JPS63230522A - Production of superconductive material - Google Patents

Production of superconductive material

Info

Publication number
JPS63230522A
JPS63230522A JP6250587A JP6250587A JPS63230522A JP S63230522 A JPS63230522 A JP S63230522A JP 6250587 A JP6250587 A JP 6250587A JP 6250587 A JP6250587 A JP 6250587A JP S63230522 A JPS63230522 A JP S63230522A
Authority
JP
Japan
Prior art keywords
gas
powder
excimer laser
raw material
superconductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6250587A
Other languages
Japanese (ja)
Inventor
Hideo Okuma
大熊 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6250587A priority Critical patent/JPS63230522A/en
Publication of JPS63230522A publication Critical patent/JPS63230522A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive material making transition in a narrow temperature range, by blending a mixed raw material gas of gases of La(CO)3, Ba(C2H5)2, Cu2(CH2)2 and NO2 with Ar gas as a carrier gas to give a gas and irradiating the gas with excimer laser. CONSTITUTION:The above-mentioned raw material gas which is blended with Ar gas in a ratio of one to one, is introduced to a reactor and irradiated with excimer laser comprising ArF. In the operation, a material such as quartz glass having low absorption ratio at wavelength of excimer laser is used as a window material for laser beam. By the above-mentioned laser beam irradia tion, a superconductive material comprising powder and shown by the formula (La1-xBax)2CuO4 is obtained. The fine structure of the superconductive material has excellent characteristics of uniformity, few defects, high critical temperature of superconductivity and transition in a narrow temperature range.

Description

【発明の詳細な説明】 C発明の目的〕 (産業上の利用分野) 本発明は液体水素温度より高い温度で臨界温度を有し、
特性の優れた超伝導セラミック材料をエキシマレーザに
より合成した超伝導材料の製造方法に関する。
[Detailed Description of the Invention] CObject of the Invention] (Industrial Application Field) The present invention has a critical temperature at a temperature higher than the liquid hydrogen temperature,
This invention relates to a method for producing superconducting ceramic materials with excellent properties synthesized using excimer laser.

(従来の技術) (La、Ba)、Cub、セラミックスが30”Kで超
伝導性を示すことは既に文献に報告されている。
(Prior Art) It has already been reported in literature that (La, Ba), Cub, and ceramics exhibit superconductivity at 30''K.

(H,Takagiら、 Japan、 J、 App
l、 Phys、 26. (2)1987、 L12
3)この文献の製造方法は原料粉体を混合し、焼結する
通常のセラミックスの製造方法で合成している。
(H, Takagi et al., Japan, J. App.
l, Phys, 26. (2) 1987, L12
3) The manufacturing method described in this document is a general ceramic manufacturing method in which raw material powders are mixed and sintered.

(発明が解決しようとする問題点) しかしこの方法では超伝導になる臨界温度が低く、広い
温度幅にわたって転移するため実用上問題があった。
(Problems to be Solved by the Invention) However, this method has a practical problem because the critical temperature for superconductivity is low and the transition occurs over a wide temperature range.

本発明は上記問題点を除去するために成されたもので、
狭い温度幅にわたって転移する超伝導材料の製造方法を
提供することを目的とする。
The present invention was made to eliminate the above problems, and
It is an object of the present invention to provide a method for producing a superconducting material that undergoes a transition over a narrow temperature range.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) このような問題を解決するため、セラミックの原料粉体
を細かく、均一に合成するため分子結合を直接励起して
反応させる紫外線とくにエキシマレーザ光を用いて微細
超伝導粉体を製造する。
(Means for solving the problem) In order to solve this problem, in order to synthesize ceramic raw material finely and uniformly, we use ultraviolet light, especially excimer laser light, to directly excite and react the molecular bonds. Manufacture superconducting powder.

(作用) これにより、添加する元素が均一に分散され、結晶粒径
も細かいのも、焼結反応が均一に起こり反応温度を低く
することになる。
(Function) As a result, the added elements are uniformly dispersed and the crystal grain size is fine, so that the sintering reaction occurs uniformly and the reaction temperature is lowered.

