JPS63229362A - Apparatus for measuring sound field characteristic of ultrasonic wave - Google Patents

Apparatus for measuring sound field characteristic of ultrasonic wave

Info

Publication number
JPS63229362A
JPS63229362A JP62062840A JP6284087A JPS63229362A JP S63229362 A JPS63229362 A JP S63229362A JP 62062840 A JP62062840 A JP 62062840A JP 6284087 A JP6284087 A JP 6284087A JP S63229362 A JPS63229362 A JP S63229362A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
sound field
scanner
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62062840A
Other languages
Japanese (ja)
Other versions
JP2512463B2 (en
Inventor
Shinichi Fukuda
真一 福田
Takeshi Terasawa
寺沢 健
Masaki Kajiyama
梶山 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62062840A priority Critical patent/JP2512463B2/en
Publication of JPS63229362A publication Critical patent/JPS63229362A/en
Application granted granted Critical
Publication of JP2512463B2 publication Critical patent/JP2512463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enhance measuring accuracy, by automating the measurement of a sound field by mounting an X-Y scanner to a probe holder or an ultrasonic wave reflecting body. CONSTITUTION:A probe 1 is driven to an initial position S to start a measurement. Ultrasonic beam is reflected by an ultrasonic wave reflecting body 3 to be detected by an ultrasonic flaw detector 5 and a central operation apparatus 6 stores an echo peak in a memory apparatus 7 through an A/D converter 10. The apparatus 6 indicates the driving of a pitch X1 to a scanner indication apparatus 9 on the basis of an inputted initial condition and an X-Y scanner is moved by X1 by a pulse motor 11-1. When the movement of a scanning range X2 in an X-direction is finished, a scanning range Y2 in a Y-direction is similarly moved to taken in and store data. The apparatus 6 performs the indicated imaging processing of the inputted data to display a processing result on a display apparatus 8. By this method, the sound field characteristic of the probe 1 can be measured with high accuracy. As a result, the discovery of the abnormality of the probe 1 at an early stage or the control of the deterioration state thereof can be easily performed and detection accuracy can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波探傷において使用する探触子によって
作られる音場の特性を測定する装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring the characteristics of a sound field created by a probe used in ultrasonic flaw detection.

〔従来の技術〕[Conventional technology]

超音波探傷による材料中の欠陥の検出特性は、探触子か
ら発した超音波ビームの音場特性に大きく影響される。
The detection characteristics of defects in materials by ultrasonic flaw detection are greatly influenced by the acoustic field characteristics of the ultrasonic beam emitted from the probe.

音場特性は、超音波媒質中のビームの強度分布等によっ
て表示され、水浸型探触子の場合は、水中に超音波反射
体を置き探触子から発し反射体で反射された超音波ビー
ムの反射エコー高さを測定して表示している。
Sound field characteristics are expressed by the intensity distribution of the beam in the ultrasonic medium, etc. In the case of a water immersion probe, an ultrasonic reflector is placed in the water and the ultrasonic waves are emitted from the probe and reflected by the reflector. The reflected echo height of the beam is measured and displayed.

このような音場特性は、探触子の振動子材質。These sound field characteristics depend on the transducer material of the probe.

形状や励振条件などによって異なり、また使用によって
も変化する。探触子の音場特性が変化すると、材料中の
欠陥の検出特性が変化するため、有害な材料欠陥が検出
できなかったり、無害な欠陥や欠陥以外からの信号や単
なるノイズを有害な欠陥とする等の誤検出が生じること
となる。
It varies depending on the shape, excitation conditions, etc., and also changes depending on use. When the sound field characteristics of the probe change, the detection characteristics of defects in the material change, so harmful material defects may not be detected, or harmless defects, signals from non-defects, or simple noise may be treated as harmful defects. This may result in erroneous detections such as

したがって、材料の超音波探傷を精度よく行うには、使
用する探触子の音場特性を測定し、その特性に適した条
件すなわち探触子の数、配置、探触子と材料の距離等を
設定する必要がある。また同一の探触子を使用していて
も、その音場特性を測定することにより適正な管理を行
うことが必要である。
Therefore, in order to conduct ultrasonic flaw detection of materials with high precision, it is necessary to measure the sound field characteristics of the probe used, and to set conditions suitable for the characteristics, such as the number of probes, their arrangement, the distance between the probe and the material, etc. need to be set. Furthermore, even if the same probe is used, it is necessary to perform appropriate management by measuring its sound field characteristics.

