JPS63231862A - Superimposed field energy analyzer with projection on electrode - Google Patents

Superimposed field energy analyzer with projection on electrode

Info

Publication number
JPS63231862A
JPS63231862A JP62065104A JP6510487A JPS63231862A JP S63231862 A JPS63231862 A JP S63231862A JP 62065104 A JP62065104 A JP 62065104A JP 6510487 A JP6510487 A JP 6510487A JP S63231862 A JPS63231862 A JP S63231862A
Authority
JP
Japan
Prior art keywords
electrode
gap
electric field
electrodes
projections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62065104A
Other languages
Japanese (ja)
Inventor
Katsushige Tsuno
勝重 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP62065104A priority Critical patent/JPS63231862A/en
Publication of JPS63231862A publication Critical patent/JPS63231862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To make the electric field distribution and the magnetic field distribution at an edge section equal and correct the uneven electric field caused by inclined magnetic poles by making the gap between electrodes and the gap between the inclined magnetic poles equal and providing projections with specified different widths on the right and left electrode faces. CONSTITUTION:Magnetic poles 11, 12 are inclinatorily provided, electrodes 13, 14 with different widths are arranged on the left and right between them, and the gap Sm between the magnetic poles 11, 12 and the gap Se between the electrodes 13, 14 are made almost equal. The widths of the electrodes 13, 14 are made De, Dr, and projections 15, 16 are provided in front of them. The widths of the projections are made t1, t2 respectively, the widths of electrode top faces except the projections De-2t1, Dr-2t2 are made equal, and the widths of the projections are made 0.05Se-0.2Se. Accordingly, the electrode gap and the inclined magnetic field gap are made equal, the electric field distribution and the magnetic field distribution at the edge section are made equal, and the projections with different widths are provided in front of the right and left electrodes, thereby the uneven electric field caused by the inclined magnetic poles is corrected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電場と磁場を重畳する型のフィルタを使用する
エネルギ分析装置に係わり、特に電極に突起を設けて荷
電粒子の直進条件を満足するようにした重畳場エネルギ
分析装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an energy analyzer using a type of filter that superimposes an electric field and a magnetic field, and particularly relates to an energy analyzer that uses a filter that superimposes an electric field and a magnetic field, and in particular provides a protrusion on an electrode to satisfy the straight-line traveling condition of charged particles. The present invention relates to a superimposed field energy analyzer as described above.

〔従来の技術〕[Conventional technology]

従来、電子線やイオンビームのエネルギー分析装置とし
てウィーンフィルタと呼ばれる一様な電場、磁場を重畳
した分析器が知られている。ウィーンフィルタは高分解
能の分析が期待されること、ビームがフィルタ内で直進
すること等の優れた特性を有しており、ビームが直進す
るという特徴のために、電子顕微鏡等に組み込んで入射
ビームのエネルギを単色化し、光学系を単純化すること
ができるなどエネルギ等の分析を行うのに適している。
BACKGROUND ART Conventionally, an analyzer called a Wien filter in which uniform electric and magnetic fields are superimposed is known as an energy analyzer for electron beams and ion beams. Wien filters have excellent properties such as high-resolution analysis and the fact that the beam travels in a straight line within the filter. It is suitable for analyzing energy, etc., as it can monochromate the energy and simplify the optical system.

このようなウィーンフィルタにおいては、一様な電場と
磁場が互いに直交方向に加えられ、これらに直交する方
向に電子ビームが入射する。このようなウィーンフィル
タにおいて、直交する一様な電場Eと磁場Bが、 Ew=2πU o / L +  B w =E w 
/ V 。
In such a Wien filter, uniform electric and magnetic fields are applied in directions perpendicular to each other, and an electron beam is incident in a direction perpendicular to these fields. In such a Wien filter, the orthogonal uniform electric field E and magnetic field B are Ew = 2πU o / L + B w = E w
/V.

をウィーン条件として、 Vo=L口てこ/m)正7 の下で、 B = E / V 。As the Vienna condition, Vo=L mouth lever/m) Positive 7 Under the B=E/V.