(実施例1) La (1)La(CO)6ガス40vo1%、 Ba
 (C2Ha )zガス4 vo1%、Cu2(cl(
、)zガス1lvo1%、およびNo、ガスを45vo
1%の割合で混合し原料ガスとする。この原料ガス1に
対しキャリヤガスとしてArガスを1の割合で混合し反
応容器に導入し、 ArF、レーザ光を照射した。
(Example 1) La (1) La(CO)6 gas 40vo1%, Ba
(C2Ha)z gas 4 vol%, Cu2(cl(
,) z gas 1lvo 1%, and no, gas 45vo
They are mixed at a ratio of 1% and used as a raw material gas. This raw material gas was mixed with Ar gas as a carrier gas of 1 part in a ratio of 1 part, introduced into a reaction vessel, and irradiated with ArF and laser light.

レーザ光の窓材としては石英ガラスなどのエキシマレー
ザの波長での吸収率の低い材質を用いる。
As the window material for the laser light, a material such as quartz glass that has a low absorption rate at the wavelength of the excimer laser is used.

反応容器内に反応生成物が付着しないよう反応容器の内
壁にはキャリヤガスのArを吹出させておいた。生成し
た粉体はバグフィルタ(回収装置)で回収した。得られ
た粉体の平均粒径は0.1μsであった。この粉体にバ
インダとしてVAPを加え造粒し、プレス成形して、9
00℃〜1300℃の空気雰囲気のもとて焼成し、直径
5m、厚さ1■のセラミックスを得た。このセラミック
スの両面に金を蒸着し電極として電気抵抗を測定したと
ころ、30°にで抵抗値が0の超伝導現象を示した。一
方、市販品のLa、Ba、 Cuの酸化粉体を(LaO
,9BaO,1)、CuO4の割合になるよう混合し、
1000〜1400℃の温度で焼成して得たセラミック
スは15@にで抵抗値がOになる。このときの抵抗値と
温度との関係を図に示し1曲線Aは本実施例2曲線Bは
従来例の結果である。このようにエキシマレーザを用い
て得た粉体からセラミックスとしたとき超伝導になる温
度が従来方式で得たセラミックスの超伝導になる温度よ
り高い温度で実現する。これは添加する微量元素が均一
に分散されるためセラミックスとして製作したときに通
常のセラミックス製造方法で製作されたときと較ベセラ
ミックスの微細組織が均一で欠陥の大きさや数も通常の
セラミックスに較べ少なくなっているためである。
Ar carrier gas was blown onto the inner wall of the reaction vessel to prevent reaction products from adhering to the inside of the reaction vessel. The generated powder was collected using a bag filter (collection device). The average particle size of the obtained powder was 0.1 μs. Add VAP as a binder to this powder, granulate it, press mold it, and
The ceramic was fired in an air atmosphere at a temperature of 00°C to 1300°C to obtain a ceramic having a diameter of 5 m and a thickness of 1 inch. When gold was deposited on both sides of this ceramic and the electrical resistance was measured using it as an electrode, it showed a superconducting phenomenon with a resistance value of 0 at 30°. On the other hand, commercially available oxidized powders of La, Ba, and Cu (LaO
, 9BaO, 1), and CuO4.
Ceramics obtained by firing at a temperature of 1000 to 1400°C have a resistance value of 0 at 15@. The relationship between the resistance value and the temperature at this time is shown in the figure. 1 Curve A is the result of the present example 2 Curve B is the result of the conventional example. In this way, when ceramics are made from powder obtained using an excimer laser, superconductivity is achieved at a higher temperature than the superconductivity of ceramics obtained by conventional methods. This is because the trace elements added are uniformly dispersed, so when manufactured as a ceramic, the microstructure of the ceramic is uniform compared to when manufactured using a normal ceramic manufacturing method, and the size and number of defects are also lower than that of normal ceramics. This is because the number is decreasing.

(実施例2) La (CO)sガス38vo1%、Ba(CJi)*
ガス2vo1%、Sr (Cz Hs )zガス3vo
1%、Cu、 (CHa )*ガス1lvo1%。
(Example 2) La (CO)s gas 38vo1%, Ba(CJi)*
Gas 2vo 1%, Sr (Cz Hs)z gas 3vo
1%, Cu, (CHa)*gas 1lvo1%.

