Norisuke Takasaki
Akira Yasuda
Hirotake Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14365882A priority Critical patent/JPS5935633A/en
Publication of JPS5935633A publication Critical patent/JPS5935633A/en
Publication of JPS6323247B2 publication Critical patent/JPS6323247B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、密着性の優れた超深絞りほうろう用
鋼板の製造方法に関し、とくに連続鋳造法を経て
安価に製造するのに有利な方法についての提案で
ある。 従来のほうろう用鋼板は、低炭素リムド鋼より
製造された冷延鋼板をオープンコイル焼鈍法によ
り脱炭焼鈍し、Cを0.008%以下とすることによ
り製造されてきた。リムド鋼を使う理由は、鋼中
に多量の酸素を含有するため、ほうろう焼成時に
ほうろう欠陥であるつまとびが発生し難いという
利点を有していること、脱炭焼鈍することにより
ほうろう焼成時に熱応力により生じる焼成歪が小
さくなるとともに鋼板の延性が向上し、優れた成
形性が得られるという利点のためである。 しかしかかる従来方法で製造されるほうろう用
鋼板は、 (1) オープン焼鈍における製造コストの上昇が避
け難い。 (2) リムド鋼とするために連続鋳造することがで
きない。 (3) リムド鋼であるために成分偏析による材質、
およびほうろう特性が不均一であり、そのため
製品の品質が安定しない。 しかも、上述の製造工程を経て得られるほうろ
う用鋼板の場合、前記ほうろう特性の他プレス成
形性所謂深絞り性にも優れたものが要求されるの
で、リムド鋼を使い脱炭焼鈍するのが普通である
から、もちろん連続鋳造ができない上にオーブン
焼鈍が不可欠で、そのため製造コストが上昇する
という欠点があつた。加えて、造塊材特有の介在
物欠陥、偏析による材質不均一、製品鋼帯となし
たときリム層及びリム層とコア層との境界線近傍
につまとびが発生しやすいという宿命的とも言え
る欠点があつた。 この発明は、上述した従来ほうろう用鋼板の欠
点を克服し、連鋳による製造が可能な品質に優れ
安価なほうろう用冷延鋼板を得ることを目的とす
るものである。かかる目的に対応して所期した効
果を達成するのに有効な本発明の要旨とするとこ
ろは、重量%で、C:0.003%以下、Mn:0.50%
以下、Al:0.030%以下含み、かつNbを酸化物と
して存在するものを除き上記C量の2倍以上0.04
%以下、Bを0.0020〜0.0070%およびNを0.0026
〜0.0100%の範囲で含有させた鋼を連続鋳造し、
その鋳造したスラブに、1000℃以上、1200℃以下
の低温加熱を施して熱間圧延し、その後冷間圧延
を経て予め冷延鋼板表面に0.01〜2.0g/m2厚の
Niめつきを施してから、再結晶温度以上1000℃
以下の温度で再結晶焼鈍を行うことを特徴とする
密着性の優れた超深絞りほうろう用鋼板の製造方
法に関する点の構成にある。以下その構成の詳細
を説明する。 溶製鋼の成分限定の理由は次のとおりである。 C重量%;Cは0.003%以下まで低くする必要が
ある。その理由は、ほうろう特性(焼成歪、
泡発生)の向上、材質向上、連鋳鋳込み時
のCOガス発生の防止、の3点から極低炭素鋼
にするのである。一般的なほうろう用鋼板はC
%が低くないとほうろう焼成時にCOガスが発
生して泡欠陥を招いたり、α−γ変態による焼
成歪のトラブルが発生するので、JISG3133に
定められているようにC量を0.008%以下の低
目に管理することが要求されている。 これに対し、本発明鋼は、伸び特性値や値
などの材質も同時に良好にし、かつ連鋳鋳込み
時のCOガス発生防止のために、C量の上限を
下げ0.003%以下とさらに低くすることとした。
それは、C含有量が0.003%超になると、再結
晶焼鈍前の固溶C量が増化し、値が劣化し、
C時効による材質劣化も大きくなる。また連鋳
鋳込み時COガスが発生し、良好な表面品質が
得られなくなるからである。 要するに、かかるC含有量こそほうろう用鋼
の連続鋳造を可能にしたのである。 Mn重量%;Mnは、通常Sによる熱間脆性割れ
の防止を目的にMn/S10となるよう添加す
る。キルド鋼の場合、Mn量が少ない方が伸び