なる条件を満たした時ビームは直進する。ここで、UO
は入射ビームのエネルギ、■0は粒子の速度、Lはフィ
ルタの長さ、Ew、Bwはウィーン条件を満たす電場、
磁場である。いま、U=Uo±ΔUのようなエネルギの
電子が入射すると、これは直進の条件からはずれ、電場
E方向に曲げられる。
When the following conditions are met, the beam travels straight. Here, UO
is the energy of the incident beam, 0 is the velocity of the particle, L is the length of the filter, Ew, Bw are the electric fields that satisfy the Wien condition,
It is a magnetic field. Now, when an electron with an energy such as U=Uo±ΔU is incident, it deviates from the straight-line propagation condition and is bent in the direction of the electric field E.

従って、フィルタの出口において、エネルギの大きさに
よってビームが分散し、エネルギ分析器として利用でき
る。
Therefore, at the exit of the filter, the beam is dispersed depending on the energy level and can be used as an energy analyzer.

第3図(イ)はウィーン・フィルタの斜視図、同図(ロ
)は断面図である。図中、1.2と磁極、3.4は電極
である。
FIG. 3(a) is a perspective view of the Wien filter, and FIG. 3(b) is a sectional view. In the figure, 1.2 is a magnetic pole and 3.4 is an electrode.

このようなウィーンフィルタは、前述の直進条件を満た
すべきものとして考えられているが、実際には殆ど実現
できていない。その理由は、重畳場装置のほとんどが第
3図に示すように磁極間隙に電極が挿入されており、磁
界および電界の均一度を高くとるために、磁極間隙Sm
が電極間隙Seよりずっと大きい構造となっていること
に起因している。このような場合、磁極または電極の始
まりの部分、または終わりの部分で電界および磁界の分
布は第4図に示すように磁場の変化(図の実線)が緩く
、電場の変化(図の破vA)が急激となり、縁端部にお
いてはB = E/ V oの条件が成立しない。
Although such a Wien filter is thought to satisfy the above-mentioned straight-line condition, it has hardly been realized in practice. The reason for this is that most superimposed field devices have electrodes inserted into the magnetic pole gap as shown in Figure 3, and in order to maintain high uniformity of the magnetic and electric fields, the magnetic pole gap Sm
This is due to the fact that the structure is much larger than the electrode gap Se. In such a case, the electric field and magnetic field distribution at the beginning or end of the magnetic pole or electrode is as shown in Figure 4, where the change in the magnetic field (solid line in the figure) is gradual, and the change in the electric field (broken line in the figure) is ) becomes abrupt, and the condition B = E/V o does not hold at the edge.

また、第3図に示すような磁極と電極の組み合わせにお
いては、X方向にはレンズ作用があって電子ビームは収
斂するが、X方向にはレンズ作用がなくビームは発散す
る。これを避けるため、By=Bo  (1+x/Ro
)、Ro=4Uo/Ew。
Furthermore, in the combination of magnetic poles and electrodes as shown in FIG. 3, there is a lens effect in the X direction and the electron beam converges, but there is no lens effect in the X direction and the beam diverges. To avoid this, By=Bo (1+x/Ro
), Ro=4Uo/Ew.

EW= 2πUO/L (L;フィルター長)なる傾斜
基を作ることが提案されている。
It has been proposed to create a gradient group of EW=2πUO/L (L: filter length).

そこで、縁端部の電場と磁場の分布を等しくするために
電極間隔と磁極間隔をほぼ等しくし、且つX方向にもレ
ンズ作用を持たせるため傾斜磁極を用いた場合について
説明する。
Therefore, a case will be described in which the electrode spacing and the magnetic pole spacing are made approximately equal in order to equalize the distribution of the electric field and the magnetic field at the edge, and in which tilted magnetic poles are used to provide a lens effect also in the X direction.

