JPS63229191A - Fixing filter medium for biological treatment - Google Patents

Fixing filter medium for biological treatment

Info

Publication number
JPS63229191A
JPS63229191A JP62063502A JP6350287A JPS63229191A JP S63229191 A JPS63229191 A JP S63229191A JP 62063502 A JP62063502 A JP 62063502A JP 6350287 A JP6350287 A JP 6350287A JP S63229191 A JPS63229191 A JP S63229191A
Authority
JP
Japan
Prior art keywords
biological treatment
filter medium
polyethylene
calcium phosphate
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063502A
Other languages
Japanese (ja)
Inventor
Yoshiaki Arai
喜明 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP62063502A priority Critical patent/JPS63229191A/en
Publication of JPS63229191A publication Critical patent/JPS63229191A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To perform stable biological treatment by using a porous body of polyethylene added with calcium phosphate-base substance. CONSTITUTION:Powder of polyethylene is mixed with calcium phosphate-base substance (e.g. hydroxyapatite tricalcium phosphate and octacalcium phosphate or the like) in the proportion of 9:1 by weight ratio. A porous body having 10-500mum pore size is obtained by calcining this mixture. This is packed into a column as a filter medium and used. Thereby adhesive force of microorganism is made large and the power of clarifying organic drainage is stabilized.

Description

【発明の詳細な説明】 ん産業上の利用分野 本発明は1例えば有機性排水の生物処理法の一つである
生物膜法に適用される生物処理用固定化F材に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an immobilized F material for biological treatment, which is applied, for example, to the biofilm method, which is one of the biological treatment methods for organic wastewater.

B1発明の概要 本発明は1表面に微生物膜を付着し、付着した微生物に
より例えば有機性排水を生物処理する固定化濾材におい
て、 動物の骨等のリン酸カルシウム系の物質?添加したポリ
エチレンの多孔質体により固定化P材を構成することに
よって、固定化P材に対する微生物の表面付着が良好で
あり、安定した生物処理が行えるようKしたものである
B1 Summary of the Invention The present invention is directed to an immobilized filter medium having a microbial film attached to its surface and for biologically treating organic wastewater using the attached microorganisms. By configuring the immobilized P material with the added polyethylene porous material, the surface adhesion of microorganisms to the immobilized P material is good, so that stable biological treatment can be performed.

C6従来の技術及び 発明が解決しようとする問題点 小規模排水処理施設を中心として、生物膜法が住目され
つつある。生物膜法は、P材を用いた嫌気性生物処理(
メタン発#)の一方式であり、従来の活性汚泥法と比較
して、維持管理が容易で。
C6 Problems to be Solved by the Prior Art and the Invention The biofilm method is becoming popular mainly in small-scale wastewater treatment facilities. The biofilm method is an anaerobic biological treatment using P material (
It is a method of generating methane (#) and is easier to maintain and manage than the conventional activated sludge method.

余剰汚泥の発生が少いことを特許としている。生物膜の
浄化症に影費するものとして、いかに戸材に付着あるい
は捕捉される嫌気性微生物量を確保するかが重要な課題
である。
The patented feature is that it generates little surplus sludge. An important issue that affects biofilm septic disease is how to secure the amount of anaerobic microorganisms that can be attached to or captured by door materials.

戸材の選定においては、形状、材質がMvな要因である
。形状に関してはよく研究され、多穐類のp材が考案さ
れている0例えば10〜500μの程度の孔をもった多
孔成形体が注目されており。
When selecting door materials, the shape and material are important factors. The shape has been well researched, and porous molded bodies with pores of, for example, 10 to 500 μm in size, for example, have been devised as p-materials of polygons, and are attracting attention.

これによれば嫌気性微生物が付着あるいは捕捉されやす
い。一方多孔成形体の材質としては、金属。
According to this, anaerobic microorganisms are easily attached or captured. On the other hand, the material for the porous molded body is metal.

セラミックスまたは高分子材が検討されているが、金頴
及びセラミックスは、嫌気性微生物に対する親和性に欠
ける上製造が愕しくてコストが高いし、加えて重量であ
る等の欠点がある。また高分子材については、製造が容
易であり、@童でもあるが。
Ceramics or polymeric materials have been considered, but gold mold and ceramics lack affinity for anaerobic microorganisms, are difficult to manufacture, are expensive, and have drawbacks such as being heavy. In addition, polymer materials are easy to manufacture and are also popular.

同様に親和性に欠ける欠点がある。Similarly, it has the disadvantage of lacking affinity.

このように従来では、F材の形状については適合するも
のが提案されているが、材質については適合するものが
見つかっていない、このため表面付着方式のF材はあま
り実用化されていないのが現状である。
In this way, in the past, materials that were compatible with the shape of the F material have been proposed, but no material that was compatible with the material has been found.For this reason, surface-adhesive F materials have not been put into practical use very often. This is the current situation.

本発明は、!1生物が付着しやすい戸材を提供して、安
定した生物膜′qを行うことを目的とする。
This invention is! 1. The purpose is to provide a door material to which living things can easily adhere, and to form a stable biofilm'q.

