JPS63228936A - Bind ring - Google Patents

Bind ring

Info

Publication number
JPS63228936A
JPS63228936A JP6106987A JP6106987A JPS63228936A JP S63228936 A JPS63228936 A JP S63228936A JP 6106987 A JP6106987 A JP 6106987A JP 6106987 A JP6106987 A JP 6106987A JP S63228936 A JPS63228936 A JP S63228936A
Authority
JP
Japan
Prior art keywords
ring
gfrp
cfrp
insulating
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6106987A
Other languages
Japanese (ja)
Inventor
Hisayasu Mitsui
久安 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6106987A priority Critical patent/JPS63228936A/en
Publication of JPS63228936A publication Critical patent/JPS63228936A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lightweight, high-strength insulating bind ring arousing no question in its insulation by surrounding the whole surface of carbon fiber reinforced plastic with thin insulating fiber reinforced plastics. CONSTITUTION:After a yarn composed of epoxy resin has been wound under tension round a dividable metal mold 16, the whole body of a product thus obtained is cured by heating to manufacture a glass fiber reinforced plastic (GFRP) ring 11. Then, said GFRP ring 11 is subjected to a cutting work to form a thin ring with a groove-shaped section. Thereafter, a unidirectional carbon fiber impregnated with the same epoxy resin as that impregnated in said glass fiber is wound under tension round said part subjected to the cutting work. Then, a unidirectional glass fiber impregnated with the same epoxy resin as that used in the GFRP ring 11 is wound under tension from above said carbon fiber to form a GFRP cover 11b of which the whole body is cured by heating.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電気機械例えば回転電機のコイル、あるいは整
流子などを支持する絶縁バインドリングに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an insulating binding ring for supporting a coil or a commutator of an electric machine, such as a rotating electric machine.

(従来の技術) 円筒形回転子のコイルエンドには回転中遠心力が加わり
コイルが変形しようとする。大口径で高速に回転する場
合、この遠心力は強大となり、コイルの変形が大きくな
り、コイルの絶縁が損傷を受けたり、回転子が固定子に
接触し事故に到る恐れが生ずる。
(Prior Art) Centrifugal force is applied to the coil end of a cylindrical rotor during rotation, causing the coil to deform. When rotating at high speed with a large diameter, this centrifugal force becomes strong and the coil deforms significantly, causing damage to the coil insulation or the possibility that the rotor may come into contact with the stator, leading to an accident.

そこで、このように遠心力の大きい回転子については、
従来は、第7図に示すように、例えば鉄心■に固定され
た支持物■に非磁鋼からなるエンドリング(3)を絶縁
物(1)を介して鉄心外のコイル0を押えるようにして
嵌合することによりコイルエンドを支持していた。尚、
1点鎖線■は回転子の軸中心線を示し、矢印(8)は回
転子の回転方向、即ち両方向回転であることを示す。
Therefore, for a rotor with such a large centrifugal force,
Conventionally, as shown in Fig. 7, for example, an end ring (3) made of non-magnetic steel was attached to a support (2) fixed to the iron core (2) so as to press down the coil 0 outside the iron core through an insulator (1). The coil ends were supported by fitting together. still,
The dashed line ■ indicates the axial center line of the rotor, and the arrow (8) indicates the rotation direction of the rotor, that is, bidirectional rotation.

またエンドリング■の代りにガラス繊維強化プラスチッ
クス(以下GFRPとする)が中・小形の回転子に使用
されているものがあるが、これは鉄心に比べ弾性率が低
いので大きな遠心力が加わると、コイルの半径方向への
変形が過大となってコイルの絶縁が損傷してしまう。
Additionally, glass fiber reinforced plastics (hereinafter referred to as GFRP) are used in small and medium-sized rotors instead of the end ring■, but this has a lower elastic modulus than an iron core, so a large centrifugal force is applied to it. If this happens, the coil will be deformed excessively in the radial direction and the coil insulation will be damaged.

