JPS63232061A - Artificial car speed generating device for antiskid control system - Google Patents

Artificial car speed generating device for antiskid control system

Info

Publication number
JPS63232061A
JPS63232061A JP6739087A JP6739087A JPS63232061A JP S63232061 A JPS63232061 A JP S63232061A JP 6739087 A JP6739087 A JP 6739087A JP 6739087 A JP6739087 A JP 6739087A JP S63232061 A JPS63232061 A JP S63232061A
Authority
JP
Japan
Prior art keywords
wheel
wheel speed
speed
vehicle speed
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6739087A
Other languages
Japanese (ja)
Inventor
Yoshiki Yasuno
芳樹 安野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6739087A priority Critical patent/JPS63232061A/en
Publication of JPS63232061A publication Critical patent/JPS63232061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To enable the worst situation to be avoided like being unable to brake, by constituting a device deciding a G sensor to be abnormal and calculating an artificial car speed being based on a wheel speed in the time of this abnormality, when a wheel speed restoration amount by an antiskid control is lower than a detection slip amount. CONSTITUTION:In the case of an antiskid control circuit 4 which inputs output signals of a brake switch 5, G sensor 6 and a wheel speed sensor 7 when a vehicle is in operation, a device reduces a pressure of brake fluid by an actuator 3 performing an antiskid control when a slip of a wheel 1 is detected from a difference between an artificial car speed, calculated being based on deceleration of the vehicle, and a wheel speed. While here the device, detecting a restoration amount of the wheel speed from a minimum value by a pressure reducing control, decides the G sensor 6 to be in abnormality when the restoration amount after the setting time from a pressure reducing control or in the time of pressure reincrease is lower than the detection slip amount at this point of time. And when this abnormality is decided, the artificial car speed is calculated being based on the wheel speed in place of deceleration of the vehicle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車輪のロックを防止しつつ最大制動効率が達成
されるようブレーキ液圧を制御するアンチスキッド制御
装置の擬似車速発生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pseudo vehicle speed generating device for an anti-skid control device that controls brake fluid pressure to achieve maximum braking efficiency while preventing wheels from locking. be.

(従来の技術) アンチスキッド制御装置は、車輪の周速(車輪速)が車
速に対し所定以上のスリップ関係になる時、ブレーキ液
圧を減圧して車輪のロックを防止するものであるが、こ
の際実車速を直接検出するドツプラーレーダー等が高価
で実用的でないため、車輪がロック傾向となって車輪速
が実車速から急に離れる度に、即ち車輪減速度が減速度
基準値を越える度に、この時の車輪速値を基準とした所
定減速度勾配の擬似車速を求め、これを車速として用い
るのが普通である。
(Prior Art) An anti-skid control device prevents the wheels from locking by reducing the brake fluid pressure when the circumferential speed of the wheels (wheel speed) has a slip relationship of more than a predetermined value with respect to the vehicle speed. In this case, Doppler radar, etc. that directly detects the actual vehicle speed is expensive and impractical, so every time the wheels tend to lock and the wheel speed suddenly deviates from the actual vehicle speed, that is, the wheel deceleration exceeds the deceleration reference value. Usually, a pseudo vehicle speed with a predetermined deceleration gradient is determined based on the wheel speed value at this time, and this is used as the vehicle speed.

この擬似車速発生技術及びアンチスキッド制御技術を説
明するに、第4図の如く車輪速V。及び車輪加減速度α
8 (負が減速度)の組合せにより規定される八。+ 
A++ Bol Blの4領域を設定し、V、 >Vム
xo、85 (Vtは擬似車速、0.85は第6図に凍
結路での特性(イ)及び乾燥路での特性(ロ)により示
す如く路面摩擦係数μが最大となる車輪スリップ率Sの
値、つまり理想スリップ率S(1= 15%に対応する
係数、V、 Xo、85は理想スリ・ンプ率S0を得る
ための目標車輪速)で、且つ−bl<α8≦+al(+
alは加速度基準値、−blは減速度基準値)のA。領
域において、ブレーキ液圧をマスターシリンダ液圧に向
は増圧させるも、その他の領域AI+ Bl+ Boに
おいて図示するブレーキ液圧の保持又は減圧を行なうこ
とによ、す、車輪のロックを防止しつつ最大制動効率が
得られるようにする。
To explain this pseudo vehicle speed generation technology and anti-skid control technology, wheel speed V is shown in FIG. and wheel acceleration/deceleration α
8 defined by the combination of (negative is deceleration). +
A++ Bol Bl four regions are set, V, >Vmu xo, 85 (Vt is the pseudo vehicle speed, 0.85 is based on the characteristics on frozen roads (a) and the characteristics on dry roads (b) in Figure 6. As shown, the value of the wheel slip rate S at which the road surface friction coefficient μ is maximum, that is, the coefficient corresponding to the ideal slip rate S (1 = 15%, V, Xo, and 85 are the target wheels to obtain the ideal slip rate S0. speed), and −bl<α8≦+al(+
(al is the acceleration reference value, -bl is the deceleration reference value). In this area, the brake fluid pressure is increased in the direction of the master cylinder fluid pressure, but in other areas AI+Bl+Bo, the brake fluid pressure is maintained or reduced as shown in the diagram, thereby preventing the wheels from locking. Ensure maximum braking efficiency is achieved.

