JPS6323004B2 - - Google Patents

Info

Publication number
JPS6323004B2
JPS6323004B2 JP54090978A JP9097879A JPS6323004B2 JP S6323004 B2 JPS6323004 B2 JP S6323004B2 JP 54090978 A JP54090978 A JP 54090978A JP 9097879 A JP9097879 A JP 9097879A JP S6323004 B2 JPS6323004 B2 JP S6323004B2
Authority
JP
Japan
Prior art keywords
patch
guard bar
door
door guard
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54090978A
Other languages
Japanese (ja)
Other versions
JPS5617719A (en
Inventor
Hiroshi Nosho
Nobutoshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9097879A priority Critical patent/JPS5617719A/en
Publication of JPS5617719A publication Critical patent/JPS5617719A/en
Publication of JPS6323004B2 publication Critical patent/JPS6323004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、自動車の側面衝突時、ドアの変形
を防止し車室空間を確保するために、ドアアウタ
パネルとドアインナパネルとの間に取り付けられ
るドアガードバーに関する。 ドアガードバーGは、第1図及び第2図に示す
ように、車体Bの側面に位置するドアDのドアア
ウタパネル5とドアインナパネル6との間に車体
前後方向に沿つて取り付けられ、側面衝突時に所
定の曲げ強度を発揮して衝撃エネルギを吸収し、
乗員の安全を確保するものである。このようなド
アガードバーGは、基本的には適当な山数のハツ
ト断面構造を有するビーム1と、このビーム1の
中央部に取り付けられ、ビーム1に形成された山
部とによつて略矩形断面を形成するパツチ3とか
ら構成されているが、これらのビーム1やパツチ
3の素材としてSP材等を用いると、所定の曲げ
強度を確保するために、ビーム1に形成した山部
の高さや横巾(約25〜35mm程度)に対してビーム
1やパツチ3の板厚(約1.2〜3.0mm程度)を比較
的大きくとる必要が生じ、ドアガードバーG自体
の重量が嵩んで車体重量が大きくなる原因にな
る。 そこで、従来においては、この種のドアガード
バーGの代表的なものとして、第2図及び第3図
に示すように、ビーム1やパツチ3の素材として
強度の高い高張力鋼板を採用し、ビーム1やパツ
チ3の板厚tb,tpを薄くして軽量化を図ると共
に、ビーム1には、二山のハツト断面構造となる
ように、その長手方向に沿つて横断面略コ字状の
二条の山部2を形成し、又、ビーム1の中央部表
側には平板状のパツチ3を溶接によつて取り付
け、このパツチ3とビーム1の山部2とによつて
二つの略矩形断面部分を形成し、更に、ビーム1
の両端部には、絞り成形が容易で、かつ、取付作
業時にドアアウタパネル5あるいはドアインナパ
ネル6と容易に溶接できるように、軟鋼で形成し
たブラケツト7を溶接して取り付けたものがあ
る。(例えば実開昭52−48213号公報) しかしながら、このような従来のドアガードバ
ーGにおいては、このドアガードバーGに対して
矢印A方向から衝撃荷重が加えられると、その両
端部が固定されているために第2図において仮想
線で示すように中央部が変形し、第3図に示すよ
うに構造上主として曲げ強度を保証している略矩
形断面の略中央を上下方向に仕切る中心線Oより
も左側部分において圧縮荷重の作用を受け、又、
右側部分において引張荷重の作用を受けることに
なる。このため、ビーム1の山部2の高さhbや横
巾bbをそのままにして単純にビーム1やパツチ3
の板厚tb,tpのみを薄くすると、圧縮荷重の作用
を受ける中心線Oの左側部分において薄肉構造特
有の壁面座屈が起り、荷重一変位曲線においてピ
ーク荷重を示す変位点Pを経過した後の荷重の低
下が著しく、側面衝突時に衝撃エネルギの吸収量
が不足してドアDが大変形を起し、乗員の安全を
確保し得なくなつてくる。尚、図中bpはパツチ3
とビーム2との溶接間距離を示している。 この関係を第4図及び第5図に基づいて説明す
ると、ドアガードバーG単体の場合における荷重
一変位曲線は、その板厚tb,tpが比較的厚いに場
合には第4図に実線で示すようになり、ピーク荷
重を示す変位点Pを経過後にしだいに荷重が低下
する。ところが、高張力鋼板を用いてピーク荷重
の値を確保しながら単純に板厚tb,tpのみ薄くす
ると、破線で示すように、ピーク荷重を示す変位
点Pはほぼ同じであるが、この変位点Pを経過し
た後における荷重の低下が急激となつて、斜線で
示す部分の面積に相当するだけの衝撃エネルギの
吸収量が不足することになる。この関係は、第5
図に示すように、ドアガードバーGを車体Bに組
み込んだ場合においてもほぼ同様の傾向を示し、
斜線で示す部分の面積に相当するだけの衝撃エネ
ルギの吸収量が不足することになる。 ところで、薄肉構造特有の壁面座屈について考
察してみると、板巾bに対して板厚tが薄くなれ
ばなるほど、又、高張力鋼板を使用することによ
つて材料の降伏点が上がれば上がるほど、材料は
壁面座屈を起し易くなることが理解され、又、壁
面座屈を起すということは、材料が降伏する前に
変形してしまうことで、期待しただけの荷重特性
が得られず、材料の性質を充分に生かしきつてい
ないことを意味する。 本発明者等は、かかる観点の下に、ビームやパ
ツチの素材として高張力鋼板を使用し、これらの
板厚を薄くして軽量化を図つても壁面座屈を起す
ことがなく、所定の曲げ強度を確保し、かつ、多
くの衝撃エネルギを吸収することができる断面形
状について長年研究し、以下の実験結果よりパツ
チには山部の横巾と略同じ横巾をもつて当該山部
と対応する位置に当該山部内に嵌合する段部を形
成し、当該山部と段部とで略矩形断面を構成する
ことによつてこのパツチの横巾を実質的に小さく
し、高張力鋼材の性質を最大限に生かすことがで
きる断面形状に到達したものである。 〔実験例〕 壁面座屈を起さないような断面形状として、第
6図イに示すように、一山のハツト断面構造を有
するビーム1の山部2内にパツチ3に形成した段
部4を嵌め込んで山部2と段部4とで略矩形断面
を構成してビーム1とパツチ2との間を溶接によ
り取り付けた基本断面構造を設定し、圧縮荷重を
受ける部位における板巾と板厚との関係、即ちビ
ーム1の山部2の高さhbに対する板厚tbの比tb
hb及びパツチ3の段部4の横巾bpに対する板厚tp
の比tp/bpを夫々変動させ、ピーク荷重を示す変
位点後において荷重の急激な低下を防止できる条
件について検討し、第6図ロに示すような従来の
平板状パツチ3を用いた断面形状のものと比較検
討した結果は次表の通りであつた。尚、平板状パ
ツチ3はビーム2と溶接された位置でのみ拘束さ
れているので、第6図イに示す段部の横巾bpに相
当する寸法は第6図ロでは上記パツチ3とビーム
2との溶接間距離となる。次表において、〇印は
壁面座屈を起すことなくピーク荷重を示す変位点
後に急激な荷重の低下がみられなたつたものを示
し、×印は壁面座屈を起し急激な荷重の低下がみ
られたものを示し、△印はこれらの過渡的な段階
にあると思われるものを示す。