GFRPのその他の使用例としては第8図に示すように
直流機の整流子の銅帯0の表面に溝(1(1)を形成し
、この溝(1(1)にエポキシ等の熱硬化性樹脂を含浸
させたガラス糸を多重回巻回して加熱硬化することによ
ってG F RP (11)のバインドリングを形成し
整流子を緊縛した例がある。
Another example of the use of GFRP is to form a groove (1 (1)) on the surface of the copper band 0 of the commutator of a DC machine, as shown in Figure 8, and to fill this groove (1 (1) with thermosetting material such as epoxy) There is an example in which a bind ring of G F RP (11) is formed by winding a glass thread impregnated with a synthetic resin in multiple turns and heat-curing it to bind a commutator.

この場合も、遠心力や熱機械応力が大きくなると、G 
F RP (11,)の弾性率が金属に比べ低いため、
整流子を形成する各銅帯が緩み、刷子の異常摩耗、絶縁
不良、回転のアンバランスなどの問題を発生する。
In this case as well, as centrifugal force and thermomechanical stress increase, G
Since the elastic modulus of F RP (11,) is lower than that of metal,
Each copper strip that forms the commutator becomes loose, causing problems such as abnormal brush wear, poor insulation, and unbalanced rotation.

(発明が解決しようとする問題点) 従来のようにエンドリングでコイルエンドを支持すると
、遠心力が大きい回転子ではエンドリングの肉厚が厚く
なり、重量が重くなり過ぎ、場合によっては運搬に支障
を来たすような場合が生ずる。
(Problem to be Solved by the Invention) If the coil end is supported by an end ring as in the past, the end ring will become thicker in a rotor with large centrifugal force, and the weight will become too heavy, making it difficult to transport in some cases. Occasionally, this may cause problems.

第7図に示したような回転子では、コイルエンドの冷却
が悪く、温度の上昇が高い。また寸法・重量とも増大す
るため、例えばタービン発電機のブラシレスエキサイタ
を本体シャフトヘオーバハングすることができず、安価
でコンパクトにできないという問題があった。
In the rotor shown in FIG. 7, the coil ends are poorly cooled and the temperature rises rapidly. Furthermore, since both size and weight increase, there is a problem that, for example, a brushless exciter of a turbine generator cannot be overhanged onto the main body shaft, making it impossible to make it inexpensive and compact.

そこで支持・緊縛用のリングとして、軽くて金属以上の
弾性率を有するカーボン繊維強化プラスチック(以下C
FRPとする)のリングを使用することが考えられる。
Therefore, carbon fiber reinforced plastic (hereinafter referred to as C
It is conceivable to use a ring made of FRP.

しかし、カーボン繊維は導電性があり、振動や摩擦によ
って微粉化し、絶縁表面に付着すると表面絶縁抵抗が低
下し接地事故を起こしたり、コイルや導体間が電気的に
橋絡して回転電機の運転に支障を来たすようになる。
However, carbon fiber is electrically conductive, and if it becomes pulverized by vibration or friction, and if it adheres to an insulating surface, the surface insulation resistance decreases, causing a grounding accident, or electrical bridging occurs between coils or conductors, causing the operation of rotating electric machines. It starts to cause problems.

一方CFRPは破断伸びが0.6〜0.9%程度で、G
FRPの2.5〜3.0程度に比べ格段に小さい。破断
伸びが小さいと、欠陥を生じた際その欠陥部での応力集
中が大きくなり、破壊しやすくなる。
On the other hand, CFRP has a breaking elongation of about 0.6 to 0.9%, and
It is much smaller than the 2.5 to 3.0 of FRP. If the elongation at break is small, when a defect occurs, stress concentration at the defective part becomes large, making it easier to break.

