JPS63232337A - Dry cleaning - Google Patents

Dry cleaning

Info

Publication number
JPS63232337A
JPS63232337A JP6378187A JP6378187A JPS63232337A JP S63232337 A JPS63232337 A JP S63232337A JP 6378187 A JP6378187 A JP 6378187A JP 6378187 A JP6378187 A JP 6378187A JP S63232337 A JPS63232337 A JP S63232337A
Authority
JP
Japan
Prior art keywords
substrate
ozone
hydrogen
ion beam
hydrogen ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6378187A
Other languages
Japanese (ja)
Inventor
Shinpei Iijima
飯島 晋平
Kunihiro Yagi
矢木 邦博
Kiyoshi Miyake
三宅 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6378187A priority Critical patent/JPS63232337A/en
Publication of JPS63232337A publication Critical patent/JPS63232337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To eliminate a very thin oxide layer only and obtain a boundary between a clean substrate and a thin film by a method wherein hydrogen ions are applied to the substrate to clean its surface. CONSTITUTION:After the surface of an Si substrate exposed to active oxygen or ozone, a hydrogen ion beam is applied to the Si surface under the heated conditions. by treating the Si surface with the active oxygen or ozone in the first stage, carbon absorbed by the Si surface is oxidized and desorbed in the form of gas and only pure SiO2 remains on the Si surface. Then, by the application of the hydrogen ion beam, the oxygen remaining in the form of SiO2 is desorbed by reductive reaction caused by the hydrogen. As a result, natural oxide and the like formed on the surface can be removed and a pure surface composed of Si only can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はドライクリー二/グ方法に係υ、特に半導体基
板表面の清浄化に好適なドライクリーニング方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dry cleaning method, and particularly to a dry cleaning method suitable for cleaning the surface of a semiconductor substrate.

〔従来の技術〕[Conventional technology]

従来、S工を生たる材料とする半導体製造工程では、半
導体基板の表面に所望の絶砿膜、半導体おるいは導体を
形成する手段として化学的気相成長法やスパッタ法など
が一般的に用いられてきた。
Conventionally, in the semiconductor manufacturing process using S as a material, chemical vapor deposition, sputtering, etc. have been commonly used as a means of forming a desired amorphous film, semiconductor, or conductor on the surface of a semiconductor substrate. has been used.

それらの方法による膜形成は、専用の装Rを用いて行な
われる。−万、膜形成を行なう前に基板の表面を清浄化
する目的でエツチング洗浄が行なわれる。エツチング洗
浄は、7ツ化水素酸や7ツ化アンモニウムなどを含んだ
溶液に基板を浸漬することによって行なわれる。さらに
詳しく言えば。
Film formation by these methods is performed using a dedicated equipment R. - Before film formation, etching cleaning is performed to clean the surface of the substrate. Etching cleaning is performed by immersing the substrate in a solution containing hydroseptatonic acid, ammonium heptadide, or the like. To be more specific.

前記浴液中で基板表面の極めて薄い5j02膜をエツチ
ング除去した後、水中に浸漬し、基板に付着しているエ
ツチング溶液を洗い流した後、基板を乾燥する手順1に
経て前記薄膜形成用の専用装置まで搬送される。
After etching and removing the extremely thin 5J02 film on the surface of the substrate in the bath solution, the substrate is immersed in water, the etching solution adhering to the substrate is washed away, and the substrate is dried. Transported to the device.

以上の説明は、表面の清浄化を目的とした湿式の処理方
法に関するものでおるが、8i0zkエツチングする方
法に関してはドライエツチング法も広く用いられており
、これに関しては特公昭、昭57−41817号などに
詳細が述べられている。
The above explanation relates to a wet processing method for the purpose of cleaning the surface, but a dry etching method is also widely used for 8i0zk etching, and this is described in Japanese Patent Publication No. 57-41817. Details are given in.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記便米の技術には以下の問題がおった。まず湿式エツ
チング法による前洗浄に関して言えは。
The above-mentioned delivery rice technology had the following problems. First, regarding pre-cleaning using the wet etching method.

