JPS63229248A - Nc machining data forming method - Google Patents

Nc machining data forming method

Info

Publication number
JPS63229248A
JPS63229248A JP62056904A JP5690487A JPS63229248A JP S63229248 A JPS63229248 A JP S63229248A JP 62056904 A JP62056904 A JP 62056904A JP 5690487 A JP5690487 A JP 5690487A JP S63229248 A JPS63229248 A JP S63229248A
Authority
JP
Japan
Prior art keywords
data
machining
tool
cutter
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62056904A
Other languages
Japanese (ja)
Other versions
JP3040397B2 (en
Inventor
Hideki Tamai
秀樹 玉井
Yoshihiro Kuratani
倉谷 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62056904A priority Critical patent/JP3040397B2/en
Publication of JPS63229248A publication Critical patent/JPS63229248A/en
Application granted granted Critical
Publication of JP3040397B2 publication Critical patent/JP3040397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To form a data having both accuracy and efficiency by judging a load condition at the time of machining by means of a tool track, based on a tool track data in a three dimensional space and a three dimensional coordinate data for specifying the surface of a workpiece. CONSTITUTION:Plural cutter tracks for obtaining a prescribed shape are prepared and kept as a track file on an NC device side. And, an NC data forming program operates an actual cutter track, the advancing direction vector of a cutter, etc., and calculates the angle of the advancing direction vector. Further, the angles of the face vector and advancing direction vector for each point on the cutter track are obtained. And, in accordance with the larger one of the obtained angles, the feeding speed and rotating speed of a cutter is determined from a feeding speed/rotating speed file, to form an NC machining file. Thereby, a data having both machining accuracy and machining efficiency can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はNC加工用データの作成方法に関し、特に加工
工具に対する加工負荷条件を考慮したNC加工用データ
の作成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of creating data for NC machining, and particularly to a method of creating data for NC machining in consideration of machining load conditions for a machining tool.

(従来の技術) 金型等の被加工物に対する加工においては、加工負荷条
件を加味して加工を行なうことが望ましい。特に、NC
加工を行なう場合は、加工負荷条件、広くは加工条件を
考慮する必要がある。ところが例えば、特開昭60−1
35162号等においては、モデルの三次元形状からN
C加工用のデータを作成しているに過ぎない。
(Prior Art) When machining a workpiece such as a mold, it is desirable to take machining load conditions into consideration. In particular, N.C.
When performing machining, it is necessary to consider the machining load conditions, broadly speaking, machining conditions. However, for example, JP-A-60-1
In No. 35162 etc., N is calculated from the three-dimensional shape of the model.
It merely creates data for C processing.

(発明が解決しようとする問題点) 従って、第10図に示すような斜面部分を有する被加工
物に対しては、切削抵抗の大きい斜面部分での加工速度
に、全体の加工速度を合わせていた。そのために、本来
より高速で加工できる水平部分も斜面の加工速度にて加
工されるので、全体の加工効率は低いものとなっていた
。逆に、加工速度を上げれば、加工精度の方が犠牲とな
っていた。
(Problem to be Solved by the Invention) Therefore, for a workpiece having a sloped portion as shown in FIG. Ta. For this reason, the horizontal portion, which can be machined at a higher speed than originally, is also machined at the machining speed of the slope, resulting in a low overall machining efficiency. On the other hand, increasing the machining speed comes at the expense of machining accuracy.

そこで、本発明は上記従来技術の問題点に鑑みてなされ
たものでその目的は、加工精度と加工効率を両立したN
C加工の可能なNC加工用データの作成方法を提案する
点にある。
Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to achieve a N
The purpose of this paper is to propose a method for creating data for NC machining that allows C machining.

(問題点を解決するための手段及び作用)上記課題を達
成するための本発明のNC加工用データの作成方法の構
成は、工具の加工負荷条件に応じて、工具の加工速度を
決める加工速度データを、予め複数通り設定しておき、
三次元空間での工具軌跡データと、被加工物の表面を規
定する三次元座標データとに基づいて、該被加工物に当
該工具軌跡で加工したときの工具の加工負荷条件を判断
し、この加工負荷条件に応じて前記加工速度データを選
択し、加工指示順序に従った前記工具軌跡データに、上
記選択された加工速度データを付加することを特徴とす
る。
(Means and effects for solving the problem) The structure of the method for creating NC machining data of the present invention to achieve the above-mentioned problem is that the machining speed is determined according to the machining load conditions of the tool. Set the data in multiple ways in advance,
Based on the tool trajectory data in three-dimensional space and the three-dimensional coordinate data that defines the surface of the workpiece, determine the machining load conditions of the tool when machining the workpiece with the tool trajectory, and The present invention is characterized in that the machining speed data is selected according to machining load conditions, and the selected machining speed data is added to the tool trajectory data according to the machining instruction order.