本発明は軽量で弾性率及び強度が高いCFRPを用いな
がら、絶縁上有害でなく、またCFRPに欠陥を生じに
くい支持・緊縛用の絶縁バインドリングを提供すること
を目的とする。
An object of the present invention is to provide an insulating binding ring for support and binding that uses CFRP, which is lightweight and has high elastic modulus and strength, is not harmful in terms of insulation, and is less likely to cause defects in CFRP.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) CFRPの摩擦によって絶縁に有害な導電性の粉末が生
じないように、またコイルや導体間が導電性のCFRP
によって電気的に橋絡するのを防ぎ、同時に欠陥により
応力集中の起き易いCFRPを保護するために、第1図
に断面図で示すようにCF RP (1,3)の全面を
薄い絶縁性の繊維強化プラスチックス(14) (以下
絶縁性のFRPとする)で包囲する。
(Means for solving the problem) In order to prevent the generation of conductive powder that is harmful to insulation due to friction of CFRP, conductive CFRP is used between coils and conductors.
In order to prevent electrical bridging caused by defects and at the same time protect CFRP, which is prone to stress concentration due to defects, the entire surface of CFRP (1, 3) is covered with a thin insulating film, as shown in the cross-sectional view in Figure 1. Surround with fiber reinforced plastics (14) (hereinafter referred to as insulating FRP).

(作 用) CFRr’はガラス繊維強化プラスチックス(以下GF
RPとする)など他の繊維強化プラスチツクス(以下F
RPとする)や金属に比べて比強度(重さ当りの強さ)
、比弾性率(重さ当りの弾性率)が高い。従って回転電
機の重さを他材料に比べて重くすることなく、効果的に
コイルや導体を支持・緊縛できる。例えば第7図に示し
たような回転子のコイルエンドに高強度・高弾性率のF
RPを用いてバインドリングを形成すれば同一の強さに
するのに金属製のものより軽くできる。
(Function) CFRr' is glass fiber reinforced plastics (hereinafter GF
RP) and other fiber-reinforced plastics (hereinafter referred to as F
RP) and specific strength (strength per weight) compared to metals.
, high specific modulus (modulus of elasticity per weight). Therefore, coils and conductors can be effectively supported and bound without making the rotating electric machine heavier than other materials. For example, as shown in Figure 7, a high-strength, high-modulus F is used at the coil end of the rotor.
If a bind ring is formed using RP, it can be made lighter than a metal one with the same strength.

ところでコイルエンドにFRPIIバインドリングを使
用した場合遠心力により弾性変形を生ずる。
By the way, when a FRP II binding ring is used at the coil end, elastic deformation occurs due to centrifugal force.

遠心力を受けた場合のコイルと鉄心の半径方向の最大伸
び差Δrは、鉄心の半径方向の伸びをΔRo、バインド
リングの伸びをΔRBとすれば、次の(101)式のよ
うになる。
The maximum elongation difference Δr in the radial direction between the coil and the iron core when subjected to centrifugal force is expressed by the following equation (101), where ΔRo is the elongation in the radial direction of the iron core, and ΔRB is the elongation of the binding ring.

Δr=ΔRB−ΔRo−(101) ただし とする。ここで添字Bはバインドリング、。は鉄心を表
わす。またσは使用可能応力(弾性限界応力/安全率)
を、Eは弾性率を、Rは半径を示す。
Δr=ΔRB−ΔRo−(101) However, it is assumed that Δr=ΔRB−ΔRo−(101). Here, the subscript B is the binding ring. represents an iron core. σ is the usable stress (elastic limit stress/safety factor)
, E represents the elastic modulus, and R represents the radius.

(102)、 (103)式から遠心力が加わったとき
にコイルが変形しないように鉄心の伸びとバインドリン
グの伸びが等しくなるようにするには、B EB=σB×−・・・ (104) ΔRC となる弾性率のバインドリングを使用すれば良いことに
なる。(104)式から弾性率の高いバインドリングを
使えば、半径を大きくしたり、使用可能応力も大きくバ
インドリングを薄肉化することができることが分かる。
From equations (102) and (103), in order to make the elongation of the iron core equal to the elongation of the binding ring so that the coil does not deform when centrifugal force is applied, B EB = σB × - (104 ) It is sufficient to use a binding ring with an elastic modulus that is ΔRC. It can be seen from equation (104) that if a bind ring with a high elastic modulus is used, the radius can be increased, the usable stress can be increased, and the bind ring can be made thinner.