ガえばSi単精晶や多結晶Siの表面に形成される自然
成長的5102膜を完全に除去できない。すなわち、S
i表面の自然成長的5iOz@’にエツチング溶液中で
エツチングし、清浄なSi表面を露出嘔せても、その後
に行なう水中洗浄や乾燥の段階、さらに前記博膜形成鉄
直に1板を挿入する段階で31表面には再びSjOzm
が自然成長の形で形成されてしまう。その膜厚は、高濃
度に不純物を含有したSiの表面では20〜25人、著
しい場合には50人にも達してしまう。
Otherwise, the naturally grown 5102 film formed on the surface of single crystal Si or polycrystalline Si cannot be completely removed. That is, S
Even if the naturally grown 5iOz@' surface is etched in an etching solution and the clean Si surface is exposed, the subsequent steps of underwater washing and drying, and the insertion of a plate into the film forming iron. At this stage, SjOzm is added to the 31 surface again.
is formed by natural growth. The film thickness is 20 to 25 layers on the surface of Si containing a high concentration of impurities, and in extreme cases, it can reach as much as 50 layers.

一方、ドライエツチング法に関して言えは、エツチング
ガスに含まれる炭素が、Si表面に残存して汚染の原因
になること、湿式法に比べて8jOtとSiのエツチン
グ速度の選択性が低いため数10人オーダーの;3 j
 (J z膜だけを制御性良く除去するのが極めて困難
でおることなどの問題がろる。
On the other hand, regarding the dry etching method, the carbon contained in the etching gas remains on the Si surface and causes contamination, and the selectivity of the etching rate between 8jOt and Si is lower than that of the wet method, so it requires several tens of people. of order ;3 j
(There are problems such as the fact that it is extremely difficult to remove just the Jz film with good control.

本発明の目的は%Si衆面表面成されている極めて薄い
5jOs[を除去して表面を清浄化する方法を提供する
Oとにある。
An object of the present invention is to provide a method for cleaning the surface by removing the extremely thin 5jOs formed on the surface of a Si substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、Si衆面金活性な酸素あるいはオゾンに曝
露した後、加熱状態にしてSi表面に水素イオンビーム
を照射することにより達成される。
The above object is achieved by exposing the Si surface to active oxygen or ozone, heating it, and irradiating the Si surface with a hydrogen ion beam.

不発明:@は1表面の清浄化を図る目的で、自然成長的
8iLhが形成されているSi表面に種々の処理を施す
検討を行なった結果、ひとつの真空容器内で上記地理を
連続的に行なうことによって炭素や[素を含まない3i
の表面を得らnることがわかった。
Uninvented: 1. In order to clean the surface, we investigated applying various treatments to the Si surface on which naturally grown 8iLh was formed. By doing this, 3i that does not contain carbon or [element]
It was found that the surface of

〔作用〕[Effect]

最初の段階で行なう活性#L#、あるいはオゾンによる
Si表面の処理によって、Si表面に吸着している炭′
lA(ハイドロカーボン)は酸化され、気体となって脱
離し、Si表面には純粋な5i(Jzfeけが残存する
。続いて水素イオンビームを照射すると、5tC)2の
形で存在する酸素は水素による還元反応によって脱離し
、その結果、表面に形成さnていた自然酸化膜などは除
去されて・81たけの純粋な表面を出現させることがで
きる。
By treating the Si surface with activation #L# or ozone in the first step, the carbon adsorbed on the Si surface
1A (hydrocarbon) is oxidized and desorbed as a gas, leaving pure 5i (Jzfe scratches) on the Si surface. Subsequently, when irradiated with a hydrogen ion beam, the oxygen present in the form of 5tC)2 is oxidized by hydrogen. It is desorbed by a reduction reaction, and as a result, the natural oxide film formed on the surface is removed, leaving a pure surface.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図、第3図によ
り説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, and 3.

1ず1本実施例で用いた装置の構成について説明する。1. The configuration of the apparatus used in this example will be explained one by one.

ターボボングl′J?工び油回転ポンプ2から成る冥臣
排気系と、オージェ電子分光分析器10と、イオン源4
とを備えた真空容器3内に。
Turbo bong l'J? An exhaust system consisting of a rotary oil pump 2, an Auger electron spectrometer 10, and an ion source 4
In a vacuum container 3 equipped with.