The present invention relates to a door guard bar that is attached between a door outer panel and a door inner panel in order to prevent the door from deforming and secure a vehicle interior space in the event of a side collision of an automobile. As shown in FIGS. 1 and 2, the door guard bar G is installed along the longitudinal direction of the vehicle body between the door outer panel 5 and the door inner panel 6 of the door D located on the side surface of the vehicle body B, and At times, it exhibits a certain bending strength and absorbs impact energy.
This is to ensure the safety of the passengers. Such a door guard bar G is basically formed into a substantially rectangular shape by a beam 1 having a hat cross-sectional structure with an appropriate number of ridges, and a ridge formed in the beam 1, which is attached to the center of the beam 1. When SP material is used as the material for these beams 1 and patches 3, the height of the peaks formed on the beam 1 must be increased to ensure a specified bending strength. It becomes necessary to make the thickness of the beam 1 and patch 3 relatively large (about 1.2 to 3.0 mm) relative to the width of the sheath (about 25 to 35 mm), which increases the weight of the door guard bar G itself and reduces the weight of the vehicle. It causes it to get bigger. Therefore, in the past, as a typical example of this type of door guard bar G, as shown in Figs. In addition to reducing the weight by reducing the plate thicknesses t b and t p of the beam 1 and the patch 3, the beam 1 has a substantially U-shaped cross section along its longitudinal direction so that it has a double-hat cross-sectional structure. In addition, a flat patch 3 is attached to the front side of the central part of the beam 1 by welding, and the patch 3 and the peak part 2 of the beam 1 form two approximately rectangular shapes. forming a cross-sectional portion, and further forming a beam 1
A bracket 7 made of mild steel is welded to both ends of the bracket 7 so that it can be easily drawn and welded to the door outer panel 5 or the door inner panel 6 during installation. (For example, Japanese Utility Model Application No. 52-48213) However, in such a conventional door guard bar G, when an impact load is applied to the door guard bar G from the direction of arrow A, both ends thereof are fixed. Therefore, the center part is deformed as shown by the imaginary line in Fig. 2, and as shown in Fig. 3, the center part is deformed from the center line O that vertically divides the approximate center of the approximately rectangular cross section, which mainly guarantees bending strength in terms of structure, as shown in Fig. 3. is also affected by compressive load on the left side, and
The right side part will be subjected to the action of a tensile load. Therefore, the height h b and the width b b of the crest 2 of the beam 1 are simply changed to the beam 1 and the patch 3.
When only the plate thicknesses t b and t p of the plate are made thinner, wall buckling peculiar to thin-walled structures occurs on the left side of the center line O, which is subjected to compressive load, and the wall surface buckling occurs, which is characteristic of thin-walled structures, and the plate passes the displacement point P indicating the peak load on the load-displacement curve. After the collision, the load decreases significantly, and in the event of a side collision, the amount of impact energy absorbed is insufficient, resulting in large deformation of the door D, making it impossible to ensure the safety of the occupants. In addition, b p in the figure is patch 3