このアンチスキッド制御作用を擬似車速発生作用と共に
、車輪速vwが第5図の如くである場合について詳述す
る(但し、vcは参考までに示した実車速)。瞬時t0
の制動開始によるブレーキ液圧P。の上昇当初、当然A
 o ?IN域にあってブレーキ液圧九はマスターシリ
ンダ液圧に等しい。車輪ロックの開始によりα。≦−b
1となる瞬時tlよりV、(t)  =  V、 (t
+)−ko(t−t、)により瞬時t、以後の擬似車速
V、を第4図中1点鎖線の如くに求める。そして、次の
車輪ロックの開始によりα8≦−blとなる瞬時t5よ
り、擬似車速V、は次の如くにして求める。即ち、先ず
凝似車速Vムの減速度勾配に+ を求め、これを基に Vt  (t)   =  V、l  (ts)−k+
(t−ts)の演算から擬似車速V、を求める。以後、
α、≦−blとなる度に同様の演算がなされ、擬似車速
V。
This anti-skid control action, together with the pseudo vehicle speed generation action, will be described in detail for the case where the wheel speed vw is as shown in FIG. 5 (where vc is the actual vehicle speed shown for reference). instant t0
Brake fluid pressure P due to the start of braking. At the beginning of the rise, of course A
o? In the IN range, the brake fluid pressure 9 is equal to the master cylinder fluid pressure. α due to the start of wheel lock. ≦−b
V, (t) = V, (t
+)-ko(t-t,), the instant t and subsequent pseudo vehicle speed V are determined as shown by the dashed line in FIG. Then, from the instant t5 at which α8≦−bl occurs due to the start of the next wheel lock, the pseudo vehicle speed V is determined as follows. That is, first, + is determined for the deceleration gradient of the approximated vehicle speed Vm, and based on this, Vt (t) = V, l (ts) - k+
The pseudo vehicle speed V is obtained from the calculation of (t-ts). From then on,
A similar calculation is performed every time α, ≦-bl, and the pseudo vehicle speed V is calculated.

は第5図の如くに求まる。但し、v、I> Vtではv
、、の方が実車速しに近いことがらV、 =V、とする
。又このように求めた擬似車速Viに前記の係数0.8
5を乗じて得られる目標車輪速V、 Xo、85は第5
図の如くになる。
is determined as shown in Figure 5. However, when v, I > Vt, v
Since , , is closer to the actual vehicle speed, it is assumed that V, =V. In addition, the above-mentioned coefficient 0.8 is added to the pseudo vehicle speed Vi obtained in this way.
The target wheel speed V, Xo, 85 obtained by multiplying by 5 is the fifth
It will look like the figure.

瞬時t、よりvw≦V! Xo、85となる車輪ロック
瞬時tg迄の間B + *biにあってブレーキ液圧P
8をマスターシリンダ液圧の上昇にもかかわらず保持し
、この保圧により路面摩擦状態を判定可能にすると共に
、ブレーキ液圧の継続上昇でその減圧により行なうべき
アンチスキッド制御が応答遅れを生ずることのないよう
にする。
At instant t, vw≦V! The brake fluid pressure P remains at B + *bi until the instantaneous wheel lock tg becomes Xo and 85.
8 is maintained despite the increase in master cylinder fluid pressure, and this pressure retention makes it possible to determine the road friction condition, and if the brake fluid pressure continues to rise, the anti-skid control that should be performed due to the pressure reduction will cause a response delay. Make sure that there are no

瞬時t2より8゜領域となり、ブレーキ液圧P、を減圧
して車輪ロックを防止(アンチスキッド制御)する。こ
れにより車輪が路面摩擦力の回復により回転上昇し、α
、>+alとなる瞬時t、よりα。≦+alとなる瞬時
t4までの間A IpI域にあり、この間ブレーキ液圧
pwを保持する。この保圧により路面摩擦状態を判定可
能にすると共に、ブレーキ液圧の継続低下でその上昇に
より行なうべきアンチスキッド制御の中止が遅れること
のないようにする。
From instant t2, the brake fluid pressure P is in the 8° range, and the brake fluid pressure P is reduced to prevent wheel locking (anti-skid control). As a result, the wheel rotates upward due to the recovery of road friction force, and α
, >+al at the instant t, then α. The brake fluid pressure remains in the A IpI region until instant t4 when ≦+al, and the brake fluid pressure pw is maintained during this period. This pressure holding makes it possible to determine the road surface friction state, and prevents a delay in canceling the anti-skid control that should be performed due to an increase in the brake fluid pressure due to a continuous decrease in the brake fluid pressure.