タンタルを材料とする試料台5に載置し九試料(シリコ
ン基板)6t−設置した。試料6には、その表面に厚さ
30人の自然酸化膜が成長している単結晶81を用いた
。試料台5の直下ごく近傍に試料台加熱用のハロゲンラ
ンプ8を、また上方のごく近傍にオゾン発生用のハロゲ
ンランプ9を設置した。試料台5は試料台移動機構7に
連結し。
Nine samples (silicon substrates) 6t were placed on a sample stage 5 made of tantalum. Sample 6 used was a single crystal 81 on whose surface a natural oxide film had grown to a thickness of 30 mm. A halogen lamp 8 for heating the sample stand was placed directly below and in the vicinity of the sample stand 5, and a halogen lamp 9 for ozone generation was installed in the vicinity above. The sample stage 5 is connected to a sample stage moving mechanism 7.

真空容器内で任意に方向を変換できるようにした。The direction can be changed arbitrarily within the vacuum container.

試料台5の近傍にオージェ電子分光分析器を備え付け、
試料6の表面状態を真空容器内で観測できるようにした
。ガスは、リークパルプ11を通してカス導入管12か
ら尋人した。
An Auger electron spectrometer is installed near the sample stage 5,
The surface condition of sample 6 could be observed inside the vacuum container. Gas was introduced from the waste introduction pipe 12 through the leak pulp 11.

以上、説明した装置構成のもとて本発明の主旨に関する
表面処理方法について述べる。
The surface treatment method related to the gist of the present invention will be described based on the apparatus configuration described above.

リークパルプ11を制御して真空容器内3の圧力が10
0 ’l”orrになるようにガス導入管12からば素
を供給した。七の状態でノ・ロケンランプ9に通電して
高温状態とじ、熱励起によジオシンを発生させた。ハロ
ゲンランプに通電した仮の試料6の表面状態を1分経過
するごとにオージェ分析器10によシ計測した。第2図
は、オージェ電子分光法で得られるエネルギー強度が9
2eVの81゜2726Vの炭素、お工び503evの
酸素に注目してオゾン曝露後の一過時間の推移に伴う谷
元素の変化の様子金示しfcものでおる。約5分後には
炭素のスペクトルビークは消滅し、Siと酸素のピーク
だけが残存した。すなわち、表面に存在していた炭素に
オゾンとの反応にJ脱離除去されたことを示していた。
The pressure inside the vacuum container 3 is 10 by controlling the leak pulp 11.
Baron was supplied from the gas inlet pipe 12 so that the amount was 0'l"orr. In the state shown in step 7, the halogen lamp 9 was energized to maintain a high temperature state, and dioscine was generated by thermal excitation. The halogen lamp was energized. The surface condition of the sample 6 was measured every minute using the Auger analyzer 10. Figure 2 shows that the energy intensity obtained by Auger electron spectroscopy is 9.
Focusing on carbon at 81°2726V at 2 eV and oxygen at 503 eV, we show the changes in valley elements with the transition time after exposure to ozone. After about 5 minutes, the carbon spectral peak disappeared and only the Si and oxygen peaks remained. That is, it was shown that the carbon present on the surface was removed by J desorption due to the reaction with ozone.

次に、rR索の供給を停止し真空容器3内を一旦2 X
 10−7Torrjで排気した後。
Next, the supply of the rR rope is stopped and the inside of the vacuum vessel 3 is temporarily
After exhausting at 10-7 Torrj.

水素を供給してリークパルプ11を用いて真空容器内の
圧力が5 X 10”” Torr Vcなる工うに制
御した。それと同時に試料台加熱源用のハロゲンランプ
8を用いて試料6を5oocまで昇温させた。
Hydrogen was supplied and the pressure inside the vacuum vessel was controlled to 5 x 10" Torr Vc using a leak pulp 11. At the same time, the temperature of the sample 6 was raised to 5 ooc using the halogen lamp 8 for the sample stage heating source.