例えば使用可能応力60kg/m2 としたとき、弾性
率が35000kg / ma”のCFRPを使用すれ
ば鉄心の弾性率(約21000kg/ nu2)よりか
なり高いため直径5mの可変速同期水車発電電動機の回
転子をコイルの変形なしで支持できる。
For example, when the usable stress is 60 kg/m2, if we use CFRP with an elastic modulus of 35,000 kg/ma, it is much higher than the elastic modulus of the iron core (approximately 21,000 kg/nu2), so the rotor of a variable speed synchronous water turbine generator motor with a diameter of 5 m is used. can be supported without deforming the coil.

従って、遠心力によって生ずる鉄心の半径方向の伸びと
コイルエンドの半径方向の伸びとをほぼ等しくするよう
な高弾性率を有する絶縁性のFRP製バインドリングで
コイルエンドを押え支持すれば、コイルの変形がなく、
コイルエンドでの絶縁の損傷を起こさせることはない。
Therefore, if the coil end is held and supported by an insulating FRP bind ring with a high elastic modulus that makes the radial extension of the core caused by centrifugal force almost equal to the radial extension of the coil end, the coil end can be held down and supported. No deformation,
It does not cause damage to the insulation at the coil ends.

また、現地で装着できるので運搬に支障を来たすことも
ない。
Additionally, since it can be installed on-site, there is no problem with transportation.

また高弾性率の絶縁性のFRPを使用することにより、
使用可能応力を大きくできるのでバインドリングを薄肉
にし重量を軽減できるし、高速回転も可能となる。ある
いは回転子を大口径にすることが可能とする。
In addition, by using insulating FRP with high elastic modulus,
Since the usable stress can be increased, the binding ring can be made thinner and its weight can be reduced, and high-speed rotation is also possible. Alternatively, it is possible to increase the diameter of the rotor.

このようにCFRPリングを用いれば軽量で、高強度の
コイルや導体の支持・緊縛が可能であるが、CFRPは
導電性であり、前述したような絶縁上の問題や欠陥によ
り応力集中を生じ易く破壊し易くなる問題がある。そこ
で、CFRP本来の強度1弾性率を損わない程度の薄い
絶縁性のFRP、例えばGFRP、KFRP (ケブラ
ー繊維強化プラスチックス)、ALFRP (アルミナ
繊維強化プラスチック)等でCFRPの全面を包囲する
ことにより、軽量・高強度でかつ絶縁上問題のない、C
FRPに欠陥を生じさせにくいリングを提供できる。
Using CFRP rings in this way makes it possible to support and bind lightweight, high-strength coils and conductors, but CFRP is electrically conductive and tends to cause stress concentration due to the insulation problems and defects mentioned above. There is a problem that it becomes easy to destroy. Therefore, by surrounding the entire surface of CFRP with a thin insulating FRP that does not impair the original strength and modulus of CFRP, such as GFRP, KFRP (Kevlar fiber reinforced plastics), ALFRP (alumina fiber reinforced plastics), etc. , lightweight, high strength and no insulation problems, C
A ring that is less likely to cause defects in FRP can be provided.

なお、ここで述べた絶縁性のFRPはCFRP。Note that the insulating FRP mentioned here is CFRP.

GFRP、KFRP、ALFRPなどを含めて、高強度
・高弾性率のリングを形成すめために一方向繊維強化方
式が最善である。
Including GFRP, KFRP, ALFRP, etc., unidirectional fiber reinforcement is the best method to form a ring with high strength and high modulus.