(実施例) 以下添付図面を参照して本発明に係る実施例を説明する
。先ず、第1図、第2図を用いて、実施例のNCデータ
作成方法が、いかなる要素に基づいて、どのようにNC
データを作成するかを説明する。
(Examples) Examples according to the present invention will be described below with reference to the accompanying drawings. First, using FIGS. 1 and 2, we will explain how the NC data creation method of the embodiment is based on what elements.
Explain how to create data.

第2図は、カッタ2が点PIから点P2まで移動して、
被加工物1を切削加工する様子を示す。
In Figure 2, the cutter 2 moves from point PI to point P2,
A state in which a workpiece 1 is cut is shown.

ここで、被加工物1は斜面3を有し、その斜面3の角度
は被加工物1の水平面に対してα度とし、水平面4と斜
面3とは交線5を有するものとする。説明の便宜上、座
標軸を、この交線5にY軸を重ね、X軸を水平面4上に
とり、紙面上方向にZ軸をとる。
Here, it is assumed that the workpiece 1 has a slope 3, the angle of the slope 3 is α degrees with respect to the horizontal surface of the workpiece 1, and the horizontal surface 4 and the slope 3 have an intersection line 5. For convenience of explanation, the coordinate axes are such that the Y axis is superimposed on this intersection line 5, the X axis is on the horizontal plane 4, and the Z axis is on the top of the paper.

カッタ2が第2図に示したような軌跡をとる場合、カッ
タ2の切削時の負荷条件は、カッタの進行方向に対する
加工面の相対的な傾きで決る。即ち、この相対的な傾き
は2つの要素を有することとなる。1つはカッタ2の進
行方向であり、1つは加工面の傾きである。即ち、カッ
タ2の進行方向が水平方向であっても、被加工物1の斜
面が大きければ、それはカッタ2に対する大きな負荷と
なる。同様に、被加工物1が水平面をなしていても、カ
ッタ2の進行方向がこの面に対して大きく変化すれば、
その分だけカッタ2に対して大きな負荷となる。そこで
本実施例では、負荷条件が、加工面の傾きのみならず、
カッタ2の進行方向とその進行方向に対する加工面の傾
きをも考慮して決定されなければならないことに着目し
、進行方向の傾きと、切削面の傾きとを両方考慮して、
いずれかの大きな方の傾きに基づいて切削時の負荷の度
合を決定する。
When the cutter 2 takes a trajectory as shown in FIG. 2, the load conditions of the cutter 2 during cutting are determined by the relative inclination of the machined surface with respect to the cutting direction. That is, this relative slope has two elements. One is the advancing direction of the cutter 2, and the other is the inclination of the machined surface. That is, even if the direction of movement of the cutter 2 is horizontal, if the slope of the workpiece 1 is large, this places a large load on the cutter 2. Similarly, even if the workpiece 1 is a horizontal plane, if the direction of movement of the cutter 2 changes significantly with respect to this plane,
The load on the cutter 2 is correspondingly large. Therefore, in this example, the load condition is not only the inclination of the machined surface, but also
Focusing on the fact that it must be determined by taking into account the direction of movement of the cutter 2 and the inclination of the machined surface with respect to the direction of movement, and considering both the direction of movement and the inclination of the cutting surface,
The degree of load during cutting is determined based on the larger slope.

さて、以下の第1図において、上述した進行方向の傾き
及び、切削面の傾きなる言葉の定義を行ない、更にどの
ようにして負荷条件を決定するかを説明する。
Now, with reference to FIG. 1 below, the terms ``inclination in the traveling direction'' and ``inclination of the cutting surface'' mentioned above will be defined, and furthermore, how to determine the load conditions will be explained.