第5図は傾斜磁極と左右で幅の異なる電極を使用した場
合のウィーンフィルタを示す図、第6図は第5図におけ
るX方向の電場を示す図で、11.12は傾斜磁極、1
3は幅の狭い電極、14は幅の広い電極であり、Seは
電極間隙、Smは磁極間隙で、Se=Sm=10mとし
た場合である。
Figure 5 is a diagram showing a Wien filter when using gradient magnetic poles and electrodes with different widths on the left and right sides, Figure 6 is a diagram showing the electric field in the X direction in Figure 5, 11.12 is a gradient magnetic pole, 1
3 is a narrow electrode, 14 is a wide electrode, Se is the electrode gap, Sm is the magnetic pole gap, and Se=Sm=10 m.

このような磁極、電極配置において、電極13.14間
に電圧を加え、傾斜磁極11.12をアース電位とした
場合のX方向の電場分布Ex (x)は第6図に示すよ
うになる。磁極が傾斜することによって、電場分布には
F、x=a x (a >0)なる成分が作られるが、
電極板の幅を電極工3でDe、右側電極14でDrと非
対称(D r >D e)にすることによって、Ex=
bx (b<Q)なる逆向きの電場勾配を作ることがで
き、その結果−両者でキャンセルすることができる。し
かし第5図の電磁極配置の場合、第6図から分かるよう
に残されたX方向の1次勾配のために電場の極小値はx
=−2,5mmに位置し、同時にExばX2に比例する
変化を示している。これは電極間隙SeがSe=10m
mとDe、Drより大きな値を持っていることに依って
いる。一様な場をつくるためには、通常電極高さDが、
D>2Seでなければならないが、この場合Seを大き
くとるという要請から、Se>Dとならざるを得ないた
めである。
In such a magnetic pole and electrode arrangement, when a voltage is applied between the electrodes 13 and 14 and the gradient magnetic poles 11 and 12 are set at ground potential, the electric field distribution Ex (x) in the X direction is as shown in FIG. By tilting the magnetic pole, a component F, x = a x (a > 0) is created in the electric field distribution, but
By making the width of the electrode plate asymmetrical (D r > De) with De at the electrode work 3 and Dr at the right electrode 14, Ex=
It is possible to create an opposite electric field gradient bx (b<Q), and as a result - both can cancel. However, in the case of the electromagnetic pole arrangement shown in Figure 5, as can be seen from Figure 6, the minimum value of the electric field is
= -2.5 mm, and at the same time, Ex shows a change proportional to X2. This means that the electrode gap Se is Se=10m
This depends on the fact that m has a larger value than De and Dr. In order to create a uniform field, the electrode height D is usually
This is because D>2Se must be satisfied, but in this case Se>D must be satisfied due to the requirement to increase Se.

本発明は上記問題点を解決するためのもので、縁端部の
電場と磁場とをほぼ均しくすると共に、均一な電場分布
を得ることのできる電極に突起を設けた重畳場エネルギ
分析装置を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and provides a superimposed field energy analyzer in which the electric field and magnetic field at the edge are approximately equalized and protrusions are provided on the electrodes to obtain a uniform electric field distribution. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の電極に突起を設けた重畳場エネルギ
分析装置は、傾斜磁極を用いた重畳場エネルギ分析装置
において、電極間隙Seと傾斜磁極間隙Dmを等しくす
ると共に、対向する両電極面に互いに幅の異なる突起を
設けたことを特徴とする。
For this purpose, the superimposed field energy analyzer of the present invention in which protrusions are provided on the electrodes is such that, in the superimposed field energy analyzer using gradient magnetic poles, the electrode gap Se and the gradient magnetic pole gap Dm are made equal, and the opposing electrode surfaces are mutually connected to each other. It is characterized by having protrusions of different widths.

〔作用〕[Effect]

本発明の電極に突起を設けた重畳場エネルギ分析装置は
、電極間隙と傾斜磁極間隙とを等しくすることにより縁
端部の電場と磁場の分布を等しくし、さらに左右の電極
面に、互いに幅の異なる突起を設けることにより傾斜磁
極による電場不均一を補正して電場の均一性を実現する
ことができる。
The superimposed field energy analyzer in which protrusions are provided on the electrodes of the present invention equalizes the electric field and magnetic field distribution at the edge by making the electrode gap and the gradient magnetic pole gap equal, and furthermore, the left and right electrode surfaces are provided with a width that is different from each other. By providing protrusions with different numbers, it is possible to correct the non-uniformity of the electric field due to the gradient magnetic pole and achieve uniformity of the electric field.