(El)、絞り(値)などの材質特性が良好とな
るので、Mn添加量は少ない方が好ましい。
Mn添加量の上限は経済的理由によるものであ
り、本発明では0.50%以下とした。 Al重量%;Alは、溶鋼中の酸素を脱酸し、連続
鋳造を容易ならしめるために溶鋼中に添加され
る。このAlの役割は鋼中ではBと同様窒化物
を形成するが、AlNとなつた窒素はBNとなつ
たNと異なり、つまとびを抑制する効果が小さ
い。AlとBが共存した場合、BNとAlNが同時
に析出するため、B添加の効果が小さくなるこ
とからAlの上限を0.03%とした。 Nb重量%;一般に溶製時C40ppmの極低Cに
した鋳片を通常の工程で冷延鋼板にした場合
は、伸びEl、絞り値の面内異方性(特に圧延
方向と45゜(D)方向のEl、r値が劣化)が著しく
大きくなることが知られている。 また、連続焼鈍炉での再結晶過程で、固溶C
が残存しているので、上記値もよくならな
い。この欠点を改善するために、C固定元素で
あるNbを添加すると、これらの欠点が改善さ
れる。こうした要請に応えられるNbの添加量
については、当然のことながらC量との関係に
おいて決められ、それはC量の2倍以上で0.04
%以下にする必要がある。その理由はNb量が
C量の2倍未満の場合には、異方性が大きくな
り、El、r値のL(0゜),C(90゜),D(45゜)方

の平均値(,値)も劣化する。 一方、このNb添加量の上限は、Nbを多量に
添加すると、NbCなどの析出物が多くなりす
ぎ、焼鈍後の結晶粒径が小さくなり、El,値
が劣化する。また多量の添加は経済的でないの
で上限を0.04%とした。 なおNb量に関して、酸化物となつているも
のを除く理由は、Nb酸化物は、固溶Cの固定
に有効でないからである。 BおよびN重量%; B,Nの最少添加量は、つまとび発生防止の
点から決定され、最大添加量は材質劣化防止の
点から決定される。 まず、BおよびNの最少添加量の決定理由に
ついて述べる。本発明では、ほう素および窒素
を添加して、BNを析出させ、そのBN析出物
のまわりに水素をトラツプさせ、つまとびの発
生を防止することが主要件である。第1図は、
C:0.0018%、Mn:0.18%、Nb:0.10%、
N:0.0040%の成分で、B含有量が、10ppmか
ら85ppmまで変化した溶鋼を、1150℃でスラブ
加熱し、冷延鋼板に予め0.2g/m2のNiをめつ
きを施し、ついで820℃×40秒の連続焼鈍をし
た場合のB量と値、つまとび発生の有無の関
係を示したグラフであり、第2図は同じくB量
とBNの量、つまとび発生の有無の関係をした
グラフである。 第2図からつまとびの発生を防止するには、
BN析出物の量が0.0046%以上必要であること
が判る。すなわち、Bは0.0020%以上添加する
必要があり、Nは下式より0.0026%以上必要と
なる。 NN(原子量)/BN(原子量)×BN(%) =14/(14+10.8)×0.0046=0.0026% また第1図から、良好な絞り性(値)を得
るためにはB量は0.0070%以下にする必要があ
ることが判る。なお、N量は、あまり多すぎる
と材質が劣化するので、その添加量は0.0100%
以下にする。 以上の理由により、 B量は、0.0020%〜0.0070% N量は、0.0026%〜0.0100% にコントロールする必要がある。 次に、上記溶製鋼を連続鋳造して連続鋳造スラ
ブをつくる。 従来の脱炭リムド鋼タイプのホーロー用鋼板は
造塊材の溶鋼成分を高酸素(0≒450ppm)にす
ることにより、つまとびの発生を防止させていた
ので、鋳造時、溶鋼中のC,Oが反応をおこし、
COガスが発生し、所謂リミング反応が生じてい
たので、連続鋳造では製造できなかつた。 これに比べて、本発明鋼は、を非常に低
くして鋳造できるのでリミング反応は起こらず、
連続鋳造をすることが可能となつた。 次に、上記鋳造スラブに、1000℃以上、1200℃
以下の低温加熱を施したのち熱間圧延を行う。と
いうのは加熱温度が1200℃を超えると、熱間圧延
時のBN析出が害され、適量のBN析出量が得ら
れず、耐つまとび特性が劣化するからである。し
かしながら加熱温度があまりに低いと、周知のと
おり良好なプレス成形性を確保するのに必要な
Ar3点以上での熱間圧延が困難となつて成形性の
劣化を招くだけでなく、析出したBNが過度に粗
大化したり、BNの析出量が不充分となつてつま
とびの抑制力が不安定になるので、加熱温度の下
限はかかる心配のない1000℃に定めた。 次に、上記熱延鋼板は常法に従う冷間圧延を経