第1図において、切削加工面の傾きとは、P2を通り斜
面3に面直なベクトルP2MとXY平面とがなす角度(
θ、)として定義する。ここで、点Mは斜面3上の点で
あり、点Rは線分P2MとXY平面との交点である。従
って、ベクトルP2MとXY平面とのなす角度θ2は、
ベクトルP2Mを含みXY平面に垂直な面と、XY平面
との交線ORが、線分P2 Rとなす角度となる。θ2
はカッタ2の進行方向には依存しない量である。
In Fig. 1, the inclination of the cutting surface is the angle (
θ, ). Here, point M is a point on slope 3, and point R is the intersection of line segment P2M and the XY plane. Therefore, the angle θ2 between the vector P2M and the XY plane is
The intersection line OR of the plane containing the vector P2M and perpendicular to the XY plane and the XY plane forms an angle with the line segment P2R. θ2
is an amount that does not depend on the direction in which the cutter 2 moves.

又、進行方向の傾きとは、ベクトルp、p2の延長線と
XY平面との交点をQとすると、この線分QP2と、線
分QP2を含みXY平面に垂直な面とXY平面との交線
QOとのなす角度θlであると定義できる。このθ1は
進行方向にのみ依存し、被加工物1の形状には依存しな
い量である。
In addition, the inclination of the traveling direction is defined as the intersection of line segment QP2 and a plane that includes line segment QP2 and is perpendicular to the It can be defined as the angle θl formed with the line QO. This θ1 is a quantity that depends only on the traveling direction and does not depend on the shape of the workpiece 1.

負荷条件は、このθ、と02のどちらが大きくなっても
悪くなるから、特に、大きい方の角度をもとに決定する
。尚、以下に説明する実施例では、加工時の負荷を反映
させられなくてはならない要素として、カッタ送り速度
と、カッタ回転速度とをあげている。
The load condition is determined based on the larger angle, since the condition becomes worse regardless of which of the angles θ and 02 becomes larger. In the embodiments described below, cutter feed speed and cutter rotation speed are used as elements that must be able to reflect the load during machining.

第3図に、上記のようにして決定された角度θに対する
、カッタ送り速度(mm7分)又はカッタ回転速度(R
PM)の関係を、そのカッタの径を色々と変えた場合(
6φ〜40φ)において、夫々示す。同図からも容易に
分るように、傾斜角θ(θ1と02の大きい方の角)が
大きくなるほど、送り速度、回転速度とも、遅くしてい
る。
Figure 3 shows the cutter feed rate (mm7 minutes) or cutter rotational speed (R
PM), when the diameter of the cutter is changed variously (
6φ to 40φ), respectively. As can be easily seen from the figure, the larger the inclination angle θ (the larger angle between θ1 and 02), the slower both the feed speed and rotation speed are.

第4図に、このようなNCデータを作成する手順の概要
を示す。第5図は、本実施例に係るデータ作成方法を適
用したNCデータ作成プログラムの入力/出力ファイル
の関係を示す。
FIG. 4 shows an outline of the procedure for creating such NC data. FIG. 5 shows the relationship between input/output files of the NC data creation program to which the data creation method according to the present embodiment is applied.

不図示のホストコンピュータシステムでは、製品図、工
程図、カッタ図等を基にして、モデルの三次元座標デー
タファイル(親図データファイル)を、磁気ディスク等
に登録しておく。更に、これらの風口データから、内部
処理により、面直ベクトル(法線ベクトル)をもファイ
ルとして、作成しておく。
In a host computer system (not shown), a three-dimensional coordinate data file (master drawing data file) of the model is registered in a magnetic disk or the like based on product drawings, process drawings, cutter drawings, etc. Furthermore, a surface perpendicular vector (normal vector) is also created as a file from these wind mouth data through internal processing.

NC装置側では上記の親図データファイル及び面直ベク
トルファイルを通信回線等を介して受ける。又、所定の
形状を得るようなカッタ軌跡を複数用意しておき、軌跡
ファイルとしておく。実際の加工指示プログラムは、こ
れらの軌跡定義の順序として表わされる。NCデータ作
成プログラムは、これらの軌跡から実際のカッタ軌跡、
そしてカッタの進行方向ベクトル等を演算して、この進
行方向ベクトルとXY平面とのなす角度を算出する。
On the NC device side, the above-mentioned parent diagram data file and surface orientation vector file are received via a communication line or the like. Additionally, a plurality of cutter trajectories for obtaining a predetermined shape are prepared and saved as a trajectory file. The actual machining instruction program is expressed as the order of these locus definitions. The NC data creation program calculates the actual cutter trajectory from these trajectories,
Then, the moving direction vector of the cutter is calculated, and the angle between this moving direction vector and the XY plane is calculated.