瞬時t4において、車輪速V。が実車速迄回復したと見
做せ、この瞬時よりA。領域となってブレーキ液圧P8
を増圧することにより、不要なブレーキ液圧の上昇制限
で制動距離が長くなるのを防止する。この増圧で再びα
、≦−b1となる車輪ロックの開始瞬時t、より次のス
キッドサイクルに移り、上述したと同様の制御が繰返さ
れ、結局ブレーキ液圧pwはスリップ率Sを理想スリッ
プ率S0近辺に保つよう制御され、車輪ロックを防止し
つつ最大制動効率を確保することができる。
At instant t4, wheel speed V. Assuming that the speed has recovered to the actual vehicle speed, A from this moment on. Brake fluid pressure P8
By increasing the pressure, it is possible to prevent braking distance from becoming longer due to unnecessary brake fluid pressure increase restrictions. With this pressure increase, α is again
, ≦-b1, and the next skid cycle is started, and the same control as described above is repeated, and eventually the brake fluid pressure pw is controlled to keep the slip ratio S near the ideal slip ratio S0. This ensures maximum braking efficiency while preventing wheel lock.

しかし、前記のような擬似車速Viの算出方式では、1
回目のスキッドサイクルにおいて擬似車速V!の減速度
勾配を前記に0の如(一定値に定めるため、このスキッ
ドサイクルにおける擬似車速V、が実車速V、に近似し
ない場合がある。特にブレーキ液圧P。の減圧によって
も車輪速vwが、低摩擦路や車輪回転イナーシャの大き
な低速ギヤ選択中のため実車速vcの近くまで回復し得
ない場合、擬似車速V、が実車速vcよりも大幅に小さ
な値にされることとなる。この場合、車輪が口ンクして
いるにもかかわらず車輪がロックしていないとの誤判断
によって、アンチスキッド制御(ブレーキ液圧P1の減
圧)がなされず、車輪がロックしたままにされる危険を
生ずる。
However, in the calculation method of the pseudo vehicle speed Vi as described above, 1
Pseudo vehicle speed V in the second skid cycle! Since the deceleration gradient is set to a constant value such as 0 as described above, the pseudo vehicle speed V in this skid cycle may not approximate the actual vehicle speed V. In particular, the wheel speed Vw may also change due to a decrease in the brake fluid pressure P. However, if the vehicle speed cannot be recovered to near the actual vehicle speed VC due to a low-friction road or a low-speed gear with large wheel rotational inertia being selected, the pseudo vehicle speed V will be set to a value significantly smaller than the actual vehicle speed VC. In this case, there is a risk that anti-skid control (reduction of brake fluid pressure P1) may not be performed due to a misjudgment that the wheels are not locked even though they are talking, and the wheels may remain locked. will occur.

この問題解決のため従来特開昭57−11149号公報
等により、制動開始時の車輪速を初期値とし、これから
車両減速度の積分値を減算した値をもって擬似車速とす
る算出方式が提案された。
To solve this problem, a calculation method has been proposed in Japanese Patent Application Laid-Open No. 57-11149, etc., in which the wheel speed at the start of braking is used as an initial value, and the value obtained by subtracting the integral value of vehicle deceleration from this value is used as a pseudo vehicle speed. .

(発明が解決しようとする問題点) しかしこのようにして車両減速度を基に擬似車速を算出
する装置では、車両減速度を検出するGセンサが故障や
断線等により実際より著しく小さな車両減速度を検出す
る時、擬似車速を実車速より著しく大きな値として算出
する。この場合、当該擬似車速と車輪速との差から検出
する車輪スリップ量が、車輪スリップを生じていないに
もかかわらず大きいとの誤判断のもと、不要なブレーキ
液圧の減圧を実行し、制動不能の最悪事態を惹起する。
(Problem to be Solved by the Invention) However, in the device that calculates the pseudo vehicle speed based on the vehicle deceleration in this way, the G sensor that detects the vehicle deceleration may be malfunctioning or disconnected, causing the vehicle deceleration to be significantly lower than the actual vehicle deceleration. When detecting the vehicle speed, the pseudo vehicle speed is calculated as a value significantly larger than the actual vehicle speed. In this case, based on the erroneous judgment that the amount of wheel slip detected from the difference between the pseudo vehicle speed and the wheel speed is large even though no wheel slip has occurred, unnecessary brake fluid pressure reduction is performed, This will lead to the worst case scenario where you are unable to brake.