The distance between welding and beam 2 is shown. To explain this relationship based on FIGS. 4 and 5, the load-displacement curve in the case of a single door guard bar G is shown as a solid line in FIG . The load gradually decreases after passing the displacement point P indicating the peak load. However, if we simply reduce the plate thicknesses t b and t p using high-strength steel plates while ensuring the peak load value, the displacement point P indicating the peak load is almost the same, as shown by the broken line, but this After passing the displacement point P, the load decreases rapidly, and the absorption amount of impact energy corresponding to the area of the shaded portion becomes insufficient. This relationship is the fifth
As shown in the figure, almost the same tendency is observed when the door guard bar G is incorporated into the vehicle body B.
The amount of absorption of impact energy corresponding to the area of the shaded portion is insufficient. By the way, if we consider the wall buckling characteristic of thin-walled structures, the thinner the plate thickness t is relative to the plate width b, and the higher the yield point of the material is by using high-tensile steel plates. It is understood that the higher the height, the more likely the material is to cause wall buckling, and that wall buckling means that the material deforms before it yields, which means that the expected load characteristics are not obtained. This means that the properties of the material are not fully utilized. Based on this viewpoint, the present inventors used high-strength steel plates as materials for beams and patches, and even if they tried to reduce the weight by thinning these plates, wall buckling would not occur and the specified level could be achieved. After many years of research into cross-sectional shapes that can ensure bending strength and absorb a large amount of impact energy, the following experimental results show that the patch should have a width that is approximately the same as the width of the crest, and that By forming a stepped portion that fits within the peak at the corresponding position, and forming a substantially rectangular cross section with the peak and the stepped portion, the width of the patch is substantially reduced, and the patch is made of high-strength steel. We have achieved a cross-sectional shape that can make the most of its properties. [Experimental Example] As a cross-sectional shape that does not cause wall buckling, a step portion 4 is formed in a patch 3 within a peak portion 2 of a beam 1 having a single-hat cross-sectional structure, as shown in Fig. 6A. A basic cross-sectional structure is set in which the peak part 2 and the step part 4 form a substantially rectangular cross section, and the beam 1 and the patch 2 are attached by welding. The relationship with the thickness, that is, the ratio of the plate thickness t b to the height h b of the peak 2 of the beam 1 t b /
h b and the plate thickness t p relative to the width b p of the stepped portion 4 of the patch 3
By varying the ratio t p /b p respectively, we investigated the conditions under which a sudden drop in load could be prevented after the displacement point indicating the peak load, and used a conventional flat patch 3 as shown in Figure 6 (b). The results of a comparative study with cross-sectional shapes are shown in the table below. In addition, since the flat patch 3 is restrained only at the position where it is welded to the beam 2, the dimension corresponding to the width b p of the step shown in FIG. This is the distance between welds with 2. In the following table, the 〇 mark indicates a case where a sudden drop in load is not observed after the displacement point where the peak load occurs without causing wall buckling, and the × mark indicates a sudden drop in load due to wall buckling. △ indicates those that are considered to be in a transitional stage.