従来、超音波探触子の水中の音場を測定するには、水中
に探触子と超音波反射体を置き、この両者間の位置関係
を手動で変化させつつ、超音波ビームの反射エコー高さ
を測定し演算して表示していたので、測定点を多くとる
ことが出来ず、精度や表示方法に限界があり、また、測
定に長時間を要するという問題があった。
Conventionally, to measure the underwater sound field of an ultrasonic probe, the probe and ultrasonic reflector are placed in the water, and the positional relationship between the two is manually changed to detect the reflected echo of the ultrasonic beam. Since the height was measured, calculated, and displayed, there were problems in that it was not possible to take many measurement points, there were limits to accuracy and display methods, and it took a long time to measure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、超音波探触子の音場測定を自動化することに
より、高精度のデータを短時間で得て、しかも多様の表
示を可能とし、超音波探傷の精度を著しく向上させるこ
とを目的とする。
The present invention aims to significantly improve the accuracy of ultrasonic flaw detection by automating the sound field measurement of an ultrasonic probe to obtain highly accurate data in a short time and to enable various displays. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明装置の構成を第1図により説明する。探触子1を
保持する探触子ホルダー2と、探触子ホルダー2に対向
して位置させた超音波反射体3とが液中に配置されてい
る。探触子ホルダー2にはXYスキャナー4が取り付け
られ、X方向およびY方向にステップ状に移動可能にな
っている。探触子1には、探触子ホルダー2を介して超
音波探傷器5が接続され、超音波探傷器5はA/D変換
器】0を介して中央演算装置6に接続され、中央演算袋
@6は記憶装置7および表示装置8に接続されている。
The configuration of the device of the present invention will be explained with reference to FIG. A probe holder 2 holding a probe 1 and an ultrasonic reflector 3 positioned opposite to the probe holder 2 are arranged in the liquid. An XY scanner 4 is attached to the probe holder 2 and is movable in steps in the X and Y directions. An ultrasonic flaw detector 5 is connected to the probe 1 via a probe holder 2, and the ultrasonic flaw detector 5 is connected to a central processing unit 6 via an A/D converter. The bag @6 is connected to a storage device 7 and a display device 8.

また、中央演算装置6はスキャナー指示装置9に接続さ
れ、スキャナー指示装置9がパルスモータ−11を介し
てXYスキャナー4に接続されている。
Further, the central processing unit 6 is connected to a scanner instruction device 9, and the scanner instruction device 9 is connected to the XY scanner 4 via a pulse motor 11.

第1図は、探触子ホルダー2にXYスキャナー4を取り
付けたものを示したが、探触子ホルダー2を固定し、超
音波反射体3にXYスキャナー4を取り付けて探触子ホ
ルダー2を可動としても良い。超音波反射体3としては
、第1図に示した球状のもののほか探触子1に応じて円
板状のものは探触子1の中心軸に垂直にセットし、円柱
状のものは該中心軸に垂直または平行にセットする。
Although FIG. 1 shows the XY scanner 4 attached to the probe holder 2, the probe holder 2 is fixed and the XY scanner 4 is attached to the ultrasonic reflector 3. It may also be movable. As the ultrasonic reflector 3, in addition to the spherical one shown in FIG. Set perpendicular or parallel to the central axis.

A/D変換器10はデジタル型超音波深傷器を用いる場
合は不要である。記憶装置7としては、RAMやフロッ
ピーディスクなどがあり、表示装置8としては、CRT
ディスプレーやプリンターなどがある。スキャナー指示
装置9の指示によってXYスキャナー4を動かすには、
パルスモータ−11のほかサーボモーター等でもよい。
The A/D converter 10 is not necessary when using a digital ultrasonic wound instrument. The storage device 7 includes a RAM, a floppy disk, etc., and the display device 8 includes a CRT.
There are displays, printers, etc. To move the XY scanner 4 according to instructions from the scanner instruction device 9,
In addition to the pulse motor 11, a servo motor or the like may be used.

〔作用〕[Effect]

本発明装置の作用を第1図および第2図の例により説明
する。探触子名、深傷器名2反射体名。
The operation of the device of the present invention will be explained using the examples shown in FIGS. 1 and 2. Probe name, deep wound name 2 reflector name.

周波数2周波数帯域幅、深傷器のゲイン(感度)。Frequency 2 frequency bandwidth, deep wound gain (sensitivity).