(問題点を解決するための手段) 本発明は、上記の異常時ブレーキ液圧の減圧によっても
車輪速がもともと実車遠近(にあってその回復量が小さ
いのに対し、擬似車速が実車速より著しく高くてこれと
車輪速との差から求める検出スリップ量が大きく、上記
の車輪回復量より大きくなるとの事実認識に基づき、 車両の減速度を基に算出した擬似車速と車輪速との差か
ら車輪のスリップ量を検出し、車輪スリップの発生時数
車輪のブレーキ液圧を減ずるようにしたアンチスキッド
制御装置において、前記ブレーキ液圧の減圧による前記
車輪速の最低値よりの回復量を検出する車輪速回復量検
出手段を具え、 前記減圧より設定時間の経過時もしくは再増圧時におけ
る前記車輪速回復量が該時点における前記検出スリップ
量より低い時、前記擬似車速の算出を前記車両減速度に
代え前記車輪速を基に行うよう切換える切換手段を設け
たちのでる。
(Means for Solving the Problems) The present invention provides that, even when the brake fluid pressure is reduced during the above-mentioned abnormality, the wheel speed is originally near or far from the actual vehicle, and the amount of recovery is small, whereas the pseudo vehicle speed is lower than the actual vehicle speed. Based on the fact that the detected slip amount calculated from the difference between this and the wheel speed is significantly higher than the above-mentioned wheel recovery amount, based on the difference between the pseudo vehicle speed calculated based on the vehicle deceleration and the wheel speed. In an anti-skid control device that detects the amount of wheel slip and reduces the brake fluid pressure of the wheel when wheel slip occurs, the amount of recovery of the wheel speed from the minimum value due to the reduction of the brake fluid pressure is detected. wheel speed recovery amount detection means, when the wheel speed recovery amount is lower than the detected slip amount at the time when a set time has elapsed since the pressure reduction or when the pressure is increased again, the calculation of the pseudo vehicle speed is calculated based on the vehicle deceleration. Instead, a switching means for switching based on the wheel speed can be provided.

(作 用) アンチスキッド制御装置は擬似車速と車輪速との差から
車輪のスリップ量を検出し、車輪スリップの発生時数車
輪のブレーキ液圧を減じて車輪ロックを防止しつつ最大
制動効率が得られるようにする。
(Function) The anti-skid control device detects the amount of wheel slip from the difference between the simulated vehicle speed and the wheel speed, and when wheel slip occurs, reduces the brake fluid pressure in the wheels to prevent wheel lock while achieving maximum braking efficiency. make sure you get it.

そして、上記擬似車速は以下の如くに算出する。The pseudo vehicle speed is calculated as follows.

即ち、車輪速回復量検出手段はブレーキ液圧の上記減圧
による車輪速の回復量を検出する。車両減速度を検出す
るGセンサが正常な場合、上記減圧より設定時間の経過
時又は再増圧時における上記車輪速回復量が上記検出ス
リップ量よりも低くなることはなく、この時切換手段は
擬似車速の算出を車両減速度に基づいて行わせる。
That is, the wheel speed recovery amount detection means detects the amount of wheel speed recovery due to the above-mentioned pressure reduction of the brake fluid pressure. If the G sensor that detects vehicle deceleration is normal, the wheel speed recovery amount will not become lower than the detected slip amount when the set time elapses from the pressure reduction or when the pressure is increased again, and in this case, the switching means A pseudo vehicle speed is calculated based on vehicle deceleration.

ところでGセンサの前記異常時、前記減圧より設定時間
の経過時又は再増圧時における上記車輪速回復量が上記
検出スリップ量よりも低くなり、これをもって切換手段
は当該異常時、擬似車速の算出を車両減速度に代え車輪
速に基づいて行わせる。従って、当該Gセンサの異常に
よっても擬似車速か実車速に対し著しく大きくなること
はなく、不要なブレーキ液圧の減圧で制動不能になる最
悪事態を回避することができる。
By the way, when the G sensor is abnormal, the wheel speed recovery amount becomes lower than the detected slip amount when a set time elapses from the pressure reduction or when the pressure is increased again, and this causes the switching means to calculate the pseudo vehicle speed at the abnormality. is performed based on wheel speed instead of vehicle deceleration. Therefore, even if there is an abnormality in the G sensor, the pseudo vehicle speed will not become significantly larger than the actual vehicle speed, and it is possible to avoid the worst case where braking becomes impossible due to an unnecessary decrease in brake fluid pressure.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説明する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図(a) 、 (b)は本発明−実施の態様になる
擬似車速発生装置を具えたアンチスキッド制御装置を示
し、この装置は車輪工のホイールシリンダ2に向かうブ
レーキ液圧九をアクチュエータ3の電子制御により適宜
減圧して車輪1をアンチスキッド制御するものとする。
FIGS. 1(a) and 1(b) show an anti-skid control device equipped with a pseudo vehicle speed generating device according to an embodiment of the present invention, and this device controls the brake fluid pressure 9 directed to the wheel cylinder 2 of the wheel worker by an actuator. It is assumed that the anti-skid control of the wheels 1 is performed by appropriately reducing the pressure using the electronic control in step 3.