【表】 この実験の結果、第6図イに示す基本断面構造
において、壁面座屈を起すことなくピーク荷重を
示す変位点後に急激な荷重の低下を起さない条件
として、ビーム1の山部2についてはtb/hb
0.046、パツチ3の段部4についてはtp/bp
0.027という条件が必要であることが判明した。
又、tb/hbを小さくすると衝撃エネルギの吸収特
性が悪くなり、tp/bpを小さくするとピーク荷重
が低下するという傾向がみられた。 更に、パツチ3の段部4における高さhpと板厚
tpとの関係は、種々検討した結果、少くとも高さ
hpが板厚tpの3倍以上必要である。このように、
段部4の高さhpの高さhpが少なくとも板厚tpの3
倍必要になるのは、この段部4が壁面座屈を押え
るために形成されるものであるから、第7図イに
示すように段部4にほぼ完全な高さ方向の壁が形
成されることが望ましく、しかも、高張力鋼板の
場合には板の伸びが悪いために段部4の曲げ半径
を考えた場合に、板の内側半径riで板厚tp程度必
要であり、かつ、板の外側半経rpで板厚tpの2倍
程度必要になるためである。もし、第7図ロに示
すように、段部4の高さhpが板厚tpの2倍程度し
かない場合には、段部4に高さ方向の壁を形成す
ることができず、この段部4が壁面座屈を押える
ために充分な機能を発揮し得ない。しかしなが
ら、段部4の高さhpをあまり大きくとると、ビー
ム1の山部2とによつて形成される矩形断面部分
の断面係数が低下し、曲げ強度上不利になるた
め、段部4の高さhpは3tp≦hp≦5tpが望ましい。 〔実施例〕 第8図及び第9図に示す第一実施例において、
ドアガードバーGは、ビーム1及びパツチ3の素
材として高張力鋼板を採用し、ビーム1には、二
山のハツト断面構造となるように、その長手方向
に沿つて横断面コ字状の二条の山部2を形成し、
このビーム1の中央部表側にはパツチ3を溶接に
よつて取り付け、このパツチ3には山部2の横巾
と略同じ横巾をもつて当該上部2と対応する位置
に段部4を形成し、この段部4を山部2の内側に
嵌め込むようにビーム1側に突出させ、更に、ビ
ーム1の両端部には夫夫軟鋼材で絞り成形したブ
ラケツト7を溶接によつて取り付けてなるもので
ある。このため、山部2と段部4とで略矩形断面
が形成され、山部2の立上り部2aと段部4の立
上り部4aとが略同じ位置にあることになる。 この第一実施例において、ビーム1は、その山
部2の高さhbに対する板厚tbの比tb/hbが0.046と
なるように形成され、又、パツチ3については、
その段部4の横巾bpに対する板厚tpの比tp/bp
0.027となるように形成すると共に、段部4の高
さhpが板厚tpの3倍となるように形成されてい
る。 この第一実施例に係るドアガードバーGについ
て、荷重一変位曲線を描いてみた結果は、第4図
に実線で示す場合とほぼ同様の傾向を示し、上記
実験例で得られた結果が二山のハツト断面構造を
有するビーム1に対しても適用し得ることがわか
つた。従つて、ドアガードバーGに衝撃荷重が加
わると、ビーム1のパツチ3側の部位及びパツチ
3に圧縮荷重が加わるが、山部2と段部4とで略
矩形断面を構成していることから山部2の立上り
部2aと段部4の立上り部4aとが同じ位置にあ
るので、両立上り部2a,4aが組合わされ共働
して圧縮荷重に対抗することになる。そして、ビ
ーム1及びパツチ3相互の板厚等が最適条件に定
められているので、上記立上り部2a,4aと相
まつて壁面座屈を生じる事態が防止される。 又、第10図イに示すように、従来のドアガー
ドバーGのドアD内部への取り付けは、できるだ
けドアD全体の厚みを薄くして車室内空間を広く
する必要から、ドアアウタパネル5とパツチ3と
の間の間隙dが可能な限り小さくなるようにされ
ていた。このため、ドアDの電着塗装工程におい
て防錆塗料がこの間隙d内に侵入しづらく、防錆
塗料にむらが生ずる場合があつたほか、間隙d内
には雨水等が溜り易くて発錆し易いという不具合
があつたが、上記第一実施例のドアガードバーG
によれば、ドアアウタパネル5に接近させてドア
ガードバーGを取り付けても、パツチ3に形成さ
れた段部4の部分において間隙dが大きくなり、
電着塗装工程の際に防錆塗料が間隙d内にむらな
く行きわたり、又、雨水等も溜りにくくなつてこ
の間隙d内の発錆を防止できる。更に、第10図
イに示す従来構造のドアガードバーGにおいて
は、間隙dが小さいためにドアアウタパネル5に
アクセントライン8を設定することが困難であつ
たが、この第一実施例のドアガードバーGによれ
ば、第10図ハに示すように、パツチ3に形成し
た段部4とアクセントライン8とを対応させるこ
とにより、ドアアウタパネル5にアクセントライ
ン8を設定することが可能になり、ドアアウタパ
ネル5の剛性を向上させることができる。 次に、第11図に示す第二実施例においては、
上記第一実施例の場合と同様にパツチ3の段部4
がビーム1側に突設されているが、この段部4の
中間部に段部4の突出方向とは逆方向に突出する
突起部9を形成し、ドアD内にこのドアガードバ
ーGを組み付けたときにパツチ3ができるだけド
アアウタパネル5に接近して効率良く衝撃荷重を
吸収できるようにしているものである。この第二
実施例の場合においても、荷重一変位曲線におい
てピーク荷重を示す変位点経過後の荷重の低下を
防止することができる。また、突起部9は複数個
設けても良い。 以上の通り、この発明のドアガードバーは、パ
ツチにはビームの山部の横巾と略同じ横巾をもつ
て当該山部と対応する位置に当該山部内に嵌合す
る段部を形成し、当該山部と段部とで略矩形断面
を構成すると共に、山部と段部の板厚等を最適条
件に定めて衝突時にパツチが壁面座屈を起すのを
防止するようにしたから、ビーム及びパツチの素
材として高張力鋼板を採用し、これらの板厚を薄
くし、従来と同様の曲げ強度及び衝撃エネルギ吸
収性能を確保しつつ軽量化を達成できる。又、高
張力鋼板のように強度の高い材料を使用すれば、
ビームの山部の高さを小さくし、板厚を薄くする
ことができるので、ドア全体の厚みを従来よりも
更に薄くすることが可能であり、これによつて車
室内空間を広くすることができる。更に、ビーム
の山部の高さを小さくすることができるというこ
とは、このビームの両端部に取り付けられるブラ
ケツトの絞り加工が楽になり、その分だけブラケ
ツトを強度の高い材料で成形することができるほ
か、山部の高さが充分小さい場合にはビームの両
端部に直接絞り加工を施してブラケツトを廃止す
ることも可能である。
[Table] As a result of this experiment, in the basic cross-sectional structure shown in Figure 6A, the condition that the load does not drop suddenly after the displacement point at which the peak load occurs without wall buckling is determined at the crest of beam 1. For 2, t b /h b
0.046, for step 4 of patch 3, t p /b p
It turns out that the condition of 0.027 is necessary.
Furthermore, there was a tendency that as t b /h b became smaller, the impact energy absorption characteristics deteriorated, and as t p /b p became smaller, the peak load decreased. Furthermore, the height h p and the plate thickness at the stepped portion 4 of the patch 3
As a result of various studies, we found that the relationship between t and p is at least
h p must be at least three times the plate thickness t p . in this way,
The height h p of the stepped portion 4 is at least 3 of the plate thickness t p
This is necessary since the step 4 is formed to suppress wall buckling, so the step 4 has an almost complete height wall formed as shown in Fig. 7A. Moreover, in the case of high-tensile steel plates, the plate does not elongate well, so when considering the bending radius of the stepped portion 4, it is necessary to have a plate thickness of about t p at the inner radius r i of the plate, and This is because the outer half warp r p of the plate requires approximately twice the plate thickness t p . If the height h p of the stepped portion 4 is only about twice the plate thickness t p , as shown in Fig. 7B, a wall in the height direction cannot be formed in the stepped portion 4. , this stepped portion 4 cannot exert a sufficient function to suppress wall buckling. However, if the height h p of the step portion 4 is too large, the section modulus of the rectangular cross section formed by the peak portion 2 of the beam 1 will decrease, which will be disadvantageous in terms of bending strength. The height h p is preferably 3t p ≦h p ≦5t p . [Example] In the first example shown in FIGS. 8 and 9,