(実施例) 実施例1 以下本発明の第1の実施例について第1図ないし第3図
を参照して説明する。第1図はバインドリングの断面図
であるにの製造方法は第2図に断面図で示すように表面
を離型処理したボルト(15)などで固定しである分割
可能な金型(16)にエポキシ樹脂(例えば住友3M社
製商品名XR521(1)を含浸させた一方向性ガラス
繊維(例えば日東結社製商品名Tガラス繊維)からなる
糸に約35kg/mm”の張力をかけて巻いた後、全体
を加熱硬化してGFRPのリング(11)を作製する。
(Examples) Example 1 A first example of the present invention will be described below with reference to FIGS. 1 to 3. Figure 1 is a cross-sectional view of the bind ring.The manufacturing method is as shown in Figure 2, which is a cross-sectional view of the binding ring. A thread made of unidirectional glass fiber (for example, T glass fiber manufactured by Nitto Keisha) impregnated with an epoxy resin (for example, XR521 (1) manufactured by Sumitomo 3M Co., Ltd.) is wound under a tension of approximately 35 kg/mm. After that, the whole is heated and hardened to produce a GFRP ring (11).

次にこのGFRPのリング(11)を第3図に示すよう
に断面が溝形の薄いリングになるように切削加工する。
Next, this GFRP ring (11) is cut into a thin ring with a groove-shaped cross section as shown in FIG.

次にこの切削加工した部分にガラス繊維に含浸したと同
じエポキシ樹脂を含浸した一方向性カーボン繊維(例え
ば東邦レーヨン社製商品名HM40A)を7声のガラス
繊維6000本当り1.2kgの張力をかけて巻く。次
にこの上から前述したGFRPのリング(11)に使用
したのと同じエポキシ樹脂を含浸させた一方向性ガラス
繊維を同様にガラス繊維6000本当り7kgの張力を
かけて巻いてGFRPのカバー(llb)を形成し、全
体を加熱硬化する。然る後、金型を除去して、全面が薄
い絶縁性のFRPで包囲されたCFRPのバインドリン
グを得た。
Next, unidirectional carbon fibers impregnated with the same epoxy resin as the glass fibers (for example, HM40A manufactured by Toho Rayon Co., Ltd.) are applied to the cut portion under a tension of 1.2 kg per 6,000 7-tone glass fibers. Roll it up. Next, unidirectional glass fibers impregnated with the same epoxy resin as used for the GFRP ring (11) described above were similarly wrapped around this under a tension of 7 kg per 6000 glass fibers, and the GFRP cover ( llb) is formed and the whole is heated and cured. Thereafter, the mold was removed to obtain a CFRP bind ring whose entire surface was surrounded by thin insulating FRP.

ここでCFRPとGFRPのマトリックスとなる樹脂を
同一とした両者のマトリックスが異なり、その特性が異
なると、CFRPとGFRPの界面で例えば熱膨張の差
に基づく熱応力のような応力が発生し、はく離などが生
じ易くなるので、これを防ぐためである。
Here, if the matrices of CFRP and GFRP are the same, and their properties are different, stress such as thermal stress due to the difference in thermal expansion will occur at the interface between CFRP and GFRP, resulting in peeling. This is to prevent such problems from occurring.

このようにすると、軽量で弾性率及び強度が高いCFR
Pを用いながら、絶縁上有害でなく、またCFRPに欠
陥を生じにくい、絶縁バインドリングが出来る。
In this way, CFR is lightweight and has high elastic modulus and strength.
Although P is used, an insulating binding ring that is not harmful to insulation and does not easily cause defects in CFRP can be made.