アクチュエータ3の電子制御を行うためにアンチスキッ
ド制御回路4を設け、この回路に以下の情報を入力する
。即ち、ブレーキの作動時閉じるブレーキスイッチ5と
、車両の減速度gを検出するGセンサ6と、車輪1の回
転数に対応した周波数のパルス信号を発する車輪速セン
サ7とを設ける。ブレーキスイッチ5はブレーキ作動信
号をアンチスキッド制御回路4及び積分回路8に入力し
、Gセンサ6は車両減速度gに関する信号を積分(但し
、ブレーキ作動開始瞬時t0からその後の任意瞬時を迄
の積分値)をアンチスキッド制御回路4に入力する。又
車輪速センサ7からのパルス信号は車輪速算出口路9に
人力し、この回路はパルス信号と車輪1の回転半径とか
らその車輪速v8を算出してアンチスキッド制御回路4
に入力する。
An anti-skid control circuit 4 is provided to electronically control the actuator 3, and the following information is input to this circuit. That is, a brake switch 5 that closes when the brake is applied, a G sensor 6 that detects the deceleration g of the vehicle, and a wheel speed sensor 7 that emits a pulse signal of a frequency corresponding to the rotation speed of the wheel 1 are provided. The brake switch 5 inputs the brake activation signal to the anti-skid control circuit 4 and the integration circuit 8, and the G sensor 6 integrates the signal related to the vehicle deceleration g (however, the G sensor 6 integrates the signal related to the vehicle deceleration g (however, it integrates the signal from the brake activation start moment t0 to any subsequent moment). value) is input to the anti-skid control circuit 4. Further, the pulse signal from the wheel speed sensor 7 is manually inputted to the wheel speed calculation circuit 9, and this circuit calculates the wheel speed v8 from the pulse signal and the rotation radius of the wheel 1 and sends it to the anti-skid control circuit 4.
Enter.

アンチスキッド制御回路4は上記入力情報を基に第1図
(b)に示す機能を果たして擬似車速V。
The anti-skid control circuit 4 performs the function shown in FIG. 1(b) based on the above input information and calculates the pseudo vehicle speed V.

を算出する他、この擬似車速を基に周知の作用により車
輪1のアンチスキッド制御を行なうものとする。
In addition to calculating this pseudo vehicle speed, anti-skid control of the wheels 1 is performed by a well-known operation based on this pseudo vehicle speed.

先ず第1図(b)の擬似車速算出機能を第2図を参照し
つつ説明するに、ステップ10でブレーキスイッチ5が
ONか否かを判別し、ONでなければ制動中でなくアン
チスキッド制御も擬似車速の算出も不要であるから、ス
テップ11におい、て後述の切換フラッグCHGFLG
を0にリセットし、後述のタイマTもOにリセットし、
後述する車輪速極小値V、 minに読込み車輪速値九
をとりあえずセットして、そのまま制御を終了する。
First, the pseudo vehicle speed calculation function shown in FIG. 1(b) will be explained with reference to FIG. 2. In step 10, it is determined whether the brake switch 5 is ON or not. If it is not ON, braking is not in progress and anti-skid control is started. Since it is not necessary to calculate the vehicle speed or the pseudo vehicle speed, in step 11, the switching flag CHGFLG, which will be described later, is set.
is reset to 0, and timer T (described later) is also reset to O.
The read wheel speed value 9 is temporarily set to the wheel speed minimum value V, min, which will be described later, and the control is terminated.

制動中であれば、つまり第2図中瞬時t0以後、ステッ
プ12でCHGFLGが1か否かをチェックするが、当
初ステップ11の実行によりCHGFLG= Oである
から、制御はステップ13に至る。ステップ13では、
す如きものとなる。
If braking is in progress, that is, after instant t0 in FIG. 2, it is checked in step 12 whether CHGFLG is 1 or not, but since CHGFLG=O due to the execution of step 11, the control reaches step 13. In step 13,
It becomes something like this.

ところで、Gセンサ6が異常により実際より著しく小さ
な車両減速度を検出する時、上記のようにして求めた擬
似車速V、は第2図の制動開始当初に見られる如く、実
車速しより著しく大きくなる。従って、この擬似車速V
ムと車輪速V。との差から検出した車輪スリップ量に基
づき第5図につき前述したと同様に行われるアンチスキ
ッド制御(第2図中瞬時t0〜1Sは第5図中瞬時to
〜L、に対応する)が車輪スリップ状態でないのに不要
に実行されることとなり、当該アンチスキッド制御中の
減圧(瞬時tz)による車輪速回復量Δ右は小さい。又
、上記の大きな擬似車速Vtはこれと車輪速v1との差
から求める検出スリップ量Δv2を大きくすることにな
り、結果として第2図の如くΔV、<Δv2となる。
By the way, when the G sensor 6 detects a significantly smaller vehicle deceleration than the actual one due to an abnormality, the pseudo vehicle speed V determined as above is significantly larger than the actual vehicle speed, as seen at the beginning of braking in Fig. 2. Become. Therefore, this pseudo vehicle speed V
and wheel speed V. Anti-skid control is performed in the same manner as described above with reference to FIG. 5 based on the amount of wheel slip detected from the difference between
~L) is executed unnecessarily even though the wheels are not in a slip state, and the wheel speed recovery amount Δright due to pressure reduction (instantaneous tz) during the anti-skid control is small. Further, the above-mentioned large pseudo vehicle speed Vt increases the detected slip amount Δv2 obtained from the difference between this and the wheel speed v1, and as a result, ΔV<Δv2 as shown in FIG. 2.