The door guard bar G uses high-tensile steel plates as the material for the beam 1 and the patch 3, and the beam 1 has two stripes with a U-shaped cross section along its longitudinal direction so that it has a double-hat cross-sectional structure. Forming the mountain part 2,
A patch 3 is attached to the front side of the central part of this beam 1 by welding, and a stepped part 4 is formed on this patch 3 at a position corresponding to the upper part 2 with approximately the same width as the width of the peak part 2. This stepped portion 4 is fitted into the inside of the peak portion 2 so as to protrude toward the beam 1 side, and furthermore, brackets 7 drawn and formed from a soft steel material are attached to both ends of the beam 1 by welding. It is what it is. Therefore, the peak portion 2 and the step portion 4 form a substantially rectangular cross section, and the rising portion 2a of the peak portion 2 and the rising portion 4a of the step portion 4 are located at substantially the same position. In this first embodiment, the beam 1 is formed such that the ratio t b /h b of the plate thickness t b to the height h b of the peak portion 2 is 0.046, and the patch 3 is as follows:
The ratio of the plate thickness t p to the width b p of the stepped portion 4 is t p /b p
0.027, and the height h p of the stepped portion 4 is three times the plate thickness t p . The results of drawing a load-displacement curve for the door guard bar G according to the first embodiment show almost the same tendency as shown by the solid line in FIG. It has been found that the present invention can also be applied to a beam 1 having a hat cross-sectional structure. Therefore, when an impact load is applied to the door guard bar G, a compressive load is applied to the part of the beam 1 on the patch 3 side and the patch 3, but since the peak part 2 and the step part 4 form a substantially rectangular cross section, Since the rising portion 2a of the mountain portion 2 and the rising portion 4a of the stepped portion 4 are located at the same position, both rising portions 2a and 4a are combined and work together to resist the compressive load. Since the mutual plate thicknesses of the beam 1 and the patch 3 are set to optimum conditions, wall buckling in combination with the above-mentioned rising portions 2a and 4a is prevented. Furthermore, as shown in FIG. 10A, when installing the conventional door guard bar G inside the door D, the door outer panel 5 and the patch 3 are required to make the overall thickness of the door D as thin as possible to increase the interior space of the vehicle. The gap d between the two is made as small as possible. For this reason, during the electrodeposition coating process for door D, it was difficult for the anti-corrosion paint to penetrate into the gap d, which sometimes caused unevenness in the anti-rust paint, and rainwater etc. easily accumulated in the gap d, causing rust. Although there was a problem that the door guard bar G of the first embodiment was
According to the above, even if the door guard bar G is attached close to the door outer panel 5, the gap d becomes large at the stepped portion 4 formed in the patch 3.
During the electrodeposition coating process, the anticorrosive paint is evenly distributed within the gap d, and rainwater and the like are less likely to accumulate, thereby preventing rust from forming within the gap d. Furthermore, in the door guard bar G of the conventional structure shown in FIG. According to the method, as shown in FIG. 10C, by matching the stepped portion 4 formed on the patch 3 with the accent line 8, it is possible to set the accent line 8 on the door outer panel 5, and the door outer panel It is possible to improve the rigidity of No. 5. Next, in the second embodiment shown in FIG.