およびNO,ガスを45vo1%の割合で混合し原料ガ
スとする。この原料ガスを用いて実施例1と同様な方法
で粉体を得た。粉体の平均粒径は0.11mであった。
and NO gas are mixed at a ratio of 45 vol 1% to obtain a raw material gas. Powder was obtained in the same manner as in Example 1 using this raw material gas. The average particle size of the powder was 0.11 m.

さらにこの粉体からセラミックスを得た。Furthermore, ceramics were obtained from this powder.

このセラミックスの超伝導転移温度は33 Kであった
The superconducting transition temperature of this ceramic was 33K.

(実施例3) La(1)La(CO)6ガス36vo1%、y(cu
a)*ガス4 vo1%、Ba (Cz Hs )xガ
ス3 vo1%、5r(CJs)zガスI 901%、
Cut(Cu3)*ガス1lvo1%、およびNO,ガ
スを45vo1%の割合で混合し原料ガスとする。この
原料ガスを用いて実施例1と同様な方法で粉体を得た。
(Example 3) La(1)La(CO)6 gas 36vo1%, y(cu
a) *Gas 4 vo1%, Ba (Cz Hs) x Gas 3 vo1%, 5r(CJs)z Gas I 901%,
Cut (Cu3)*gas 1lvo1% and NO gas are mixed at a ratio of 45vo1% to obtain a raw material gas. Powder was obtained in the same manner as in Example 1 using this raw material gas.

粉体の平均粒径は0.5−であった、さらにこの粉体が
ら、セラミックスを得た。このセラミックスの超伝導転
移温度は45°にであった。
The average particle size of the powder was 0.5-. Furthermore, ceramics were obtained from this powder. The superconducting transition temperature of this ceramic was 45°.

(実施例4) La(Co)sガス36vo1%、Y(CH3)、ガス
4vo1%、Ba (C2us Lガス3 vo1%、
Cut (CH3)zガス1lvo1%、およびNo、
ガスを40vo1%、F、ガスを5vo1%の割合で混
合し原料ガスとする。この原料ガスにF2エキシマレー
ザを照射して実施例1と同様な方法で粉体を得た。粉体
の平均粒径は5μsであった。さらにこの粉体から、セ
ラミックスを得た。このセラミックスの超伝導転移温度
は40°にであった。
(Example 4) La(Co)s gas 36vol%, Y(CH3) gas 4vo1%, Ba (C2us L gas 3vo1%,
Cut (CH3)z gas 1lvo1%, and No,
Gas is mixed at a ratio of 40vol%, F, and gas at 5vol% to obtain a raw material gas. This raw material gas was irradiated with F2 excimer laser to obtain powder in the same manner as in Example 1. The average particle size of the powder was 5 μs. Furthermore, ceramics were obtained from this powder. The superconducting transition temperature of this ceramic was 40°.

〔発明の効果〕〔Effect of the invention〕

このようにエキシマレーザを用いて得た粉体は、セラミ
ックスとして製作するために添加する微量元素が均一に
分散され、結晶粒径も細かい。このため焼結反応が均一
に起こり反応温度も低くすることができる。さらに得ら
れたセラミックスの微細構造は均一で欠陥も少なく、超
伝導になる臨界温度が高く、狭い温度幅にわたって転移
する優れた超伝導材料を得ることができる。
In powder obtained using an excimer laser in this way, trace elements added to produce ceramics are uniformly dispersed, and the crystal grain size is fine. Therefore, the sintering reaction occurs uniformly and the reaction temperature can also be lowered. Furthermore, the microstructure of the obtained ceramic is uniform and there are few defects, and the critical temperature for becoming superconducting is high, making it possible to obtain an excellent superconducting material that undergoes transition over a narrow temperature range.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の効果を示す比抵抗の特性図である。 代理人 弁理士 則 近 憲 佑 同  三俣弘文 The figure is a characteristic diagram of resistivity showing the effect of the present invention. Agent: Patent Attorney Noriyuki Chika Same as Hirofumi Mitsumata

Claims (4)