これをもってGセンサ6の異常を判別するため第1図(
b)においては、次のステップ14で減圧開始か否かを
判断する。減圧開始時1回に限りステン7”1l(7)
実行ニヨリCHGFLG= 01T=0、Vw lIi
、l=vwに設定し、次回よりステップ15で減圧中か
否かを判別する。減圧中であれば、又減圧中でなくても
ステップ16で再増圧未開始であれば、ステップ17.
18で減圧開始後の車輪速極小値v817を更新する。
In order to determine the abnormality of the G sensor 6 using this, see Figure 1 (
In b), it is determined in the next step 14 whether or not to start decompression. Sten 7” 1l (7) only once at the start of decompression
Execution Niyori CHGFLG = 01T = 0, Vw lIi
, l=vw, and next time, in step 15, it will be determined whether or not the pressure is being reduced. If the pressure is being reduced, or if the pressure has not been increased again in step 16 even if the pressure is not being reduced, step 17.
At step 18, the minimum wheel speed value v817 after the start of pressure reduction is updated.

そして、ステップ19で減圧開始後の経過時間を前記タ
イマTにより第2図の如くに計測し、ステップ20でこ
のタイマTが設定時間T0を示しているか否かをチェッ
クする。なお、設定時間T0は例えば最も長いスキッド
サイクルに対応する1、5秒程度とする。T <70の
間は制御をそのまま終了して上記のループを繰返し、T
≧T0になった処で(第2図中瞬時t、。)ステップ2
1により車輪速回復量ΔVl=Vw  Vw *!、を
算出すると共に、当該瞬時の検出スリップ量ΔV、=V
ム−v1を算出する。
Then, in step 19, the elapsed time after the start of decompression is measured by the timer T as shown in FIG. 2, and in step 20, it is checked whether or not the timer T indicates the set time T0. Note that the set time T0 is, for example, about 1.5 seconds, which corresponds to the longest skid cycle. When T < 70, the control is terminated and the above loop is repeated until T
When ≧T0 (instant t in Fig. 2), step 2
1, wheel speed recovery amount ΔVl=Vw Vw *! , and calculate the instantaneous detected slip amount ΔV,=V
Mo-v1 is calculated.

次のステップ22では、車輪速回復量Δv1が誤差分を
見込んだ設定値Δv0以上、検出スリップ量lVzより
低いか否かによりGセンサ6が異常か否かを判別する。
In the next step 22, it is determined whether the G sensor 6 is abnormal or not based on whether the wheel speed recovery amount Δv1 is greater than or equal to a set value Δv0 taking into account the error and lower than the detected slip amount lVz.

JV+−Δv2≦Δv0の異常時、ステップ23でこの
ことを示すように前記の切換フラッグCIIGFLGを
1にセットし、lv+−AV、>Δv0の正常時ステッ
プ24でこのことを示すようにCIIGFLG=0にリ
セットする。
When JV+-Δv2≦Δv0 is abnormal, the switching flag CIIGFLG is set to 1 to indicate this in step 23, and when lv+-AV is normal, CIIGFLG is set to 0 to indicate this in step 24. Reset to .

かくて、正常時CHGPLG= Oにより制御がステッ
プ12からステップ13に進み、擬似車速V!を引続き
車両減速度gの積分により算出し続けるが、異常時は制
御がステップ12からステップ25へ進むようになり、
擬似車速V、は車両減速度gに代え車輪速v8を基に、
第5図中瞬時t、以後につき前述したと同様の方式で算
出される。従ってGセンサ6の異常時、擬似車速V、は
第2図中瞬時t、。てこの異常が判別された以後同図に
示す如きものとなる。
Thus, the control proceeds from step 12 to step 13 due to CHGPLG=O during normal operation, and the pseudo vehicle speed V! continues to be calculated by integrating the vehicle deceleration g, but in the event of an abnormality, the control proceeds from step 12 to step 25.
The pseudo vehicle speed V is based on the wheel speed v8 instead of the vehicle deceleration g,
The instant t in FIG. 5 and the rest are calculated in the same manner as described above. Therefore, when the G sensor 6 is abnormal, the pseudo vehicle speed V is at the instant t in FIG. After the lever abnormality is determined, the situation will be as shown in the same figure.