As in the case of the first embodiment, the stepped portion 4 of the patch 3
is provided to protrude toward the beam 1 side, and a protrusion 9 is formed in the middle of this step 4 to protrude in the opposite direction to the protruding direction of the step 4, and this door guard bar G is assembled inside the door D. The patch 3 is arranged to be as close to the door outer panel 5 as possible to absorb the impact load efficiently. In the case of this second embodiment as well, it is possible to prevent the load from decreasing after the displacement point indicating the peak load in the load-displacement curve has passed. Further, a plurality of protrusions 9 may be provided. As described above, in the door guard bar of the present invention, the patch has a stepped portion having approximately the same width as the width of the crest of the beam and fitting into the ridge at a position corresponding to the ridge, The peak and the step form a substantially rectangular cross section, and the plate thickness of the peak and the step is set to optimal conditions to prevent the patch from buckling on the wall in the event of a collision. By using high-tensile steel plates as the material for the patch and the patch, the thickness of these plates can be reduced, making it possible to achieve weight reduction while ensuring the same bending strength and impact energy absorption performance as conventional ones. Also, if you use high-strength materials like high-strength steel plates,
By reducing the height of the peak of the beam and reducing the plate thickness, the overall thickness of the door can be made even thinner than before, thereby increasing the interior space of the vehicle. can. Furthermore, being able to reduce the height of the peaks of the beam makes it easier to draw the brackets attached to both ends of the beam, and the brackets can be made of stronger material. Additionally, if the height of the peak is sufficiently small, it is also possible to directly draw both ends of the beam and eliminate the bracket.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はドアガードバーを取り付けた車体の側
面図、第2図は第1図に示すドアを断面にして従
来のドアガードバーを示す説明図、第3図は第2
図の−線断面図、第4図は従来のドアガード
バーの板厚のみを単純に薄くしていつた場合にお
けるドアガードバー単体の荷重−変位曲線を示す
グラフ、第5図は第4図において用いたドアガー
ドバーを車体に組み込んだ場合の荷重−変位曲線
を示すグラフ、第6図イはこの発明のドアガード
バーにおいて採用された基本断面形状を示す説明
図、第6図ロは従来のドアガードバーの基本断面
形状を示す説明図、第7図イ,ロは第6図イの基
本断面形状における段部の拡大説明図、第8図は
この発明の第一実施例に係るドアガードバーの斜
視図、第9図は第8図の−線断面図、第10
図イは従来のドアガードバーのドア内部取付状態
を示す断面図、第10図ロは第一実施例に係るド
アガードバーのドア内部取付状態を示す断面図、
第10図ハはドアアウタパネルにアクセントライ
ンが設けられている場合の第10図ロと同様の断
面図、第11図は第二実施例に係るドアガードバ
ーの断面形状を示す断面図である。 1……ビーム、2……ビームの山部、3……パ
ツチ、4……パツチの段部、D……ドア、G……
ドアガードバー、hb……ビームの山部の高さ、tb
……ビームの板厚、bp……パツチの段部の横巾、
tp……パツチの板厚、hp……段部の高さ。
Figure 1 is a side view of a vehicle body with a door guard bar attached, Figure 2 is an explanatory diagram showing a conventional door guard bar with the door shown in Figure 1 in cross section, and Figure 3 is a side view of a vehicle body with a door guard bar attached.
Figure 4 is a graph showing the load-displacement curve of a single door guard bar when only the plate thickness of a conventional door guard bar is simply made thinner. A graph showing the load-displacement curve when the door guard bar is incorporated into the vehicle body. Figure 6A is an explanatory diagram showing the basic cross-sectional shape adopted in the door guard bar of this invention. Figure 6B is the basics of the conventional door guard bar. 7A and 7B are enlarged explanatory views of the stepped portion in the basic sectional shape of FIG. 6A, and FIG. Figure 9 is a sectional view taken along the - line in Figure 8, and Figure 10.
Figure A is a cross-sectional view showing the conventional door guard bar installed inside the door, and Figure 10B is a cross-sectional view showing the door guard bar installed inside the door according to the first embodiment.
FIG. 10C is a cross-sectional view similar to FIG. 10B when an accent line is provided on the door outer panel, and FIG. 11 is a cross-sectional view showing the cross-sectional shape of the door guard bar according to the second embodiment. 1...Beam, 2...Beam peak, 3...Patch, 4...Stepped part of patch, D...Door, G...
Door guard bar, h b ... Height of the peak of the beam, t b
...Thickness of the beam, b p ...Width of the stepped part of the patch,
t p ...Thickness of the patch, h p ...Height of the step.