更に、カッタ軌跡上の各点毎に、前記の面直ベクトルと
、進行方向ベクトルとが、夫々XY平面となす角度を求
める。そして、その大きい方の角度に従って、例えば第
3図のような送り速度/回転数速度ファイルから、カッ
タの送り速度と回転速度とを決定し、NC加工ファイル
を作成する。
Furthermore, for each point on the cutter locus, the angles that the plane perpendicular vector and the traveling direction vector make with the XY plane are determined. Then, according to the larger angle, the feed speed and rotation speed of the cutter are determined from the feed speed/rotation speed file as shown in FIG. 3, for example, and an NC machining file is created.

そしてこのNC加工ファイルから、最終のNCデータが
作成される。即ち、この最終のNCデータには、従来の
NCデータに加えて、カッタへの負荷条件を加味して適
宜変更された送り速度/回転速度等がデータとして付加
されている。
Then, final NC data is created from this NC processing file. That is, in addition to the conventional NC data, this final NC data includes data such as feed speed/rotation speed that has been appropriately changed in consideration of the load conditions on the cutter.

尚、上記の送り速度/回転数ファイルは、傾斜角度θ及
びカッタ径の変化に応じて、送り速度/回転数が変化す
るようにデータ作成されているが、更にカッタの首下係
数、取代係数、そして被可工物の材質等に応じて、変化
させるようにしてもよい。
The above feed speed/rotational speed file is created so that the feed speed/rotational speed changes according to changes in the inclination angle θ and the cutter diameter, but the cutter neck coefficient and machining allowance coefficient are also changed. , and may be changed depending on the material of the workpiece.

又更に、切削距離はカッタの軌跡定義及び加工指示プロ
グラムにより、計算できるものであるから、カッタの寿
命をこの計算された切削距離から予想し、その寿命に達
したと思われるカッタに対して交換指示を出すように、
NCデータに付加することもできる。
Furthermore, since the cutting distance can be calculated using the cutter locus definition and machining instruction program, the cutter life can be estimated from this calculated cutting distance, and the cutter that seems to have reached its lifespan should be replaced. As if giving instructions,
It can also be added to NC data.

(発明の効果) 以上説明したように本発明のNC加工用データの作成方
法によれば、三次元空間での工具軌跡データと、被加工
物の表面を規定する三次元座標データとに基づいて、該
被加工物に当該工具軌跡で加工したときの加工負荷条件
を判断し、この加工負荷条件に応じて加工工具の加工速
度データを選択することにより、加工精度と加工効率を
両立したNC加工の可能なNC加工用データの作成方法
を提供できた。
(Effects of the Invention) As explained above, according to the method for creating NC machining data of the present invention, data is created based on tool trajectory data in three-dimensional space and three-dimensional coordinate data defining the surface of the workpiece. , determines the machining load conditions when machining the workpiece with the relevant tool trajectory, and selects the machining speed data of the machining tool according to the machining load conditions, thereby achieving NC machining that achieves both machining accuracy and machining efficiency. We were able to provide a method for creating data for NC machining that is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は実施例において、加工負荷条件を決定
する様子を説明する図、 第3図は切削面の傾きに対する、工具の送り速度/回転
速度の関係を示す図、 第4図、第5図はNC用データを作成するシステムの概
略図、 第6図が従来例を説明する図である。 図中、 1・・・被加工物、2・・・カッタ、3・・・斜面、4
・・・水平面、5・・・交線、P、・・・加工の始点、
P2・・・加工の終点である。
Figures 1 and 2 are diagrams explaining how machining load conditions are determined in an example; Figure 3 is a diagram showing the relationship between tool feed rate/rotational speed with respect to the inclination of the cutting surface; Figure 4 , FIG. 5 is a schematic diagram of a system for creating NC data, and FIG. 6 is a diagram explaining a conventional example. In the figure, 1...Workpiece, 2...Cutter, 3...Slope, 4
... horizontal plane, 5 ... line of intersection, P, ... starting point of machining,
P2...This is the end point of processing.