アンチスキッド制御回路4は上記のようにして求めた擬
似車速V、と、車輪速v8とに基づき、第5図につき前
述したと同様のアンチスキッド制御を行なってブレーキ
液圧P。を第2図に示す如くに制御する。この時、Gセ
ンサ6の前記異常に起因し瞬時t3においてブレーキ液
圧P、、が0にされ、一時的に制動不能となるが、異常
判別瞬時t、。
The anti-skid control circuit 4 performs the same anti-skid control as described above with reference to FIG. 5 to adjust the brake fluid pressure P based on the pseudo vehicle speed V and the wheel speed V8 determined as described above. is controlled as shown in FIG. At this time, due to the abnormality of the G sensor 6, the brake fluid pressure P, is set to 0 at instant t3, and braking becomes temporarily impossible, but at the abnormality determination instant t.

で擬似車速V、の算出を異常な車両減速度gに代え車輪
速V、、、に基づいて行うよう切換えるため、それ以後
正常なアンチスキッド制御を行なわせることができる。
Since the calculation of the pseudo vehicle speed V, is switched based on the wheel speed V, . . . instead of the abnormal vehicle deceleration g, normal anti-skid control can be performed thereafter.

従って、Gセンサ6のかかる異常時も制動不能の状態が
続くのを防止することができる。
Therefore, even when the G sensor 6 is abnormal, it is possible to prevent the braking from being disabled from continuing.

なお、Gセンサ6が正常に車両減速度gを検出している
間は第3図に示す如く、減圧開始瞬時txtから設定時
間T0経過後における車輪速回復量AV。
Note that while the G sensor 6 is normally detecting the vehicle deceleration g, the wheel speed recovery amount AV is determined after the set time T0 has elapsed from the pressure reduction start instant txt, as shown in FIG.

が検出スリップ量Δv2より大きく、第1図(b)中ス
テップ13での車両減速度gに基づく擬似車速V。
is larger than the detected slip amount Δv2, and the pseudo vehicle speed V is based on the vehicle deceleration g at step 13 in FIG. 1(b).

の算出が継続され、このti似車速は第3図の如くにな
る。しかして、Gセンサ6が正常であるため、1疑似車
速V、も異常値を示すことはなく、アンチスキッド制御
を正確に遂行可能である。
The calculation of ti is continued, and the vehicle speed similar to ti becomes as shown in FIG. Since the G sensor 6 is normal, the 1 pseudo vehicle speed V does not show an abnormal value, and anti-skid control can be performed accurately.

なお、第3図中次の減圧開始瞬時t2□の直後に見られ
る如く、この瞬時から設定時間T0が経過する前にブレ
ーキ液圧P8が再増圧される場合は、再増圧瞬時t41
においてGセンサ6が異常か否かを判別する。この目的
のため第1図(b)中ステップ26で再増圧開始をチェ
ックし、再増圧開始時1回に限りステップ27において
前記のタイマTが設丸時間T0未満か否かを判別し、そ
うである時制御をステップ21に進めるようになす。
Note that, as seen immediately after the next pressure reduction start instant t2□ in FIG.
It is determined whether the G sensor 6 is abnormal or not. For this purpose, the start of pressure increase again is checked in step 26 in FIG. , then control proceeds to step 21.

(発明の効果) かくして本発明擬似車速発生装・置は上述の如く、アン
チスキッド制御による車輪速回復量が減圧からの設定時
間の経過時又は再増圧時において検出スリップ量よりも
低い時、Gセンサによる車両減速度の検出値が異常であ
ると判断し、この異常時車両減速度に代え車輪速を基に
擬似車速を算出する構成としたから、上記の異常によっ
ても擬似車速が異常になることはなく、これを基に実行
するアンチスキッド制御を引続き正常に行わせることが
でき、制動不能の最悪事態を回避し得る。
(Effects of the Invention) Thus, as described above, the pseudo vehicle speed generator/device of the present invention detects when the amount of wheel speed recovered by the anti-skid control is lower than the detected slip amount when the set time from pressure reduction has elapsed or when the pressure is increased again. Since the vehicle deceleration value detected by the G sensor is determined to be abnormal, and the pseudo vehicle speed is calculated based on the wheel speed instead of the vehicle deceleration at the time of abnormality, the pseudo vehicle speed will be abnormal even due to the above abnormality. Therefore, the anti-skid control that is executed based on this can continue to be performed normally, and the worst case of inability to brake can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明擬似車速発生装置を具えたアンチ
スキッド制御装置の全体システム図、同図(b)は同側
におけるアンチスキッド制御回路の擬似車速算出機能フ
ローチャート、第2図及び第3図は夫々同側装置のGセ
ンサ異常時と正常時における動作タイムチャート、第4
図はアンチスキッド制御の一般的な領域線図、 第5図は一般的なアンチスキッド制御の動作タイムチャ
ート、 第6図は凍結路と乾燥路の路面摩擦係数変化特性図であ
る。 1・・・車輪       2・・・ホイールシリンダ
3・・・アクチュエータ 4・・・アンチスキッド制御回路 5・・・ブレーキスイッチ 6・・・Gセンサ7・・・
車輪速センサ   8・・・積分回路9・・・車輪速算
出回路 特許出願人  日産自動車株式会社 (14倫九種渓速度ス育ノ 第6図 −f!輪スリスリップ率)
FIG. 1(a) is an overall system diagram of an anti-skid control device equipped with a pseudo-vehicle speed generator of the present invention, FIG. 1(b) is a flow chart of the pseudo-vehicle speed calculation function of the anti-skid control circuit on the same side, and FIG. Figure 3 is an operation time chart when the G sensor of the ipsilateral device is abnormal and when it is normal, respectively.
Figure 5 is a general area diagram of anti-skid control, Figure 5 is an operation time chart of general anti-skid control, and Figure 6 is a road surface friction coefficient change characteristic diagram for frozen roads and dry roads. 1... Wheel 2... Wheel cylinder 3... Actuator 4... Anti-skid control circuit 5... Brake switch 6... G sensor 7...
Wheel speed sensor 8...Integrator circuit 9...Wheel speed calculation circuit Patent applicant: Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】 1、車両の減速度を基に算出した擬似車速と車輪速との
差から車輪のスリップ量を検出し、車輪スリップの発生
時該車輪のブレーキ液圧を減ずるようにしたアンチスキ
ッド制御装置において、前記ブレーキ液圧の減圧による
前記車輪速の最低値よりの回復量を検出する車輪速回復
量検出手段を具え、 前記減圧より設定時間の経過時もしくは再増圧時におけ
る前記車輪速回復量が該時点における前記検出スリップ
量より低い時、前記擬似車速の算出を前記車両減速度に
代え前記車輪速を基に行うよう切換える切換手段を設け
た ことを特徴とするアンチスキッド制御装置の擬似車速発
生装置。
[Claims] 1. The amount of wheel slip is detected from the difference between the pseudo vehicle speed calculated based on the deceleration of the vehicle and the wheel speed, and when wheel slip occurs, the brake fluid pressure of the wheel is reduced. The anti-skid control device includes a wheel speed recovery amount detection means for detecting the amount of recovery of the wheel speed from the minimum value due to the reduction of the brake fluid pressure, and the wheel speed recovery amount detection means detects the amount of recovery of the wheel speed from the minimum value due to the reduction of the brake fluid pressure; Anti-skid control characterized by providing a switching means for switching to calculate the pseudo vehicle speed based on the wheel speed instead of the vehicle deceleration when the wheel speed recovery amount is lower than the detected slip amount at the time. The device's pseudo vehicle speed generator.
JP6739087A 1987-03-20 1987-03-20 Artificial car speed generating device for antiskid control system Pending JPS63232061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6739087A JPS63232061A (en) 1987-03-20 1987-03-20 Artificial car speed generating device for antiskid control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6739087A JPS63232061A (en) 1987-03-20 1987-03-20 Artificial car speed generating device for antiskid control system

Publications (1)

Publication Number Publication Date
JPS63232061A true JPS63232061A (en) 1988-09-28

Family

ID=13343605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6739087A Pending JPS63232061A (en) 1987-03-20 1987-03-20 Artificial car speed generating device for antiskid control system

Country Status (1)

Country Link
JP (1) JPS63232061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080448A (en) * 1989-05-24 1992-01-14 Mitsubishi Denki K.K. Antiskid brake control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080448A (en) * 1989-05-24 1992-01-14 Mitsubishi Denki K.K. Antiskid brake control system

Similar Documents

Publication Publication Date Title
US4969695A (en) Detection of abnormality for rotational speed sensor
JPH0348059B2 (en)
US4657314A (en) Apparatus and method of controlling braking of an automotive vehicle, operating in a curved path
JP2591050B2 (en) Anti-skid control device
US3832008A (en) Anti skid control system
CZ380592A3 (en) Circuit arrangement of motor vehicle brake system with electronic antiblocking control
EP0522565B1 (en) Estimated vehicle speed calculation apparatus
JP2844542B2 (en) Vehicle anti-lock control method
JP2503245B2 (en) Anti-skid controller
JPS63232061A (en) Artificial car speed generating device for antiskid control system
JPH0353139B2 (en)
US4270810A (en) Circuit for influencing the brake-pressure release and/or brake-pressure holding phases for antilocking vehicle brake systems
US4773014A (en) Anti-skid control system for motor vehicles
EP0308795B1 (en) Antiskid control device
JP3299549B2 (en) Vehicle slip control device
JP3833006B2 (en) Brake control device
JPH04293654A (en) Antiskid braking device for vehicle
JPH089319B2 (en) Anti-skidding control device
JPS62295766A (en) Pseudo vehicle speed generator for anti-skid controller
JP2520114B2 (en) Pseudo vehicle speed calculation device for anti-skidding control device
JPS60261767A (en) Antiskid controller
JPH11295337A (en) Detection apparatus for abnormality of accelerometer
JPS6121859B2 (en)
GB2119882A (en) Vehicle anti-lock braking control
JPH0213271Y2 (en)