Claims (1)

【特許請求の範囲】 1 適当な山数のハツト断面構造を有するビーム
1と、このビーム1の略中央部に取り付けられ、
ビーム1の山部2とによつて略矩形断面を形成す
るパツチ3とからなり、ドアD内部に配設されて
自動車の側面強度を向上させるドアガードバーG
において、上記パツチ3には山部2の横巾と略同
じ横巾bpをもつて当該山部2と対応する位置に山
部2内に嵌合する段部4を形成し、当該山部2と
段部4とで上記の矩形断面を構成すると共に、山
部2はその高さhbに対する板厚tbの比tb/hbを数
値0.046以上とし、かつ段部4はその横巾bpに対
する板厚tpの比tp/bpを数値0.027以上としたこと
を特徴とする自動車のドアガードバー。 2 段部4はその板厚tpに対する高さhpの比hp
tpを数値3以上としたことを特徴とする特許請求
の範囲第1項記載の自動車のドアガードバー。 3 パツチ3の段部4の中間部に、段部4の突出
方向とは逆方向に突出する突起部9を設けたこと
を特徴とする特許請求の範囲第1項又は第2項記
載の自動車のドアガードバー。
[Claims] 1. A beam 1 having a cross-sectional structure with a hat having an appropriate number of peaks;
A door guard bar G is formed of a patch 3 that forms a substantially rectangular cross section with a peak part 2 of a beam 1, and is disposed inside a door D to improve the side strength of the automobile.
In the patch 3, a stepped portion 4 having a width b p that is approximately the same as the width of the ridge portion 2 and fitting into the ridge portion 2 is formed at a position corresponding to the ridge portion 2, and the step portion 4 is fitted into the ridge portion 2. 2 and the stepped portion 4 constitute the above-mentioned rectangular cross section, and the peak portion 2 has a ratio t b /h b of the plate thickness t b to its height h b of 0.046 or more, and the stepped portion 4 has a A door guard bar for an automobile, characterized in that the ratio t p /b p of the plate thickness t p to the width b p is 0.027 or more. 2 The step part 4 has a ratio of height h p to its plate thickness t p h p /
The door guard bar for an automobile according to claim 1, characterized in that t p is a numerical value of 3 or more. 3. The automobile according to claim 1 or 2, characterized in that a protrusion 9 is provided at an intermediate portion of the step 4 of the patch 3, the protrusion 9 projecting in a direction opposite to the direction in which the step 4 projects. door guard bar.
JP9097879A 1979-07-19 1979-07-19 Door guard bar for automobile Granted JPS5617719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9097879A JPS5617719A (en) 1979-07-19 1979-07-19 Door guard bar for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9097879A JPS5617719A (en) 1979-07-19 1979-07-19 Door guard bar for automobile