Claims (3)

【特許請求の範囲】[Claims] (1)工具の加工負荷条件に応じて、工具の加工速度を
決める加工速度データを、予め複数通り設定しておき、 三次元空間での工具軌跡データと、被加工物の表面を規
定する三次元座標データとに基づいて、該被加工物に当
該工具軌跡で加工したときの工具の加工負荷条件を判断
し、 この加工負荷条件に応じて前記加工速度データを選択し
、 加工指示順序に従つた前記工具軌跡データに、上記選択
された加工速度データを付加することを特徴とするNC
加工用データの作成方法。
(1) Multiple sets of machining speed data that determine the machining speed of the tool are set in advance according to the machining load conditions of the tool, and the tool trajectory data in three-dimensional space and the three-dimensional data that defines the surface of the workpiece are set in advance. Based on the original coordinate data, determine the machining load conditions of the tool when machining the workpiece with the tool trajectory, select the machining speed data according to the machining load conditions, and follow the machining instruction order. An NC characterized in that the selected machining speed data is added to the tool trajectory data.
How to create processing data.
(2)前記被加工物の表面を規定する三次元座標データ
は面直ベクトルであり、 三次元座標軸のうちの2つの座標軸のなす平面に対する
、前記工具軌跡の進行方向ベクトルがなす角度と、前記
面直ベクトルがなす角度とのうちの大きい方の角度の値
に応じて、前記工具の加工負荷条件を判断する事を特徴
とする特許請求の範囲第1項に記載のNC加工用データ
の作成方法。
(2) The three-dimensional coordinate data that defines the surface of the workpiece is a perpendicular vector, and the angle formed by the advancing direction vector of the tool trajectory with respect to the plane formed by two of the three-dimensional coordinate axes, and the Creation of data for NC machining according to claim 1, characterized in that the machining load condition of the tool is determined according to the value of the larger angle between the angles formed by the surface perpendicular vectors. Method.
(3)前記加工工具は回転切削工具であり、前記加工速
度データは、該回転切削工具の回転速度及び送り速度に
関するデータである事を特徴とする特許請求の範囲第1
項に記載のNC加工用データの作成方法。
(3) The processing tool is a rotary cutting tool, and the processing speed data is data regarding the rotational speed and feed rate of the rotary cutting tool.
How to create data for NC processing described in section.
JP62056904A 1987-03-13 1987-03-13 How to create NC machining data Expired - Fee Related JP3040397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62056904A JP3040397B2 (en) 1987-03-13 1987-03-13 How to create NC machining data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62056904A JP3040397B2 (en) 1987-03-13 1987-03-13 How to create NC machining data

Publications (2)

Publication Number Publication Date
JPS63229248A true JPS63229248A (en) 1988-09-26
JP3040397B2 JP3040397B2 (en) 2000-05-15

Family

ID=13040436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62056904A Expired - Fee Related JP3040397B2 (en) 1987-03-13 1987-03-13 How to create NC machining data

Country Status (1)

Country Link
JP (1) JP3040397B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152044A (en) * 1983-02-16 1984-08-30 Mitsubishi Electric Corp Numerically controlled processing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152044A (en) * 1983-02-16 1984-08-30 Mitsubishi Electric Corp Numerically controlled processing system

Also Published As

Publication number Publication date
JP3040397B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
CN101497140B (en) Off-line planning method for cutting feed rate of five-shaft numerical control side milling machining
CN102141794A (en) Continuous locus intersegment connecting speed processing method for numerical control system
JP2002200540A (en) Control method for machine tool, control system therefor and control medium therefor
US20020071732A1 (en) Corner cutting method and NC controller
US8096215B2 (en) Method for cutting freeform surfaces, cutting tool and use of the cutting tool
JPS63229248A (en) Nc machining data forming method
JP3284865B2 (en) Fillet surface forming method
KR100880734B1 (en) Step length optimization method of NC data for enhancing 5-axis milling speed based on machine dynamics
CN111026035B (en) Method for solving cyclone milling blade tool location point based on curvature change
JP3192381B2 (en) Copy processing method
Endl et al. The challenges for CAM systems and users in 5-axis machining
JPH10118889A (en) Method for determining cutting condition
JP3275599B2 (en) Cutting method using rotary cutting tool
JP2007257182A (en) Interference calculation method in virtual copying machining, tool path generation method, virtual stylus control method and milling control system
JPH10124129A (en) Numerical control data producing device, producing method, and recording medium for cutting work machine
JP3344811B2 (en) Tool path data generation method
JP2000259218A (en) Method for preparing tool path for fast working
Held Chapter I Introduction
JP2000163110A (en) Method for generating tool path and medium for recording tool path generation program
JPH05346814A (en) Three-dimensional machining method
Hamiche et al. Modeling of cutting forces in five-axis milling of sculptured surfaces directly from a CAM tool path
JPH10307615A (en) Automatic generating method for machining path of recessed groove position for cam
JPS63104110A (en) Machining system
JPH04183557A (en) Control method for cutter feeding speed in nc machining
JPS6363335B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees