JPS63228721A - Manufacture of gap single crystal wafer - Google Patents

Manufacture of gap single crystal wafer

Info

Publication number
JPS63228721A
JPS63228721A JP6136587A JP6136587A JPS63228721A JP S63228721 A JPS63228721 A JP S63228721A JP 6136587 A JP6136587 A JP 6136587A JP 6136587 A JP6136587 A JP 6136587A JP S63228721 A JPS63228721 A JP S63228721A
Authority
JP
Japan
Prior art keywords
plane
slicing
single crystal
gap single
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6136587A
Other languages
Japanese (ja)
Inventor
Masayuki Watanabe
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6136587A priority Critical patent/JPS63228721A/en
Publication of JPS63228721A publication Critical patent/JPS63228721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a wafer with high yield, by slicing an ingot of GaP signal crystal along the surface inclined at more than or equal to 3 deg. in the direction of <110> from a {100} plane, and performing a vertical slicing to an edge formed by the intersection of a {111} Ga face near the {100} plane and a {011} plane. CONSTITUTION:An ingot of GaP single crystal 4 is set on an equipment in the manner in which a surface 3 shifted a 3-10 deg. in the direction of [110] from a (100) plane of the wafer is obtained, and the feed direction of a slice blade 5 is perpendicular to an edge 6 formed by the intersection of a (111) Ga face near the (100) plane and a vertical (011) face. By feeding the blade 5 in assigned directions A and E, blade traces, chipping and cracks are remarkably decreased. An OF line 2 is formed on a (11-1)P face. A {100} plane equivalent to the (100) plane and a direction of <110> equivalent to [110] also can be used.

Description

【発明の詳細な説明】 [発明の目的] 〈産業上の利用分野) 本発明は、発光ダイオードの基板材料等に用いるGa 
P単結晶ウェーへの製造方法に関するもので、特にGa
ビ単結晶インゴットから高品質つ工−ハを高歩留りでス
ライスする方法に利用される。
[Detailed description of the invention] [Object of the invention] (Industrial application field)
It relates to the manufacturing method for P single crystal wafers, especially Ga
It is used in a method of slicing high-quality pieces from single-crystal ingots at a high yield.

(従来の技術) 橙色、黄色のGaAsP発光ダイオードの製作は、(1
00)低指数面を有するGa P単結晶基板士に気相成
長法によってGaASP層をエピタキシャル成長させる
工程を含む。 この工程でヒロック(hi l 1oc
k小さな突起)やビット(pit <ぼみ)等の表面欠
陥が少なく且つドーピング濃度の良く制御されたエピタ
キシャル面を得るためには、(100)の低指数面から
<110>方向に若干傾いた面基板を使用する方が好ま
しく、一般に(100)面から<100>方向に3°な
いし10°変位した面基板が製造されている。
(Prior art) Orange and yellow GaAsP light emitting diodes are manufactured using (1
00) Includes a step of epitaxially growing a GaASP layer on a GaP single crystal substrate having a low index plane by vapor phase growth. In this process, hillock (hi l 1oc)
In order to obtain an epitaxial surface with few surface defects such as small protrusions and pits, and with a well-controlled doping concentration, it is necessary to tilt the epitaxial surface slightly in the <110> direction from the (100) low index plane. It is preferable to use a planar substrate, and generally planar substrates displaced from the (100) plane by 3° to 10° in the <100> direction are manufactured.

このような変位面を主面とする基板の製造方法として単
結晶インゴットを変位面に沿ってスライスする方法があ
げられる。 しかしながら変位面に沿ってスライスする
場合には、(100)低指数面に沿ってスライスする場
合に比較してソーマーク(スライスする刃の跡)、チッ
ピング(切欠け)及びワレが発生し易く、表面品質や歩
留りのバラツキが大きく不安定であった。  (100
)面からの変位が大きい程、ソーマーク、チッピング、
ワしが大きくなる。
As a method for manufacturing a substrate having such a displacement plane as a main surface, there is a method of slicing a single crystal ingot along the displacement plane. However, when slicing along the displacement plane, saw marks (marks of the slicing blade), chipping, and cracks are more likely to occur than when slicing along the (100) low index plane, and the surface The quality and yield were highly variable and unstable. (100
) The larger the displacement from the surface, the more likely it is that saw marks, chipping,
The eagle grows bigger.

(発明が解決しようとする問題点) 前述のようにGaASP発光ダイオードの製造では、(
100)低指数面から若干傾いた変位面を面基板として
使用する方が好ましいが、変位面に沿ってスライスする
と表面品質や歩留りが不安定となる。
(Problems to be Solved by the Invention) As mentioned above, in the production of GaASP light emitting diodes, (
100) It is preferable to use a displacement plane slightly inclined from the low index plane as a planar substrate, but slicing along the displacement plane makes the surface quality and yield unstable.

−3スライスしやすい(100)低指数面に沿って厚く
スライスした後、両面角度研磨によって所望の変位面に
仕上げる方法も考えられるが、研削損出伍が多くなると
か、工程が複雑になるなどの欠点がある。
-3 It is possible to slice thickly along the low-index plane (100) that is easy to slice, and then finish the desired displacement plane by angle polishing on both sides, but this may result in more grinding losses or complicate the process. There are drawbacks.

本発明は、前記従来技術の問題点である変位面スライス
時のソーマーク、チッピング、ワレ等の発生を安定して
抑制できると共に高品質ウェーハを歩留りよく得られる
GaP単結晶ウェーハの製造方法を提供することを目的
とする。
The present invention provides a method for manufacturing GaP single crystal wafers that can stably suppress the occurrence of saw marks, chipping, cracks, etc. during displacement plane slicing, which are the problems of the prior art, and can obtain high quality wafers at a high yield. The purpose is to

[発明の構成1 (問題点を解決するための手段とその作用)本発明は、
GaP単結晶インゴットをスライスして、(10(1面
からぐ100〉方位に少なくとも3°以上傾いた変位面
をスライス面とするウェーハを採取するにあたって、前
記変位面に沿ってスライスすると共に上記(100)面
に近接する(111)Ga面ど上記(100)面に垂直
な(ON)面とが交差する稜に垂直な方向にスライス刃
を送ってスライスすることを特徴とするGaP単結晶ウ
ェーハの製造方法である。
[Structure 1 of the invention (Means for solving the problems and their effects) The present invention has the following features:
When slicing a GaP single crystal ingot to obtain a wafer whose slice plane is a displacement plane tilted by at least 3° in the (100) direction, the wafer is sliced along the displacement plane and the above ( A GaP single crystal wafer characterized in that it is sliced by sending a slicing blade in a direction perpendicular to the ridge where the (111) Ga plane adjacent to the (100) plane intersects with the (ON) plane perpendicular to the (100) plane. This is a manufacturing method.

本発明のスライス刃送り方向でスライスすることによっ
て、他の方向にスライスする場合に生じるソーマーク、
チッピング、ワレの発生が抑えられて、(100)面を
スライスする場合と全く同様の表面品質及びスライス歩
留りが確保できる。
By slicing in the slicing blade feeding direction of the present invention, saw marks that occur when slicing in other directions,
The occurrence of chipping and cracking is suppressed, and the same surface quality and slicing yield as in the case of slicing the (100) plane can be ensured.

なお本明細書においては、結晶内の平面及び方位を表す
のに例えば<100)面及び[100]方位のように(
)及び[1を使用する。 又等価な面の組及び等価な方
位の組はそれぞれ()及びく〉を用いる。 例えば立方
晶内では、(100)。
In this specification, planes and orientations within a crystal are expressed using (for example, <100) plane and [100] orientation.
) and [1 are used. Also, use () and 〉 for a set of equivalent planes and a set of equivalent orientations, respectively. For example, in a cubic crystal, (100).

(010)、  (001)、  (TOO)、  (
0+0)。
(010), (001), (TOO), (
0+0).

(OOT)の各面は全く等価であり、このような等価な
面の組を(の{100}而で表す。 又[100]方位
に等価な方位の組を表すのに<100>方位と記す。
Each plane of (OOT) is completely equivalent, and a set of such equivalent planes is expressed as {100} of (. write down

(実施例) 第1図ないし第3図を参照して本発明の詳細な説明する
。 引上げ法により[100]方位に引上げ育成した直
径52±1+nm 、長さ120111mのGaP単結
晶インゴットの頭部と尾部とを端面カットで除去して得
られた長さ100mmの円柱棒を外周研削して直径50
±0.5mm以内に仕上げた後、(111)2面に隣接
した(011 )面に長さ12+nmのオリエンテーシ
ョンフラット2を入れた。
(Example) The present invention will be described in detail with reference to FIGS. 1 to 3. The head and tail of a GaP single crystal ingot with a diameter of 52 ± 1 + nm and a length of 120111 m were pulled and grown in the [100] direction by the pulling method, and the head and tail portions were removed by end face cutting. A cylindrical rod with a length of 100 mm was obtained by grinding the outer periphery. diameter 50
After finishing within ±0.5 mm, an orientation flat 2 with a length of 12+nm was placed on the (011) plane adjacent to the (111) 2 plane.

第1図(a )は本発明の製造方法におけるスライス刃
送り方向とスライス面〈変位面)3との関係を表す模式
的な正面図であり、同図(b )はその平面図である。
FIG. 1(a) is a schematic front view showing the relationship between the slicing blade feeding direction and the slicing surface (displacement surface) 3 in the manufacturing method of the present invention, and FIG. 1(b) is a plan view thereof.