【特許請求の範囲】[Claims] (1)La(CO)_6ガス、Ba(C_2H_5)_
2ガス、Cu_2(CH_3)_2ガスおよびNO_2
ガスを混合した原料ガスをキャリヤガスとしてのArガ
スに混合したガスにエキシマレーザを照射し、(La1
−xBax)_2CuO_4の粉体からなる超伝導材料
の製造方法。
(1) La(CO)_6 gas, Ba(C_2H_5)_
2 gas, Cu_2(CH_3)_2 gas and NO_2
An excimer laser is irradiated on the raw material gas mixed with Ar gas as a carrier gas, and (La1
-xBax)_2CuO_4 A method for producing a superconducting material made of powder.
(2)特許請求の範囲第1項記載のものにおいて、前記
生成物が0.5〜5μmの平均粒径の粉体であることを
特徴とする超伝導材料の製造方法。
(2) A method for producing a superconducting material according to claim 1, wherein the product is a powder having an average particle size of 0.5 to 5 μm.
(3)特許請求の範囲第2項記載のものにおいて、原料
ガスに更に、Sr(C_2H_5)_2、Y(CH_3
)_3、F_2のうちいずれか一種類以上を加えて合成
した粉体がSr、Y、Fのうちいずれか一種類以上を含
むことを特徴とする超伝導材料の製造方法。
(3) In the product described in claim 2, the raw material gas further contains Sr(C_2H_5)_2, Y(CH_3
) A method for producing a superconducting material, characterized in that the powder synthesized by adding one or more of Sr, Y, and F contains one or more of Sr, Y, and F.
(4)特許請求の範囲第3項記載のものにおいて、照射
するエキシマレーザがF_2あるいはArFレーザであ
ることを特徴とする超伝導材料の製造方法。
(4) A method for manufacturing a superconducting material according to claim 3, characterized in that the excimer laser to be irradiated is an F_2 or ArF laser.
JP6250587A 1987-03-19 1987-03-19 Production of superconductive material Pending JPS63230522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6250587A JPS63230522A (en) 1987-03-19 1987-03-19 Production of superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6250587A JPS63230522A (en) 1987-03-19 1987-03-19 Production of superconductive material

Publications (1)

Publication Number Publication Date
JPS63230522A true JPS63230522A (en) 1988-09-27

Family

ID=13202098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6250587A Pending JPS63230522A (en) 1987-03-19 1987-03-19 Production of superconductive material

Country Status (1)

Country Link
JP (1) JPS63230522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064517A (en) * 1989-01-18 1991-11-12 Idemitsu Kosan Company Limited Method for the preparation of fine particulate-metal-containing compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064517A (en) * 1989-01-18 1991-11-12 Idemitsu Kosan Company Limited Method for the preparation of fine particulate-metal-containing compound

Similar Documents

Publication Publication Date Title
US4017319A (en) Si3 N4 formed by nitridation of sintered silicon compact containing boron
Sarin Morphological changes occurring during reduction of WO 3
US4031177A (en) Process for the manufacture of articles of translucent alumina
JPS61107609A (en) Manufacture of high frequency dielectric porcelain
US4859224A (en) Method of manufacturing glass or ceramic bodies
US4040848A (en) Polycrystalline silicon articles containing boron by sintering
JPH02282442A (en) Aluminide structure
JPH04305076A (en) Production of cordierite honeycomb structural body
JPH05193943A (en) Method for preparing reduced titanium oxide
JPS63230522A (en) Production of superconductive material
JPS63277567A (en) Sintered aluminum nitride having high thermal conductivity
EP0207367A1 (en) Catalyst for purifying exhaust gas
JPH0585814A (en) Production of cordierite honeycomb structure
JPS62288167A (en) Manufacture of silicon carbide sintered body
JPH0353501A (en) Varistor material and manufacture thereof
US3459564A (en) High density alumina and method for producing it
US4217139A (en) Process of preparing an electrical contact material
Higgins et al. Oxygenation kinetics and superconductivity of partly substituted YBa2Cu3Ox
JP2846375B2 (en) Aluminum nitride powder and method for producing the same
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP4102874B2 (en) Fabrication of porous silicon carbide porous material by pulse electric current sintering of pyrolysis rice husk
JPH05330919A (en) Silicon nitride-based sintered compact and its production
JPH0572721B2 (en)
Fujikawa et al. Atmosphere Control in the HIP treatment of Ceramics
US5965802A (en) NOx sensor for exhaust gas, and process for producing the same