スキャニング範囲(第1図のX2.Y2)、データ取込
みピッチ(第1図のXI、Yl) 、などの初期条件を
中央演算装置6に入力(初期条件人力ニステップ1;以
下、カッコ内ではステップという語を省略)すると、中
央演算装置6は、メモリクリアしく2)、探触子1を初
期位置Sに駆動しく初期位置移動=3)、測定開始する
(4)。
Initial conditions such as scanning range (X2, Y2 in Figure 1), data acquisition pitch (XI, Yl in Figure 1), etc. are input to the central processing unit 6 (initial conditions manual step 1; hereinafter, steps in parentheses are (omitted), the central processing unit 6 clears the memory 2), drives the probe 1 to the initial position S (initial position movement = 3), and starts measurement (4).

探触子1から発した超音波ビームが超音波反射体3で反
射されて探触子1を経て超音波探傷器5がこれを検知す
ると(データ取込み: 5)、A/D変換器10で反射
エコー高さをデジタルデータに変換しくA/D変m: 
6)、中央演′n4A置6がこれを読込んで記憶装置7
に記憶する(メモリ=7)。ついで、中央演算装置6は
、それに先に入力されている初期条件に基づいて、スキ
ャー指示装置9にピッチX1の駆動を指示し、装置9が
パルスモータ−11を付勢し、XYスキャナー4が探触
子1をX方向に所定のピッチX1だけ駆動(X軸移動=
8)する。中央演算装置6は、以下同様にして測定指示
と検知データの取り込みを行ない、検知データを記憶装
置6に記憶する(5〜9)6X方向スキヤニング範囲X
2の移動が終了すると(9)、中央演算装置6は9.指
示装置9およびXYスキャナー4を介して探触子1をY
方向に所定のピッチY2だけ駆動しくY軸移動: 10
) 、 X軸方向の移動方向を前回とは逆に切り換えて
(11)、以下同様にしてX軸移動しつつデータを取り
込み記憶装置7に記憶する(5〜8)。Y方向スキャニ
ング範囲Y2の移動が終了すると測定終了となり(12
)、ファイル(−探触子の測定データにファイル名付け
)を行い(16,17)、記憶装置7に記憶する(17
)。
When the ultrasonic beam emitted from the probe 1 is reflected by the ultrasonic reflector 3 and detected by the ultrasonic flaw detector 5 after passing through the probe 1 (data acquisition: 5), the A/D converter 10 detects the ultrasonic beam. A/D conversion to convert reflected echo height into digital data:
6), the central processing unit 4A 6 reads this and stores it in the storage device 7.
(memory = 7). Next, the central processing unit 6 instructs the scan instruction device 9 to drive the pitch X1 based on the initial conditions previously input to it, the device 9 energizes the pulse motor 11, and the XY scanner 4 Drive probe 1 in the X direction by a predetermined pitch X1 (X-axis movement =
8) Do. The central processing unit 6 subsequently similarly takes in measurement instructions and detection data, and stores the detection data in the storage device 6 (5 to 9) 6X direction scanning range X
When the movement of 9.2 is completed (9), the central processing unit 6 moves 9.2. The probe 1 is moved to Y via the indicating device 9 and the
Y-axis movement by a predetermined pitch Y2 in the direction: 10
), the moving direction in the X-axis direction is switched to the opposite direction from the previous time (11), and data is captured and stored in the storage device 7 while moving in the same manner on the X-axis (5 to 8). The measurement ends when the movement of the Y direction scanning range Y2 is completed (12
), file (-file name for probe measurement data) (16, 17), and store in storage device 7 (17)
).

探触子1を別の探触子に取り替えて該探触子の測定を行
う場合(18=N)は、初期条件入力(1)を行い前記
と同様にして測定する(1〜18)。
When replacing the probe 1 with another probe and measuring the probe (18=N), initial conditions are input (1) and measurements are carried out in the same manner as described above (1 to 18).

所要全探触子の測定を終了するなど、測定をしていない
ときには、中央演算装置6はステップ19〜21の映像
化処理を行なう。すなわち、ファイル名が入力されると
(19)、中央演算装置6は、入力されたファイル名が
記憶装置7にあるかをチェックしく20)、それがある
と、該ファイル名の、記憶装置7に記憶されたデータを
呼び出しく21)、入力により指定された映象化処理を
選択して(22)、呼び出したデータに該選択した映像
化処理を施して(23)表示装置8に表示する(23)
When measurements are not being performed, such as when measurements are completed for all required probes, the central processing unit 6 performs imaging processing in steps 19 to 21. That is, when a file name is input (19), the central processing unit 6 checks whether the input file name exists in the storage device 7 (20), and if it exists, it stores the file name in the storage device 7 (20). 21), selects the visualization process specified by the input (22), performs the selected visualization process on the recalled data (23) and displays it on the display device 8. (23)
.