て連続焼鈍に付される。このとき本発明法は、そ
の処理に先立ち、予め冷延鋼板の表面にNiめつ
きを施すことを特色とする。以下にかような処理
工程を経る理由について述べる。 第2図は、C:0.0018%、Mn:0.18%、Nb:
0.10%、N:0.0030%〜0.0050%の成分で、B含
有量が10ppmの溶鋼と、25ppmの溶鋼を連続鋳造
して得られたスラブを1150℃に加熱し、通常の方
法で熱間圧延、酸洗、冷間圧延後、連続焼鈍炉に
入る前で0〜0.6gのNiをめつきを施し、再結晶
焼鈍の後ほうろう用鋼板とし、通常のほうろう焼
成後のつまとび発生状況を調査した結果である。
Bを25ppm含有している本発明鋼の場合は、0.1
g/m2のNiめつきをすると、つまとびの発生を
防止できることがわかる。しかし、B含有量が
10ppmの本発明範囲外の鋼板は、Niめつき量が
多くなつても、つまとびの発生は防止できない。
Niめつき量は、0.01g/m2以下では少なすぎて効
果がなく、また上限は経済性の点から2.0g/m2
に決めた。 かかるNiめつきのもう一つの効果は、ほうろ
う焼成時前処理を省略しても良好な密着性が得ら
れる点にある。通常ほうろう製品を製造する場合
密着性の向上、つまとび発生防止のため脱脂、硫
酸による酸洗、NiSO4水溶液へのNiデイツプ、
などの前処理を行う。このような前処理は廃酸処
理によるコストアツプや作業環境の悪化をきたし
ていた。ところが、本発明ほうろう用鋼板の製造
方法によれば、このような前処理を行わなくて
も、単に400〜600℃で数分の空焼きを行うだけ
で、密着性が著しく向上し、つまとびの発生も防
止できるので、このような作業環境の改善、前処
理の省略など非常に効果が大きい。 以下本発明の実施例について説明する。
The present invention relates to a method for manufacturing a steel plate for ultra-deep drawing enameling with excellent adhesion, and in particular, proposes a method that is advantageous for manufacturing at low cost through a continuous casting method. Conventional steel sheets for enameling have been manufactured by decarburizing cold-rolled steel sheets manufactured from low carbon rimmed steel by open coil annealing to reduce the C content to 0.008% or less. Rimmed steel is used because it contains a large amount of oxygen, so it has the advantage of being less likely to produce porosity defects during enamel firing, and because it is decarburized and annealed, it does not absorb heat during enamel firing. This is because the firing strain caused by stress is reduced, the ductility of the steel sheet is improved, and excellent formability can be obtained. However, steel sheets for enameling manufactured by such conventional methods inevitably suffer from (1) an increase in manufacturing costs due to open annealing; (2) It cannot be continuously cast to make rimmed steel. (3) Since it is a rimmed steel, the material quality is due to component segregation.
and the enamel properties are non-uniform, so the quality of the product is unstable. Moreover, in the case of the steel plate for enameling obtained through the above manufacturing process, it is required to have excellent press formability and so-called deep drawability in addition to the above-mentioned enameling properties, so it is common to use rimmed steel and decarburize annealing. Therefore, continuous casting is of course not possible, and oven annealing is indispensable, which has the disadvantage of increasing manufacturing costs. In addition, inclusion defects peculiar to agglomerated materials, non-uniformity of material due to segregation, and the fact that when a product steel strip is made, lumps are likely to occur in the rim layer and near the boundary line between the rim layer and the core layer, which can be said to be fateful. There were flaws. The object of the present invention is to overcome the above-described drawbacks of the conventional steel sheets for enameling, and to obtain a cold-rolled steel sheet for enameling that is excellent in quality and inexpensive and can be produced by continuous casting. The gist of the present invention, which is effective for achieving the desired effects in response to such purposes, is that, in weight percent, C: 0.003% or less, Mn: 0.50%.
Below, Al: 0.04% or more than twice the above C amount, excluding those containing 0.030% or less and Nb present as an oxide.
% or less, B 0.0020 to 0.0070% and N 0.0026
Continuously cast steel containing up to 0.0100%,
The cast slab is heated at a low temperature of 1000°C or higher and 1200°C or lower and then hot-rolled, and then cold-rolled to give a thickness of 0.01 to 2.0 g/m 2 to the surface of the cold-rolled steel plate.
After applying Ni plating, the temperature is 1000℃ above the recrystallization temperature.
The present invention relates to a method for producing a steel plate for ultra-deep drawing enameling with excellent adhesion, which is characterized by performing recrystallization annealing at the following temperature. The details of the configuration will be explained below. The reasons for limiting the composition of molten steel are as follows. C weight %: C needs to be reduced to 0.003% or less. The reason for this is the enamel properties (firing strain,
The goal is to make ultra-low carbon steel from three points: improving the foam generation), improving the material quality, and preventing CO gas generation during continuous casting. General steel plate for enameling is C
If the carbon content is not low, CO gas will be generated during enamel firing, leading to bubble defects and firing distortion caused by α-γ transformation. Visual control is required. In contrast, the steel of the present invention has improved material properties such as elongation properties and value, and in order to prevent CO gas generation during continuous casting, the upper limit of C content has been lowered to 0.003% or less. And so.
This is because when the C content exceeds 0.003%, the amount of solid solute C before recrystallization annealing increases and the value deteriorates.
Material deterioration due to C aging also increases. Furthermore, CO gas is generated during continuous casting, making it impossible to obtain good surface quality. In short, it is this C content that makes continuous casting of enameling steel possible. Mn weight %: Mn is usually added in order to prevent hot brittle cracking caused by S so that the ratio is Mn/S10. In the case of killed steel, the smaller the amount of Mn, the better the material properties such as elongation (El) and area of area (value), so it is preferable to add a smaller amount of Mn.
The upper limit of the amount of Mn added is based on economic reasons, and in the present invention is set to 0.50% or less. Al weight %: Al is added to molten steel in order to deoxidize oxygen in molten steel and facilitate continuous casting. The role of this Al is to form nitrides in steel, similar to B, but unlike N that has become AlN, nitrogen that has become BN has a small effect on suppressing nitrides. When Al and B coexist, BN and AlN precipitate simultaneously, which reduces the effect of B addition, so the upper limit of Al was set at 0.03%. Nb weight%: Generally speaking, when a cast slab with an extremely low C of 40 ppm during melting is made into a cold-rolled steel sheet in a normal process, the in-plane anisotropy of elongation El and reduction of area (particularly 45° (D It is known that the El and r values in the ) direction become significantly large. In addition, during the recrystallization process in a continuous annealing furnace, solid solution C
remains, so the above value does not improve. In order to improve these drawbacks, adding Nb, which is a C-fixing element, improves these drawbacks. The amount of Nb added to meet these demands is naturally determined in relation to the amount of C, and it is 0.04 or more times the amount of C.
% or less. The reason is that when the Nb content is less than twice the C content, the anisotropy increases, and the average value of El and r values in the L (0°), C (90°), and D (45°) directions (, value) also deteriorates. On the other hand, the upper limit of the amount of Nb added is that if a large amount of Nb is added, precipitates such as NbC will increase too much, the crystal grain size after annealing will become smaller, and the El value will deteriorate. Also, since adding a large amount is not economical, the upper limit was set at 0.04%. Regarding the amount of Nb, the reason why oxides are excluded is that Nb oxides are not effective in fixing solid solution C. Weight % of B and N: The minimum addition amounts of B and N are determined from the viewpoint of preventing the occurrence of skipping, and the maximum addition amount is determined from the viewpoint of preventing material deterioration. First, the reason for determining the minimum addition amounts of B and N will be described. In the present invention, the main requirement is to add boron and nitrogen to precipitate BN, trap hydrogen around the BN precipitate, and prevent the occurrence of splatter. Figure 1 shows
C: 0.0018%, Mn: 0.18%, Nb: 0.10%,
Molten steel with N: 0.0040% and B content varying from 10 ppm to 85 ppm was slab-heated at 1150°C, a cold-rolled steel plate was pre-plated with 0.2 g/m 2 of Ni, and then heated at 820°C. This is a graph showing the relationship between the amount of B, the value, and the occurrence of skipping when continuous annealing is performed for 40 seconds. Figure 2 also shows the relationship between the amount of B, the amount of BN, and the occurrence of skipping. It is a graph. From Figure 2, to prevent the occurrence of blockage,
It can be seen that the amount of BN precipitates is required to be 0.0046% or more. That is, B needs to be added in an amount of 0.0020% or more, and N is needed to be added in an amount of 0.0026% or more based on the formula below. NN (atomic weight) / BN (atomic weight) x BN (%) = 14 / (14 + 10.8) x 0.0046 = 0.0026% Also, from Figure 1, in order to obtain good drawability (value), the amount of B is 0.0070%. It turns out that you need to do the following. Note that if the amount of N is too large, the material will deteriorate, so the amount added should be 0.0100%.
Do the following. For the above reasons, it is necessary to control the amount of B to 0.0020% to 0.0070% and the amount of N to 0.0026% to 0.0100%. Next, the molten steel is continuously cast to produce a continuous cast slab. Conventional decarburized rimmed steel type enamel steel plates prevent the occurrence of skipping by making the molten steel component of the agglomerate high in oxygen (0≒450ppm). O causes a reaction,
Since CO gas was generated and a so-called rimming reaction occurred, continuous casting could not be used. In comparison, the steel of the present invention can be cast with extremely low C and O content, so no rimming reaction occurs.
Continuous casting became possible. Next, the above-mentioned casting slab is heated to 1000℃ or higher, 1200℃
After performing the following low-temperature heating, hot rolling is performed. This is because if the heating temperature exceeds 1200°C, BN precipitation during hot rolling will be impaired, an appropriate amount of BN precipitation will not be obtained, and the blockage resistance will deteriorate. However, as is well known, if the heating temperature is too low, the
Not only does hot rolling at 3 or more Ar points become difficult, leading to deterioration of formability, but also the precipitated BN becomes excessively coarse, and the amount of BN precipitated becomes insufficient, reducing the ability to suppress lumping. Since this would cause instability, the lower limit of the heating temperature was set at 1000°C, which eliminates the risk of instability. Next, the hot rolled steel sheet is subjected to continuous annealing after cold rolling according to a conventional method. At this time, the method of the present invention is characterized in that the surface of the cold-rolled steel sheet is previously plated with Ni prior to the treatment. The reason for going through such processing steps will be described below. Figure 2 shows C: 0.0018%, Mn: 0.18%, Nb:
A slab obtained by continuous casting of molten steel containing 0.10%, N: 0.0030% to 0.0050%, and a B content of 10ppm and molten steel with a B content of 25ppm was heated to 1150°C, hot-rolled by the usual method, After pickling and cold rolling, 0 to 0.6 g of Ni was plated before entering the continuous annealing furnace, and the steel plate was used for enameling after recrystallization annealing, and the occurrence of lumps after normal enameling was investigated. This is the result.
In the case of the invention steel containing 25 ppm of B, 0.1
It can be seen that Ni plating of g/m 2 can prevent the occurrence of skipping. However, the B content
In steel sheets having a concentration of 10 ppm outside the range of the present invention, even if the amount of Ni plating increases, the occurrence of skipping cannot be prevented.
Ni plating amount below 0.01g/m 2 is too small to be effective, and the upper limit is 2.0g/m 2 from the economic point of view.
I decided to. Another effect of such Ni plating is that good adhesion can be obtained even if pretreatment during enamel firing is omitted. Normally, when manufacturing enamel products, to improve adhesion and prevent flaking, degreasing, pickling with sulfuric acid, Ni dip in NiSO 4 aqueous solution,
Perform pre-processing such as Such pretreatment increases costs and worsens the working environment due to waste acid treatment. However, according to the method of manufacturing a steel plate for enameling according to the present invention, even without such pretreatment, the adhesion is significantly improved by simply baking at 400 to 600°C for a few minutes, making it possible to Since it is also possible to prevent the occurrence of such problems, it is very effective in improving the working environment and omitting pre-treatment. Examples of the present invention will be described below.

【表】【table】

【表】 実施例 第1表に示すような、本発明範囲内の成分組成
の鋼、および比較材としてその範囲外の成分の鋼
を、スラブ加熱温度1150℃で加熱し、通常の方法
で熱間圧延後、3.2mmの熱延コイルにし、酸洗後
0.8mmの冷延コイルとした。次いで、A〜D鋼は
再結晶焼鈍の前に0.2g/m2の金属Niをめつきし、
E鋼はNiめつきを行なわなかつた。その後、た
だちに820℃×40秒の連続焼鈍を行い、0.4%のス
キンパス圧延後、機械的性質、つまとび試験、密
着試験を行つた。機械的試験は、圧延方向に対し
て0゜(L方向)、46゜(D方向)90゜(C方向)につ

てJIS5号試験片を作成し、引張試験を行い、それ
ぞれL,C,D方向の値を測定し、L+C+2D/4 で示される各々の平均値を計算し、、、
El、として求めた。またΔElはL,C,D方向
の最大値と最小値の差を示し、ΔrはΔr=・
rL+rC+2rD/2で求めた。また、つまとび試験は、 試料を脱脂後、9%H2SO4・70℃で20秒酸洗し、
ほうろうがけを行い、830℃×4.5分の焼成を行つ
た。その後、160℃×16Hrの促進処理を行い、つ
まとびの発生を認められなかつたサンプルを〇、
ツマトビが発生したサンプルを×で評価した。一
方、密着試験は、市販のPEI試験機を用い、密着
指数を測定した。第2表に示すごとく、本発明範
囲の鋼は材質、耐つまとび性、密着性ともに優れ
ているが、本発明範囲外の鋼は、いずれも材質や
耐つまとび性、あるいは密着性のいずれかが劣つ
ている。 実施例 第1表のA鋼、E鋼を用い、酸洗、Niデイプ
などの前処理をせず400℃×5分の空焼きを行い、
その後直接ほうろうがけし、830℃×4.5分焼成
後、160℃×16Hrの促進処理を行い、つまとび試
験を、またPEI試験機で密着試験を行つた。
[Table] Example As shown in Table 1, steel with a composition within the range of the present invention and steel with a composition outside the range as a comparative material were heated at a slab heating temperature of 1150°C, and then heated in the usual manner. After rolling, it is made into a 3.2mm hot-rolled coil and then pickled.