D0問題点を解決するための手段 本発明は、リン酸カルシウム系の物質?添加したポリエ
チレンの多孔質体を固定化ヂ材として用いている。
Means for solving the D0 problem The present invention uses calcium phosphate based substances? The added porous polyethylene material is used as an immobilization material.

リン酸カルシウム系の物質としては、ヒドロキシルアパ
タイトCqI6(PO4)6 (OH)、 、 トリカ
ルシウムホスフェートCa B (po4)、またはオ
クタカルシウムホスフェートCa@H,(PO416・
6H10等が挙げられ。
Calcium phosphate-based substances include hydroxylapatite CqI6 (PO4)6 (OH), tricalcium phosphate Ca B (po4), or octacalcium phosphate Ca@H, (PO416.
Examples include 6H10.

朦骨等の動物の骨や人工*根1人工骨が該当する。This applies to animal bones such as snail bones and artificial *root 1 artificial bones.

リン酸カルシウム系の物質は動物の骨の成分であって、
その本来の機能からして、生体反応がよく。
Calcium phosphate substances are components of animal bones,
Considering its original function, it has a good biological response.

細胞との親和性圧富み1m胞への悪影響もない。It has a high affinity with cells and has no adverse effect on 1m cells.

E、実施例 本発明の実施例においては、ポリエチレンの粉体とヒド
ロキシルアパタイトの粉体とを重量比9:1の割合で混
合し、その混合粉を燐結することKより気孔サイズがl
O〜500μ屯程度の高分子多孔質体を得、これを固定
化戸材として用いる。
E. Example In the example of the present invention, polyethylene powder and hydroxylapatite powder were mixed at a weight ratio of 9:1, and the mixed powder was phosphorized.
A porous polymer material of about 0 to 500 μm is obtained and used as a fixed door material.

このF材の有効性を確認するために次のような実験を行
った。
In order to confirm the effectiveness of this F material, the following experiment was conducted.

ガラスカラムを4個用意し、夫々に上記!i!施例の高
分子多孔質体、ホツキ貝殻、セラミックビーズ及びポリ
エチレンの粉体のみを焼結してなる高分子多孔質体をP
材として充填する。そして各ガラスカラムにメタン菌用
培養液100 mlを添加すると共に、気相をNt−C
Oオ(80:20)?%合ガスで置換し、温度25℃で
メタン発酵を行った7そのまま約20日間培譬し、P材
にメタン一群の生物膜を形成させた。その後ν材に付着
していない微生物を除去するためのカラム底部のコック
から培養液を抜き出し、更にメタン菌用培地によってカ
ラム内のν材を洗浄した1次にカラム内にメタンm用培
地200−を入れ、培地が赤から黄色に変わるまで気相
をNo、−CO,混合ガスで置換し、温度25℃でメタ
ン発酵を行った。そのまま30日間メタン発酵を行い、
各カラムにおけるガス発生量を測定した。
Prepare 4 glass columns, each with the above! i! A porous polymer body obtained by sintering only the porous polymer body, seashells, ceramic beads, and polyethylene powder of the example is P.
Fill it as a material. Then, 100 ml of culture solution for methane bacteria was added to each glass column, and the gas phase was replaced with Nt-C.
Oo (80:20)? % synthetic gas and methane fermentation was carried out at a temperature of 25° C. 7. Culture was continued for about 20 days to form a biofilm of methane on the P material. After that, the culture solution was extracted from the cock at the bottom of the column to remove microorganisms not attached to the ν material, and the ν material in the column was further washed with a methane bacteria medium. was added, and the gas phase was replaced with No, -CO, and mixed gas until the medium turned from red to yellow, and methane fermentation was performed at a temperature of 25°C. Continue methane fermentation for 30 days,
The amount of gas generated in each column was measured.

第1図に測定結果を示す、aはヒドロキシルアバタイト
をポリエチレンに添加した高分子多孔質体、hはセラミ
ックビーズ、Cはホッキ貝殻、dはポリエチレンのみの
高分子多孔質体を夫々炉材として用いたカラムのガス発
生量である。このグラフかられかるように!I!施例に
係る炉材を用いた場合のガス発生量は他の炉材を用いた
場合に比べて可成り犬キく、従ってリン酸カルシウム系
の物質をポリエチレンに添加してなる多孔質体はセラミ
ックビーズやホッキ貝殻よりもまたポリエチレンのみの
多孔質体よりもメタン菌の表面付着力が良く、即ち生物
膵を表面く形成しやすい、また初期等忙おけるガス発生
量の立上りが早く、従って表面付着方式の炉材として好
適なものである。
The measurement results are shown in Figure 1, where a is a porous polymer material made by adding hydroxyl abatite to polyethylene, h is a ceramic bead, C is a surf shell, and d is a porous polymer material made of only polyethylene as the furnace material. This is the amount of gas generated by the column used. As you can see from this graph! I! The amount of gas generated when using the furnace material according to the example is considerably higher than when using other furnace materials, so the porous body made by adding a calcium phosphate-based substance to polyethylene is suitable for ceramic beads. The surface adhesion of methane bacteria is better than that of surf clams or surf shells, and that of porous bodies made only of polyethylene, which means that it is easier to form a biological pancreas on the surface, and the amount of gas generated during the initial stages rises quickly, thus making it easier to adhere to the surface. It is suitable as a furnace material.