測定結果の表示として、例えば第3図に示すような三次
元表示の音場プロフィール、第4図に示すような二次元
表示の音場断面図、第5図に示すような水中距離特性お
よび有効ビーム幅、第6図に示すような水中音場横持性
図などが可能であり、前記映像化処理(23)において
、中央演算装置6は、これらの内の、入力で指定された
1つの処理を実行する。これらはCRTディスプレーで
なる表示装置8に表示される。なお、表示装置8に変え
て又はそれと共にプリンターに表示するようにしてもよ
い。
Measurement results can be displayed, for example, with a three-dimensional sound field profile as shown in Figure 3, a two-dimensional sound field cross-sectional view as shown in Figure 4, and underwater distance characteristics and effectiveness as shown in Figure 5. The beam width, the underwater sound field transversal diagram as shown in FIG. Execute processing. These are displayed on a display device 8 consisting of a CRT display. Note that the information may be displayed on the printer instead of or together with the display device 8.

〔実施例〕〔Example〕

周波数: 2MHz、周波数帯域幅:N、B、(狭帯域
)。
Frequency: 2MHz, frequency bandwidth: N, B, (narrow band).

振動寸法:10X10os、振動子材質:ジルコン・チ
タン酸鉛系磁器、のフラット型探触子について、探傷器
分解能:1.パルスエネルギー:MAX、リジェクショ
ン:Off、感度: 26dbの条件で、直径二8.0
mの球状の超音波反射板を使用し、スキャニング範囲を
X方向:0.O5nm、Y方向:2mmとして、X方向
のデータ数:280個、Y方向のライン数=90本で、
音場特性を測定した。
Vibration dimension: 10X10os, transducer material: zircon/lead titanate porcelain, flat type probe, flaw detector resolution: 1. Pulse energy: MAX, rejection: Off, sensitivity: 26db, diameter 28.0
Using a spherical ultrasonic reflector of m, the scanning range is set in the X direction: 0. Assuming O5 nm, Y direction: 2 mm, number of data in X direction: 280 pieces, number of lines in Y direction = 90,
The sound field characteristics were measured.

測定結果の音場プロフィール(三次元表示)を第3図に
、音場断面図を第4図に、水中距離特性および有効ビー
ム幅を第5図に、Y方向位置=38Iにおける水中音場
横持性図を第6図にそれぞれ示す。これらの測定結果よ
り、探触子の音場特性を正確に認識し得る。
The sound field profile (three-dimensional display) of the measurement results is shown in Figure 3, the cross-sectional view of the sound field is shown in Figure 4, the underwater distance characteristics and effective beam width are shown in Figure 5, and the horizontal underwater sound field at the Y direction position = 38I. The retention diagrams are shown in Figure 6. From these measurement results, the sound field characteristics of the probe can be accurately recognized.

〔発明の効果〕〔Effect of the invention〕

本発明法により、超音波探触子の音場特性が高精度でか
つ高能率で測定でき、しかも各種ニーズに即した各種の
方式により表示できる。
According to the method of the present invention, the sound field characteristics of an ultrasonic probe can be measured with high accuracy and efficiency, and can be displayed using various methods that meet various needs.

したがって、各種材料の超音波探傷に際して、探触子の
最適配置および探傷条件の最適な設定が行え、さらに探
触子の異常の早期発見や劣化状況の管理も容易に出来る
ので、材料欠陥の検出精度が著しく向上する。
Therefore, when performing ultrasonic flaw detection on various materials, the optimum placement of the probe and the optimum setting of flaw detection conditions can be performed, and furthermore, it is possible to detect abnormalities in the probe at an early stage and manage the state of deterioration, making it easy to detect material defects. Accuracy is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図である。第
2図は第1図に示す中央演算装置6の制御動作の概要を
示すフローチャートである。 第3図、第4図、第5図および第6図は上記実施例装置
による測定結果を示す図面であり、いずれも測定結果を
プリンタで打ち出したグラフを示す。 1:探触子       2:探触子ホルダー3:超音
波反射体    4 : XYスキャナー5:超音波探
傷器    6:中央演算装置7:記憶装置     
 8:表示装置9:スキャナー指示装置10 : A/
D変換器11−1.11−2 :モータ
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a flowchart showing an overview of the control operation of the central processing unit 6 shown in FIG. FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are drawings showing the measurement results by the above-mentioned embodiment apparatus, and all of them show graphs printed out by a printer of the measurement results. 1: Probe 2: Probe holder 3: Ultrasonic reflector 4: XY scanner 5: Ultrasonic flaw detector 6: Central processing unit 7: Storage device
8: Display device 9: Scanner instruction device 10: A/
D converter 11-1.11-2: Motor