実施例2 第4図に断面図で示すように整流子の銅帯0に溝(1(
1)を形成する。この溝に実施例1で述べたと同様な方
法で全面が薄く絶縁性のFRPの溝形リング(]4)と
カバー(14a)で包囲されたCFRP(13)のバイ
ンドリングを形成し、整流子の銅帯(9)を緊縛・支持
した。
Example 2 As shown in the cross-sectional view in Fig. 4, a groove (1 (
1) Form. In this groove, a bind ring of CFRP (13) surrounded by a thin insulating FRP groove ring (4) and a cover (14a) is formed in the same manner as described in Example 1, and a commutator The copper belt (9) was tied down and supported.

このようにすると、高強度であるため少量の絶縁性のF
RPで、かつ高弾性であるため回転時に整流子の銅帯が
緩まないように緊縛できる。
In this way, because of its high strength, a small amount of insulating F
Since it is made of RP and has high elasticity, it can be tightened to prevent the commutator's copper band from loosening during rotation.

実施例3 第5図に断面図で示すように、回転子の鉄心■の外表面
に複数の溝(1(1)を設ける。この溝(lO)にコイ
ル0を抑えるように実施例2と同様にして薄い絶縁性の
FRPで包囲されたCFRPのバインドリングを形成し
、コイル0を緊縛・支持した。
Example 3 As shown in the cross-sectional view in Fig. 5, a plurality of grooves (1 (1)) are provided on the outer surface of the rotor core (1). Similarly, a CFRP binding ring surrounded by thin insulating FRP was formed to bind and support coil 0.

このようにすることにより、コイル0を強固に緊縛でき
る一方、風の通路が従来の楔で支持する方式に比べ多く
なるため、冷却が格段に改善される。
By doing so, the coil 0 can be tightly bound, and since the number of air passages is increased compared to the conventional wedge-supported method, cooling is significantly improved.

実施例4 第6図に断面図で示すが、タービン発電機のエキサイタ
の回転子の鉄心■にマイカ等で絶縁した下コイル(5A
)を入れ、楔で仮固定した後、このコイルエンド部をエ
ポキシ樹脂を含浸した高強度ガラス繊維(日東結社製商
品名Tガラス)からなる糸を35kg10n2 の張力
を掛けて巻いた後加熱硬化して下側のGFRPのリング
(llb)を形成した。
Example 4 As shown in the cross-sectional view in Fig. 6, a lower coil (5A
) and temporarily fixed with a wedge, the end of the coil was wound with a thread made of high-strength glass fiber impregnated with epoxy resin (trade name: T-Glass manufactured by Nitto Keisha) under a tension of 35kg10n2, and then heated and cured. to form the lower GFRP ring (llb).