F8発明の効果 以上のようにリン酸カルシウム系の物質を添加したポリ
エチレンの多孔質体を用いた固定化炉材によれば1表面
における微生物の付着力が大食いため、*生物の流出が
少なくなり、従って例えば有機性排水の浄化能が安定す
る。また微生物の炉材への付着が早いので始動時から定
常運転に至るまでの期間を短縮することができる。そし
て高分子材を用いているため軽量であること、成形が容
易であって所望の形が得られること及びコストが低いと
いった効果がある。
Effects of the F8 invention As described above, with the immobilized furnace material using a polyethylene porous body to which a calcium phosphate-based substance is added, the adhesion of microorganisms on one surface is absorbed, and the outflow of living organisms is reduced. Therefore, for example, the ability to purify organic wastewater is stabilized. Furthermore, since microorganisms adhere to the furnace material quickly, the period from startup to steady operation can be shortened. Since a polymer material is used, it is lightweight, easy to mold to obtain a desired shape, and low cost.

なお本発明は、微生物の固定化が図れることから1m水
処理の分野のみならず、固定化微生物を用いたバイオリ
アクターの分野にも適用することができる。
Since the present invention can immobilize microorganisms, it can be applied not only to the field of 1 m water treatment but also to the field of bioreactors using immobilized microorganisms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はF材別のガス発生量を示すグラフである。 FIG. 1 is a graph showing the amount of gas generated for each F material.

Claims (1)

【特許請求の範囲】 表面に付着した微生物により生物処理する固定化濾材に
おいて、 リン酸カルシウム系の物質を添加したポリエチレンの多
孔質体よりなることを特徴とする生物処理用固定化濾材
[Scope of Claims] An immobilized filter medium for biological treatment that is subjected to biological treatment using microorganisms attached to the surface, the immobilized filter medium for biological treatment comprising a porous body of polyethylene to which a calcium phosphate-based substance is added.
JP62063502A 1987-03-18 1987-03-18 Fixing filter medium for biological treatment Pending JPS63229191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063502A JPS63229191A (en) 1987-03-18 1987-03-18 Fixing filter medium for biological treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063502A JPS63229191A (en) 1987-03-18 1987-03-18 Fixing filter medium for biological treatment

Publications (1)

Publication Number Publication Date
JPS63229191A true JPS63229191A (en) 1988-09-26

Family

ID=13231071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063502A Pending JPS63229191A (en) 1987-03-18 1987-03-18 Fixing filter medium for biological treatment

Country Status (1)

Country Link
JP (1) JPS63229191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506333B1 (en) * 2002-03-21 2005-08-05 백철균 Method of Polyurethane foam filter coated by hydroxy apatite titanium dioxide photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506333B1 (en) * 2002-03-21 2005-08-05 백철균 Method of Polyurethane foam filter coated by hydroxy apatite titanium dioxide photocatalyst

Similar Documents

Publication Publication Date Title
Venkatesan et al. Hydroxyapatite from cuttlefish bone: isolation, characterizations, and applications
Xiao et al. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved
Akay et al. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro
Rouahi et al. Influence of hydroxyapatite microstructure on human bone cell response
Liu et al. Thermodynamically controlled self‐assembly of hierarchically staggered architecture as an osteoinductive alternative to bone autografts
Wang et al. BMP-functionalised coatings to promote osteogenesis for orthopaedic implants
US20180193528A1 (en) Printable morphogenetic phase-specific chitosan-calcium-polyphosphate scaffold for bone repair
Reid et al. A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair
JP2010000367A5 (en)
Qiao et al. Magnesium-doped nanostructured titanium surface modulates macrophage-mediated inflammatory response for ameliorative osseointegration
Mi et al. 3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration
DE50004951D1 (en) Process for the production of stable alginate material
Radha et al. A novel nano-hydroxyapatite—PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties
CN106473933A (en) The biomineralization material of bonding auxiliary and its application in biomimetic mineralization
JP2008541958A (en) Modeled product
Honda et al. Topographical analyses of proliferation and differentiation of osteoblasts in micro‐and macropores of apatite‐fiber scaffold
Panseri et al. Bone-like ceramic scaffolds designed with bioinspired porosity induce a different stem cell response
Ingrassia et al. Stem cell-mediated functionalization of titanium implants
JPS63229191A (en) Fixing filter medium for biological treatment
Ding et al. Poly (fumaroyl bioxirane) maleate: A potential functional scaffold for bone regeneration
JP2559592B2 (en) Wastewater treatment biofilm carrier
JPS6023875B2 (en) Biofilm-attached filler for wastewater treatment
JPS6344997A (en) Immobilizing filter for biological treatment
RU2121370C1 (en) Method for obtaining active complex to be applied in biology
Song et al. Phosphorylated chitin increased bone formation when implanted into rat calvaria with the Ti-device