It was made into a 0.8mm cold rolled coil. Next, steels A to D were plated with 0.2 g/m 2 of metallic Ni before recrystallization annealing.
E steel was not Ni-plated. Immediately thereafter, continuous annealing was performed at 820°C for 40 seconds, and after 0.4% skin pass rolling, mechanical properties, stubble tests, and adhesion tests were performed. For mechanical testing, JIS No. 5 test pieces were prepared at 0° (L direction), 46° (D direction), and 90° (C direction) with respect to the rolling direction, and tensile tests were performed. Measure the values of and calculate the average value of each expressed as L+C+2D/4,
El, was obtained as. Also, ΔEl indicates the difference between the maximum and minimum values in the L, C, and D directions, and Δr is Δr=・
It was determined by r L + r C + 2r D /2. In addition, for the jump test, the sample was degreased and then pickled with 9% H 2 SO 4 at 70°C for 20 seconds.
It was enameled and fired at 830°C for 4.5 minutes. After that, accelerated treatment was performed at 160°C for 16 hours , and samples with no occurrence of skipping were evaluated as 〇.
Samples in which black kite appeared were evaluated as ×. On the other hand, in the adhesion test, the adhesion index was measured using a commercially available PEI tester. As shown in Table 2, the steels within the scope of the present invention are excellent in terms of material, flaking resistance, and adhesion; however, the steels outside the scope of the present invention are all poor in material quality, flaking resistance, and adhesion. is inferior. Example Using A steel and E steel in Table 1, dry baking was performed at 400°C for 5 minutes without pretreatment such as pickling or Ni dipping.
After that, it was directly enameled, fired at 830°C for 4.5 minutes, and then accelerated at 160°C for 16 hours , followed by a topping test and an adhesion test using a PEI tester.

【表】 その結果Niめつきを行わなかつたE鋼は、密
着性も非常に悪く、つまとびも発生したが、本発
明のA鋼は単に空焼きを行つただけであるのに、
つまとびも発生せず、密着性も著しくすぐれてい
た。 以上説明したように本発明のほうろう用冷延鋼
板製造方法によれば、ザギング、ブリスターに代
表されるほうろう特性に加え、伸びや絞りに代表
されるようなプレス成形性にも優れたものが得ら
れる。しかも、本発明にあつては、その製造に当
つては連続鋳造ができる他、オープン焼鈍による
脱炭が不要であるから、通常のタイト焼鈍や連続
焼鈍ができ安価に製造できるものである。
[Table] As a result, steel E, which was not plated with Ni, had very poor adhesion and some skipping occurred, but steel A of the present invention was simply dry fired.
No skipping occurred and the adhesion was extremely good. As explained above, according to the method of manufacturing a cold rolled steel sheet for enameling of the present invention, it is possible to obtain a product that has excellent enameling properties such as zagging and blistering, as well as excellent press formability such as elongation and drawing. It will be done. Moreover, in the production of the present invention, continuous casting is possible, and decarburization by open annealing is not required, so normal tight annealing or continuous annealing can be performed and the product can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、B量と値およびつまとび発生の有
無の関係を示すグラフ、第2図はB量とBN量お
よびつまとび発生の有無の関係を示すグラフ、第
3図は、Niめつき量と耐つまとび性との関係を
示すグラフである。
Figure 1 is a graph showing the relationship between the amount of B and the value and the presence or absence of skipping. Figure 2 is a graph showing the relationship between the amount of B, BN amount and the presence or absence of skipping. Figure 3 is a graph showing the relationship between the amount of B, the amount of BN, and the presence or absence of skipping. It is a graph showing the relationship between the amount and flaking resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、C:0.003%以下、Mn:0.50%以
下、Al:0.030%以下含み、かつNbを酸化物とし
て存在するものを除き上記C量の2倍以上0.04%
以下、Bを0.0020〜0.0070%およびNを0.0026〜
0.0100%の範囲で含有させた鋼を連続鋳造し、そ
の鋳造したスラブに、1000℃以上、1200℃以下の
低温加熱を施して熱間圧延し、その後冷間圧延を
経て予め冷延鋼板表面に0.01〜2.0g/m2厚のNi
めつきを施してから、再結晶温度以上1000℃以下
の温度で再結晶焼鈍を行うことを特徴とする密着
性の優れた超深絞りほうろう用鋼板の製造方法。
1% by weight, including C: 0.003% or less, Mn: 0.50% or less, Al: 0.030% or less, and 0.04% or more twice the above C amount, excluding those in which Nb is present as an oxide.