次いでイオン源4を起動し、水素のイオンビームを試料
6の表面に照射し丸。イオンの加速電圧は1kVとした
。第3図に、第2図と同様に92eVO8iを示すスペ
クトルおよび503eVの酸素を示すスペクトルに注目
したオージェ電子分光法で得られる表面状態の変化を示
した。横軸は水素イオンビーム照射後のれ適時間を示し
ている。水素イオンビームを照射してから約19分後に
は酸素を示すスペクトルは消滅し、Siを示すスペクト
ルだけが残存した。この結果は、水素イオンビームの照
射によ、り5iOzが還元され、 OH−?Hz (J
の形で酸素が表面から脱離し九ことを示している。
Next, the ion source 4 is activated, and the surface of the sample 6 is irradiated with a hydrogen ion beam. The ion acceleration voltage was 1 kV. FIG. 3 shows changes in the surface state obtained by Auger electron spectroscopy focusing on the spectrum showing 92 eVO8i and the spectrum showing oxygen at 503 eV, as in FIG. 2. The horizontal axis indicates the appropriate delay time after hydrogen ion beam irradiation. Approximately 19 minutes after irradiation with the hydrogen ion beam, the spectrum indicating oxygen disappeared, and only the spectrum indicating Si remained. This result shows that 5iOz is reduced by hydrogen ion beam irradiation, and OH-? Hz (J
This shows that oxygen is desorbed from the surface in the form of 9.

本実施例におけるオゾン曝露の条件は、圧力100To
rr、  試料6は至温とし友が、圧力はl’l’or
rがら大気圧まで、また温度は2ooc以下の範囲で有
効でろり、一方水素イオンビームの照射条件は5 X 
10−’Torrテ500 C(D温度き用イ友カ、圧
力は5X10””’ρλらl X 10−’Torr 
、 1fcmKF1400C以上の範囲で有効であった
The conditions for ozone exposure in this example were a pressure of 100To
rr, sample 6 is at the lowest temperature, the pressure is l'l'or
The hydrogen ion beam irradiation conditions are 5X.
10-'Torr 500 C
, was effective in the range of 1 fcmKF1400C or higher.

以上説明した9口く1本実施例によれはひとつのIc 
2 ′#器内でオゾン照射と水素イオンの照射を連続的
に行なうことによって炭素を含む自然成長SiUmを除
去することを可能とし純粋な81衆面全露出できる効果
がるる。なお1本実施例ではS!基基板圃面用いたが、
多結晶siや金属シリサイドあるいは金属るるいはIn
−PやQa−Asなどの化会物半導体基板の表面に対し
ても同様の効果を得ることができる。
According to the above-described nine ports and one embodiment, one Ic is used.
By continuously performing ozone irradiation and hydrogen ion irradiation in the 2'# chamber, it is possible to remove the naturally grown SiUm containing carbon, resulting in the effect that the pure 81-silicon surface can be completely exposed. In addition, in this example, S! Although the base substrate field was used,
Polycrystalline Si, metal silicide, metal silicide, or In
A similar effect can be obtained on the surface of a compound semiconductor substrate such as -P or Qa-As.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の湿式エツチング法やドライエツ
チング法では央現し得なかった。極めて薄い酸化物層の
みを除去して清#な基板の表面を露出させることができ
るので、その表面に薄膜を形成しても5jOzを介在さ
せない極めて清浄な基板と薄膜の界面を得ることができ
る。従って半導体製造工程でしばしば発生する導体める
いは半導体層間の接触抵抗の増大の問題や界面に存在す
るS 10 xが不純物拡散の障害となる問題、あるい
は単結晶の成長に対する障害となる問題を回避するのに
大きな効果かめる。
According to the present invention, this could not be achieved using conventional wet etching methods or dry etching methods. Since only the extremely thin oxide layer can be removed to expose the clean surface of the substrate, even if a thin film is formed on the surface, an extremely clean interface between the substrate and the thin film can be obtained without 5jOz intervening. . Therefore, it avoids the problem of increased contact resistance between conductors or semiconductor layers that often occurs in semiconductor manufacturing processes, the problem of S 10 x present at the interface becoming an obstacle to impurity diffusion, or the problem of becoming an obstacle to single crystal growth. It can be very effective to do so.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、大気圧以下の雰囲気でラジカルやイオンを用いて基
板の表面を清浄化する方法において、基板に水素イオン
を照射して上記基板の表面を清浄化することを特徴とす
るドライクリーニング方法。 2、基板に水素イオンを照射する前にオゾンによつて上
記基板の表面を前処理することを特徴とする特許請求の
範囲第1項記載のドライクリーニング方法。 3、上記清浄化は、炭素の吸着層を含む厚さ50Å以下
の基板表面の酸化物を除去することによつて達成される
ことを特徴とする特許請求の範囲第1項もしくは第2項
記載のドライクリーニング方法。
[Claims] 1. A method for cleaning the surface of a substrate using radicals or ions in an atmosphere below atmospheric pressure, characterized by cleaning the surface of the substrate by irradiating the substrate with hydrogen ions. Dry cleaning method. 2. The dry cleaning method according to claim 1, wherein the surface of the substrate is pretreated with ozone before irradiating the substrate with hydrogen ions. 3. The above-mentioned cleaning is achieved by removing oxides on the surface of the substrate having a thickness of 50 Å or less including a carbon adsorption layer, as set forth in claim 1 or 2. dry cleaning method.
JP6378187A 1987-03-20 1987-03-20 Dry cleaning Pending JPS63232337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6378187A JPS63232337A (en) 1987-03-20 1987-03-20 Dry cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6378187A JPS63232337A (en) 1987-03-20 1987-03-20 Dry cleaning