Claims (1)

【特許請求の範囲】[Claims] 液中に浸漬された探触子を保持する探触子ホルダーと、
該液中にて該探触子に対向して位置させた超音波反射体
と、該探触子ホルダーまたは該超音波反射体に取り付け
られたXYスキャナーと、前記探触子に接続された超音
波探傷器と、該超音波探傷器に接続された中央演算装置
と、該中央演算装置に接続された記憶装置および表示装
置と、該中央演算装置および前記XYスキャナーに接続
されたスキャナー指示装置とから構成されていることを
特徴とする超音波探触子の音場特性測定装置。
a probe holder that holds the probe immersed in the liquid;
an ultrasonic reflector positioned opposite the probe in the liquid; an XY scanner attached to the probe holder or the ultrasonic reflector; and an ultrasonic reflector connected to the probe. a sonic flaw detector, a central processing unit connected to the ultrasonic flaw detector, a storage device and a display device connected to the central processing unit, a scanner instruction device connected to the central processing unit and the XY scanner; A sound field characteristic measuring device for an ultrasonic probe, comprising:
JP62062840A 1987-03-18 1987-03-18 Ultrasonic probe sound field characteristic measuring device Expired - Lifetime JP2512463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062840A JP2512463B2 (en) 1987-03-18 1987-03-18 Ultrasonic probe sound field characteristic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062840A JP2512463B2 (en) 1987-03-18 1987-03-18 Ultrasonic probe sound field characteristic measuring device

Publications (2)

Publication Number Publication Date
JPS63229362A true JPS63229362A (en) 1988-09-26
JP2512463B2 JP2512463B2 (en) 1996-07-03

Family

ID=13211905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062840A Expired - Lifetime JP2512463B2 (en) 1987-03-18 1987-03-18 Ultrasonic probe sound field characteristic measuring device

Country Status (1)

Country Link
JP (1) JP2512463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010057318A (en) * 1999-12-21 2001-07-04 윤영석 Device and method for detecting charater of ultrasonic probe
CN103278562A (en) * 2013-05-21 2013-09-04 河海大学常州校区 Two-dimensional scanning system for measuring sound fields

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497080A (en) * 1977-12-21 1979-07-31 Nukem Gmbh Method and device for indicating sound field around ultrasonic wave head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497080A (en) * 1977-12-21 1979-07-31 Nukem Gmbh Method and device for indicating sound field around ultrasonic wave head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010057318A (en) * 1999-12-21 2001-07-04 윤영석 Device and method for detecting charater of ultrasonic probe
CN103278562A (en) * 2013-05-21 2013-09-04 河海大学常州校区 Two-dimensional scanning system for measuring sound fields

Also Published As

Publication number Publication date
JP2512463B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US3981184A (en) Ultrasonic diagnostic inspection systems
US8033172B2 (en) Hand-held flaw detector imaging apparatus
KR102121821B1 (en) Linear-scan ultrasonic inspection apparatus and linear-scan ultrasonic inspection method
CN101101277A (en) High-resolution welding seam supersonic image-forming damage-free detection method and detection system
JPH0136584B2 (en)
JPH06502250A (en) Ultrasonic method and device for measuring the outer diameter of tubes
US20060254359A1 (en) Hand-held flaw detector imaging apparatus
JP2719152B2 (en) Ultrasonic flaw detector
KR101698746B1 (en) Phased Array Ultrasonic Testing Device And Testing Method Using Thereof
JPS63229362A (en) Apparatus for measuring sound field characteristic of ultrasonic wave
JPH0333653A (en) Acoustic microscope surface inspection instrument and method for the same
JP7180494B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
US3751976A (en) Ultrasonic inspection system with pseudo isometric display
JPH0614033B2 (en) Ultrasonic inspection method
US6460413B1 (en) Imaging based on the electroacoustic effect
JPS61172055A (en) Apparatus for inspecting interior of piping
CN115950956B (en) Ultrasonic flaw detection device and method and computer storage medium
JPS5912351A (en) Ultrasonic flaw detector
JPH02154144A (en) Ultrasonic flaw detecting image processor
JPH0954067A (en) Flaw detecting device
JPH01197649A (en) Ultrasonic flaw detecting device
JP2551218Y2 (en) Ultrasonic microscope equipment
RU2180111C2 (en) Method of ultrasonic inspection of round form articles
KR101729570B1 (en) Projected Area Setting Method Using Gate Bars And Phased Array Ultrasonic Testing Device And Testing Method Using Thereof