次に」上コイル(5B)を入れた後、Lコイル(5B)
を押えるように同様にエポキシ樹脂を含浸した一方向性
ガラス繊維から成る糸を張力をかけて巻回した後加熱硬
化し、上側のGFRPのリング(11,c )を形成す
る。次にこの上コイル(5B)を押えたGFRPの上側
のリング(llc)の外周側表面を真円筒状になるよう
に切削り加工する。一方、この円筒の外径より0.1〜
0.5mm程度小さい内径を有するエポキシ樹脂を含浸
した一方向性カーボン繊維を張力を掛けて図示しない巻
枠に巻回し加熱硬化してCFRPのリング(13)を作
製する。そしてコイルエンド部全体をドライアイスで冷
却して、CFRPのリング(13)を上側のGFRPの
リング(llc)に嵌装し冷しぼめする。このようにし
て、CFRPのリング(13)をGFRPのリング(l
ie)に嵌着したら、次にこの上側のGFRPのリング
(llc)表面に図示しないが取り付け、取り外しがで
きるように半分に分割し、表面を離型処理した金属製リ
ングを1個ずつCFRPのリング(13)の両側面より
少し離して取り付ける。次にCFRPのリング(13)
と金属製リングの間の隙間及びCFRPのリング(13
)の表面に前述したと同様にオボキシ樹脂を含浸した一
方向性ガラス繊維を張力を掛けて巻回した後、加熱硬化
してGFRPのカバー(lid)を形成する。然る後、
半分に分割した金属製リングを取り外すことによって、
全面が薄い絶縁性のFRPであるところのGFRPで包
囲されたCFRPのリングを得た。
Next, after inserting the upper coil (5B), the L coil (5B)
Similarly, a thread made of unidirectional glass fiber impregnated with epoxy resin is wound under tension so as to hold it down, and then heated and cured to form the upper GFRP ring (11,c). Next, the outer peripheral surface of the upper ring (llc) of the GFRP holding the upper coil (5B) is cut into a true cylindrical shape. On the other hand, from the outer diameter of this cylinder, 0.1~
A CFRP ring (13) is produced by winding a unidirectional carbon fiber impregnated with an epoxy resin having an inner diameter as small as 0.5 mm around a winding frame (not shown) under tension and hardening it by heating. Then, the entire coil end portion is cooled with dry ice, and the CFRP ring (13) is fitted into the upper GFRP ring (llc) and cooled down. In this way, the CFRP ring (13) is replaced with the GFRP ring (l).
ie), then attach (not shown) to the surface of the upper GFRP ring (llc), divide it in half so that it can be removed, and place the metal ring, whose surface has been mold-released, one by one onto the CFRP ring (llc). Attach it slightly away from both sides of the ring (13). Next is the CFRP ring (13)
and the gap between the metal ring and the CFRP ring (13
) is wound with unidirectional glass fiber impregnated with oxy resin under tension in the same manner as described above, and then heated and cured to form a GFRP cover (lid). After that,
By removing the metal ring split in half,
A CFRP ring was obtained whose entire surface was surrounded by GFRP, which was a thin insulating FRP.

このようにすることによって、軽量で、冷却性能の良い
、タービン発電機本体シャフトヘオーバハング可能なコ
ンパクトなエキサイタが製造できた。
By doing this, we were able to manufacture a compact exciter that is lightweight, has good cooling performance, and can be overhanged onto the shaft of the turbine generator main body.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、本発明による全面が薄い絶縁性
のFRPによって包囲されたCFRPのバインドリング
は、軽量で、高強度であり、荷重下での変形が少ない。
As explained below, the CFRP binding ring according to the present invention, which is entirely surrounded by thin insulating FRP, is lightweight, has high strength, and has little deformation under load.

その上、絶縁」−の問題がなく、欠陥による応力集中を
受けにくいという利点がある。
Furthermore, it has the advantage of not having problems with insulation and being less susceptible to stress concentration due to defects.

このリングを電気機械のコイルや導体の支持・緊縛に用
いることにより、電気機械を小形・軽量で、コンパクト
なものにすることができる。
By using this ring to support and bind the coils and conductors of electric machines, electric machines can be made smaller, lighter, and more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバインドリングの第1の実施例を示す
断面図、第2図及び第3図はCFRPのリングの製作方
法を説明のための装置の断面図、第4図、第5図、第6
図は本発明の第2、第3、第4の実施例の要部を示す断
面図、第7図、第8図は従来例の要部を示す断面図であ
る。 13・・・CFRPのリング、 14・・・絶縁性のFRPの溝形リング。 14a・・・絶縁性のFRPのカバー。
FIG. 1 is a sectional view showing a first embodiment of the bind ring of the present invention, FIGS. 2 and 3 are sectional views of an apparatus for explaining a method of manufacturing a CFRP ring, and FIGS. Figure, 6th
The figures are sectional views showing the main parts of the second, third and fourth embodiments of the present invention, and FIGS. 7 and 8 are sectional views showing the main parts of the conventional example. 13...CFRP ring, 14...Insulating FRP groove ring. 14a...Insulating FRP cover.