〔実施例〕〔Example〕

以下、実施例を図面に基づき説明する。 Examples will be described below based on the drawings.

第1図は本発明による電極に突起を設けた重畳場エネル
ギ分析装置におけるウィーンフィルタの構造を示す図、
第2図は第1図の場合の電場分布を示す図で、第4図と
同一番号は同一内容を示している。なお図中、15.1
6ば突起である。
FIG. 1 is a diagram showing the structure of a Wien filter in a superimposed field energy analyzer in which an electrode is provided with a protrusion according to the present invention;
FIG. 2 is a diagram showing the electric field distribution in the case of FIG. 1, and the same numbers as in FIG. 4 indicate the same contents. In the figure, 15.1
It is a 6-bar protrusion.

図において、磁極間隙Smと電極間隙Seは等しくして
あり、電極13.14の前面には突起15.16が設け
られている。この例ではこの突起の幅を1..12とし
た場合、突起部を除いた電極頂面の幅De−2tl、D
r  2 tzを等しくするように、jl 、j2を変
えている場合を示している。このように、突起の幅t1
、t2を左右の電極で変えることによって、第1図に示
したEx (x)におけるXの1火成分を補償すること
ができる。
In the figure, the magnetic pole gap Sm and the electrode gap Se are made equal, and a protrusion 15.16 is provided on the front surface of the electrode 13.14. In this example, the width of this protrusion is 1. .. 12, the width of the top surface of the electrode excluding the protrusion De-2tl, D
The case where jl and j2 are changed so that r 2 tz is made equal is shown. In this way, the width of the protrusion t1
, t2 between the left and right electrodes, it is possible to compensate for one component of X in Ex (x) shown in FIG.

第2図の分布では、X=±21における電場均一度はΔ
E/E〜5%以内と小さくすることができた。
In the distribution shown in Figure 2, the electric field uniformity at X=±21 is Δ
It was possible to reduce E/E to within 5%.

この電界均一度は、いろいろ実験した結果、突起の厚さ
を0.05Se≦1..12≦0.2Seの範囲でより
よい結果が得られることが確かめられた。
As a result of various experiments, this electric field uniformity was determined by adjusting the thickness of the protrusion to 0.05Se≦1. .. It was confirmed that better results could be obtained in the range of 12≦0.2Se.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、電極間隙と傾斜磁極間隙
とを等しくすることにより縁端場の電場と磁場の分布を
等しくし、さらに左右の電極面に、互いに幅の異なる突
起を設けることにより傾斜磁極による電場不均一を補正
して電場の均一性を実現することができる。特に、この
突起の形状を0゜05Se<t<0.2Seの範囲とす
ることにより、電場分布の均一性を向上させることが可
能となる。
As described above, according to the present invention, the electric field and magnetic field distribution of the edge field are made equal by making the electrode gap and the gradient magnetic pole gap equal, and furthermore, protrusions with different widths are provided on the left and right electrode surfaces. This makes it possible to correct the electric field non-uniformity due to the tilted magnetic poles and realize electric field uniformity. In particular, by setting the shape of this protrusion in the range of 0°05Se<t<0.2Se, it is possible to improve the uniformity of the electric field distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電極に突起を設けた重畳場エネル
ギ分析装置の一実施例を示す図、第2図は第1図の場合
における電場分布を示す図、第3図は従来のウィーンフ
ィルタの構成を示す図、第4図は電場と磁場の縁端場の
分布を示す図、第5図は磁極間隙と電極間隙を等しくし
た傾斜磁極を用いたウィーンフィルタの構成を示す図、
第6図は第5図の場合の電場分布を示す図である。 11.12・・・傾斜磁極、13.14・・・電極、1
5.16・・・突起。
Fig. 1 is a diagram showing an embodiment of a superimposed field energy analyzer in which an electrode is provided with a protrusion according to the present invention, Fig. 2 is a diagram showing the electric field distribution in the case of Fig. 1, and Fig. 3 is a diagram of a conventional Wien filter. Figure 4 is a diagram showing the distribution of the edge fields of electric and magnetic fields, Figure 5 is a diagram showing the configuration of a Wien filter using gradient magnetic poles with equal magnetic pole gap and electrode gap,
FIG. 6 is a diagram showing the electric field distribution in the case of FIG. 11.12... Gradient magnetic pole, 13.14... Electrode, 1
5.16... Protrusion.