Publications (2)

Publication Number Publication Date
JPS5617719A JPS5617719A (en) 1981-02-19
JPS6323004B2 true JPS6323004B2 (en) 1988-05-14

Family

ID=14013598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9097879A Granted JPS5617719A (en) 1979-07-19 1979-07-19 Door guard bar for automobile

Country Status (1)

Country Link
JP (1) JPS5617719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356701U (en) * 1986-09-30 1988-04-15
JP2004520224A (en) * 2001-02-02 2004-07-08 エス・エス・アー・ベー・ハードテック・アクチエボラーグ Vehicle door inner panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356701U (en) * 1986-09-30 1988-04-15
JP2004520224A (en) * 2001-02-02 2004-07-08 エス・エス・アー・ベー・ハードテック・アクチエボラーグ Vehicle door inner panel

Also Published As

Publication number Publication date
JPS5617719A (en) 1981-02-19

Similar Documents

Publication Publication Date Title
US7631924B2 (en) Crash box for a vehicle
EP3197727B1 (en) Bumper-reinforcing system for motor vehicle
CN113825693B (en) Side sill part for a motor vehicle
KR100450311B1 (en) Vehicle side sill structure
US8641129B2 (en) Twelve-cornered strengthening member
US6371540B1 (en) Bumper beam for motor vehicles
KR0150591B1 (en) Impact bar of a car
EP2108568B1 (en) Structure for side portion of vehicle body
US20120256445A1 (en) Vehicle roof support pillar
JP2007523797A (en) Automotive bumper beam
EP1048530B1 (en) Bumper assembly for vehicles
KR19990083007A (en) Automobile door impact beam
JP2005178695A (en) Anti-collision reinforcing member for vehicle
US20240182116A1 (en) Vehicle body
JP4045846B2 (en) Impact energy absorbing member
US4413840A (en) Mechanism to control axial collapse of an open cross-section beam
JP2010195187A (en) Collision reinforcing material for vehicle
JP4015896B2 (en) Car body structural materials and anti-collision reinforcement
JP2001199292A (en) Bumper reinforcement
JPS6323004B2 (en)
JP3308719B2 (en) Bumper reinforcement
JP2023013373A (en) bumper reinforcement
JP3723289B2 (en) Guard beam for automobile door
US20240208446A1 (en) Bumper assembly with crossmember
KR20070071377A (en) Reinforced impact beam