Claims (5)

【特許請求の範囲】[Claims] (1)全面が絶縁性の繊維強化プラスチックス(以下絶
縁性のFRPとする)によって包囲されたカーボン繊維
強化プラスチックス(以下CFRPとする)のバインド
リング。
(1) A bind ring of carbon fiber reinforced plastics (hereinafter referred to as CFRP) whose entire surface is surrounded by insulating fiber reinforced plastics (hereinafter referred to as insulating FRP).
(2)CFRPおよび絶縁性のFRPの強化繊維として
一方向性の繊維を使用したことを特徴とする特許請求範
囲第1項記載のバインドリング。
(2) The bind ring according to claim 1, characterized in that unidirectional fibers are used as reinforcing fibers of CFRP and insulating FRP.
(3)絶縁性のFRPの強化繊維としてガラス繊維を使
用したことを特徴とする特許請求範囲第1項または第2
項記載のバインドリング。
(3) Claim 1 or 2, characterized in that glass fiber is used as reinforcing fiber of insulating FRP.
Binding ring as described in section.
(4)ガラス繊維として高強度ガラス繊維を使用したこ
とを特徴とする特許請求範囲第3項記載のバインドリン
グ。
(4) The bind ring according to claim 3, characterized in that high-strength glass fiber is used as the glass fiber.
(5)CFRPおよび絶縁性のFRPのマトリックス(
樹脂)を同一としたことを特徴とする特許請求範囲第1
項ないし第4項の何れか1項に記載のバインドリング。
(5) CFRP and insulating FRP matrix (
Claim 1 characterized in that the resins) are the same.
The binding ring according to any one of Items 1 to 4.
JP6106987A 1987-03-18 1987-03-18 Bind ring Pending JPS63228936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6106987A JPS63228936A (en) 1987-03-18 1987-03-18 Bind ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6106987A JPS63228936A (en) 1987-03-18 1987-03-18 Bind ring

Publications (1)

Publication Number Publication Date
JPS63228936A true JPS63228936A (en) 1988-09-22

Family

ID=13160484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6106987A Pending JPS63228936A (en) 1987-03-18 1987-03-18 Bind ring

Country Status (1)

Country Link
JP (1) JPS63228936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168291A (en) * 2003-12-02 2005-06-23 General Electric Co <Ge> Axial direction holding shape for restraining composite material reinforcing ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168291A (en) * 2003-12-02 2005-06-23 General Electric Co <Ge> Axial direction holding shape for restraining composite material reinforcing ring

Similar Documents

Publication Publication Date Title
US11171528B2 (en) Compressed motor winding
US7525230B1 (en) Air core motor-generator
CN107453503B (en) Holding member, rotor, and rotating electrical machine
JP6629803B2 (en) Manufacturing method of coated cylinder
US4572980A (en) Stator core for large electric generator with dual dovetail slots for engaging wedges
JP3509304B2 (en) Rotor permanent magnet
CN108448831B (en) Construction method for integral rigidity reinforcing structure of end part of generator stator
CA1080296A (en) Stator core end magnetic shield for large a.c. machines
JPH0759286A (en) Device for holding of winding end part of stator winding inside machine electric converter
JPH11266555A (en) Rotor for rotary electric machine
US4661183A (en) Method for making and applying rotor bands
US7432628B2 (en) Generator and method of manufacturing same
JPS63228936A (en) Bind ring
US6864617B1 (en) Retaining system for a rotor of a dynamoelectric machine
JP2009240131A (en) Stator coil of rotary electric machine and method of manufacturing the same
EP1760864B1 (en) Rotor of an electrical machine
KR20000010998A (en) Coiled rotor cover for electric motor
US3103737A (en) Process for binding coil end turns of a dynamoelectric machine
CN110062998B (en) Method for assembling a dynamoelectric machine
GB2083291A (en) P-bar end winding support system
JPH0898444A (en) End part fastener for rotor winding
WO2024052961A1 (en) Method for manufacturing stator coil, stator coil, and rotary machine
JP2010226901A (en) Rotary electric machine
JPS6035945A (en) Manufacture of permanent magnet type rotor
JPH04334940A (en) Holding device for rotor winding end of rotating electric machine