Claims (2)

【特許請求の範囲】[Claims] (1)傾斜磁極を用いた重畳場エネルギ分析装置におい
て、電極間隙Seと傾斜磁極間隙Dmをほぼ等しくする
と共に、対向する両電極面に互いに幅の異なる突起を設
けたことを特徴とする電極に突起を設けた重畳場エネル
ギ分析装置。
(1) In a superimposed field energy analyzer using gradient magnetic poles, an electrode is characterized in that the electrode gap Se and the gradient magnetic pole gap Dm are made approximately equal, and protrusions with mutually different widths are provided on both opposing electrode surfaces. Superimposed field energy analyzer equipped with protrusions.
(2)突起の幅tは、0.05Se<t<0.2Seで
ある特許請求の範囲第1項記載の電極に突起を設けた重
畳場エネルギ分析装置。
(2) A superimposed field energy analyzer in which an electrode is provided with a protrusion according to claim 1, wherein the width t of the protrusion satisfies 0.05Se<t<0.2Se.
JP62065104A 1987-03-19 1987-03-19 Superimposed field energy analyzer with projection on electrode Pending JPS63231862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065104A JPS63231862A (en) 1987-03-19 1987-03-19 Superimposed field energy analyzer with projection on electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065104A JPS63231862A (en) 1987-03-19 1987-03-19 Superimposed field energy analyzer with projection on electrode

Publications (1)

Publication Number Publication Date
JPS63231862A true JPS63231862A (en) 1988-09-27

Family

ID=13277258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065104A Pending JPS63231862A (en) 1987-03-19 1987-03-19 Superimposed field energy analyzer with projection on electrode

Country Status (1)

Country Link
JP (1) JPS63231862A (en)

Similar Documents

Publication Publication Date Title
DE112014003890B4 (en) Apparatus charged with a charged particle beam
JPS63231862A (en) Superimposed field energy analyzer with projection on electrode
JPS5868848A (en) Structure of electron gun
JP3040245B2 (en) Vienna filter
JP2603673B2 (en) Superposed field energy analyzer using inhomogeneous electric field
JPS63231867A (en) Energy analyzer with inclined magnetic pole
Hutter The deflection of beams of charged particles
JPS63231866A (en) Energy analyzer using inclined magnetic pole
JPS63310545A (en) Mass separator
JPH0479139A (en) Exb-type energy filter
JPS63231861A (en) Energy analyzer with different filter lengths for electric field and magnetic field
JPH02201855A (en) Wien filter
JPH06119906A (en) Wien filter
JPS63231864A (en) Energy analyzer with asymmetrical shape electrode plate
JPS6029799Y2 (en) Electrostatic deflection storage tube
JPH0795440B2 (en) Electric field and magnetic field type energy analyzer
Bloom et al. Interdigital grids for dynamic astigmatism control in picture-tube guns
JPH0432147A (en) Mass spectrometer
JPS63231868A (en) Energy analyzer using superimposed field
JP3958149B2 (en) Magnetic field type energy filter
US5107172A (en) Charged-particle beam tube and its driving method
CN115295382A (en) Self-adaptive ion beam correction deflection plate
JPH01239754A (en) Energy filter utilizing uneven magnetic field
JPH0381934A (en) Dynamic focus electron gun
JPH05275057A (en) Wien filter