Below, B is 0.0020~0.0070% and N is 0.0026~
Steel with a content in the range of 0.0100% is continuously cast, the cast slab is heated at a low temperature of 1000°C or higher and 1200°C or lower, hot rolled, and then cold rolled to form the surface of the cold rolled steel sheet in advance. 0.01~2.0g/m 2 thick Ni
A method for producing a steel plate for ultra-deep drawing enameling with excellent adhesion, which comprises plating and then recrystallizing annealing at a temperature above the recrystallization temperature and below 1000°C.
JP14365882A 1982-08-19 1982-08-19 Manufacture of steel plate for very deeply drawn enamel with superior adhesive strength Granted JPS5935633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14365882A JPS5935633A (en) 1982-08-19 1982-08-19 Manufacture of steel plate for very deeply drawn enamel with superior adhesive strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14365882A JPS5935633A (en) 1982-08-19 1982-08-19 Manufacture of steel plate for very deeply drawn enamel with superior adhesive strength

Publications (2)

Publication Number Publication Date
JPS5935633A JPS5935633A (en) 1984-02-27
JPS6323247B2 true JPS6323247B2 (en) 1988-05-16

Family

ID=15343910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14365882A Granted JPS5935633A (en) 1982-08-19 1982-08-19 Manufacture of steel plate for very deeply drawn enamel with superior adhesive strength

Country Status (1)

Country Link
JP (1) JPS5935633A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413849A (en) * 1990-05-02 1992-01-17 Sumitomo Metal Ind Ltd Cold rolled steel plate for enamel and its production
JP2500512B2 (en) * 1992-10-26 1996-05-29 株式会社精工舎 Clock pendulum device

Also Published As

Publication number Publication date
JPS5935633A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
EP0101740B1 (en) Process for manufacturing cold-rolled steel having excellent press moldability
KR970008164B1 (en) Steel sheets for porcelain enameling and method of producing the same
CN110343964B (en) Enamel cold-rolled steel plate with yield strength of more than 500MPa and production method thereof
EP0612857A1 (en) Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same
JPH024657B2 (en)
JP5884161B2 (en) Steel plate for cans and method for producing steel plate for cans
US3368886A (en) Atmospheric corrosion-resistant coldrolled steel sheet of deep drawing quality
JPS6323247B2 (en)
JPH06192727A (en) Production of aluminum killed cold rolled steel sheet for enameling
US3335036A (en) Deep drawing steel sheet and method for producing the same
JPH06102810B2 (en) Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JP3360624B2 (en) Cold rolled steel sheet for enamel and its manufacturing method
JPH05331593A (en) Hot rolled steel plate for porcelain enameling increasing strength after firing of porcelain enameling and its production
JP2001026843A (en) Continuously cast steel sheet for porcelain enameling, excellent in workability, resistance to blister and black speck, and adhesion of porcelain enamel, and its manufacture
JPS633930B2 (en)
JPH0321611B2 (en)
JP2003096542A (en) Steel sheet for enamel, and production method therefor
JPS6320888B2 (en)
JPS6114220B2 (en)
JPH07118755A (en) Production of steel sheet for porcelain enameling excellent in deep drawability
JPS631375B2 (en)
JPH06279865A (en) Production of cold rolled steel sheet for porcelain enameling
JP2857761B2 (en) Manufacturing method of continuous cast enameled steel sheet with excellent nail skip resistance