Publications (1)

Publication Number Publication Date
JPS63232337A true JPS63232337A (en) 1988-09-28

Family

ID=13239265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6378187A Pending JPS63232337A (en) 1987-03-20 1987-03-20 Dry cleaning

Country Status (1)

Country Link
JP (1) JPS63232337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637512A (en) * 1990-11-16 1997-06-10 Seiko Epson Corporation Method for fabricating a thin film semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637512A (en) * 1990-11-16 1997-06-10 Seiko Epson Corporation Method for fabricating a thin film semiconductor device

Similar Documents

Publication Publication Date Title
JP3086719B2 (en) Surface treatment method
US5174881A (en) Apparatus for forming a thin film on surface of semiconductor substrate
KR100391840B1 (en) Method and apparatus for forming an insulating film on the surface of a semiconductor substrate
JPH0228322A (en) Preliminary treatment of semiconductor substrate
EP0605785A2 (en) Cleaning agents for removing metal-containing contaminants from integrated circuit assemblies and process for using the same
Kaneko et al. Low Temperature Silicon Surface Cleaning by HF Etching/Ultraviolet Ozone Cleaning (HF/UVOC) Method (II)–in situ UVOC
JPH0496226A (en) Manufacture of semiconductor device
JPH0964307A (en) Heat treatment method of oxide thin film
JPH03116727A (en) Manufacture of semiconductor device
JPS63232337A (en) Dry cleaning
JPH071766B2 (en) Method for manufacturing semiconductor device
JP2558273B2 (en) Surface cleaning method
JP4370593B2 (en) Surface modification method
JPH0492423A (en) Manufacture of semiconductor integrated circuit device
JP3439580B2 (en) Method and apparatus for forming silicon oxide film
JP3212442B2 (en) How to reduce the amount of hydrogen adsorbed on diamond surface
JP2694625B2 (en) Method for etching compound semiconductor substrate and method for manufacturing the same
JPH03204932A (en) Removal of coating film on silicon layer and selective removal of silicon natural oxide film
JPH0294631A (en) Formation of thin film and apparatus therefor
JPH033328A (en) Modification of surface of solid sample
US20020009899A1 (en) Method and device for manufacturing semiconductor devices including insulation oxide layers
JPS59162200A (en) Cleaning of surface of silicon substrate
JPH04290219A (en) Method of forming polycrystalline silicon film
JPS6345822A (en) Method and apparatus for cleaning
JPS63160324A (en) Molecular beam epitaxial crystal growth