 又第2図はGaP単結晶の(100)面を基準とした
而装置を図示したもので・  ある。 GaP単結晶イ
ンゴット4の(100)つ工−ハ1の(の{100}面
から[101]方位に10°変位した面を得る目的で変
位面3が内周刃切断面と平行になるよう即ち第1図(a
 )に示すように配置し、かつ回転内周刃5の送り方向
が(100)面に近接する(111 ) Ga面と(1
00)面に垂直な(011)面とが交差する稜6に対し
て直角に/よるよう(第2図参照)、即ち第1図(b)
のようにGaP単結晶インゴットをスライス装置にセッ
トする。 次に所定の操作に従ってGaP単結晶引上げ
頭部側から厚さ300Ltmのウェーハをスライス作成
した。 即ち第2図に示すへ方向にスライス刃を送り 
150枚スライスしたところ、3枚が厚さ不良となった
のみで98%の歩留りが得られた。
Figure 2 shows a device based on the (100) plane of a GaP single crystal. In order to obtain a plane displaced by 10° from the (100} plane of GaP single crystal ingot 4 in the [101] direction, the displaced plane 3 was made parallel to the cutting surface of the inner peripheral blade. That is, Fig. 1 (a
), and the feeding direction of the rotating inner circumferential cutter 5 is arranged between the (111) Ga plane and the (100) plane, which are close to the (100) plane.
00) plane perpendicular to the (011) plane intersects with the edge 6 (see Fig. 2), that is, Fig. 1(b)
Set the GaP single crystal ingot in the slicing device as shown below. Next, a 300 Ltm thick wafer was sliced from the GaP single crystal pulling head side according to predetermined operations. In other words, feed the slicing blade in the direction shown in Figure 2.
When 150 pieces were sliced, only 3 pieces had poor thickness, resulting in a yield of 98%.

次に同様の手続きで第2図の矢印巳ないしHの方向にそ
れぞれスライスして第1表の結果を得た。
Next, the slices were sliced in the directions of arrows S to H in Figure 2 using the same procedure to obtain the results shown in Table 1.

第1表から明らかなようにGaP単結晶をスライスして
(10(1)而から<100>方位に10°変位したス
ライス面を得るためには、(111)Ga面と(011
)面とが交差する稜に垂直な方向即ち第2図に示したA
及びE方向にスライス刃を送ってスライスすることによ
り、ソーマーク、チッピング、ワレが大幅に減少し、ス
ライス歩留りが著しく向上することがわかる。
As is clear from Table 1, in order to slice a GaP single crystal and obtain a slice plane displaced by 10° from the (10(1)) direction to the <100> direction, the (111) Ga plane and (011)
) plane, that is, the direction perpendicular to the edge where the plane intersects A
It can be seen that by sending the slicing blade in the E direction and slicing, saw marks, chipping, and cracks are significantly reduced, and the slicing yield is significantly improved.

第 1 表(スライス方向と歩留りとの関係)なお前記
実施例ではGa P単結晶インゴット引上げ方位[10
0]に垂直な(100)面を基準とし[101]方位に
10”傾けた而を変位面とした。
Table 1 (Relationship between slicing direction and yield) In the above example, the GaP single crystal ingot pulling direction [10
The (100) plane perpendicular to [0] was used as a reference, and the displacement plane was tilted 10'' in the [101] direction.

この<100>面を基準とした場合[101]、[+1
0]、[ITO] ノ各方位ニ10’ 傾1tTモI励
な変位面(スライス面)が得られ、この場合のスライス
刃の送り方向は、<100)面に近接する(+11 )
 Ga面、(1’i−丁>Ga面と(011)面、(0
11)面とがそれぞれ交差する稜に直角な方向即ち第2
図のA又はE方向となり、これらの作用、効果は前記実
施例と等価である。 又(100)面と等価な面を基準
面としても差支えない。
If this <100> plane is used as a reference, [101], [+1
0], [ITO] An exciting displacement surface (slicing surface) with an inclination of 10' and an inclination of 10' is obtained, and in this case, the feeding direction of the slicing blade is close to the <100) plane (+11 )
Ga plane, (1'i-d>Ga plane and (011) plane, (0
11) Direction perpendicular to the edges where the planes intersect, that is, the second
The direction is A or E in the figure, and these actions and effects are equivalent to those of the previous embodiment. Also, a plane equivalent to the (100) plane may be used as the reference plane.

又本実施例では[1001方位に引上げ育成した(の{
100}結晶を頭部側からスライスする場合について述
べたが、結晶尾部側からスライスする場合にも全く事情
は同じで、本発明により高いスライス歩留りが得られた
が、スライス刃の送り方向は頭部側からスライスする方
向とは90°異なる方向になることに注意する必要があ
る。
In addition, in this example, the seeds were pulled up and grown in the 1001 direction (of
100} Although the case of slicing a crystal from the head side has been described, the situation is exactly the same when slicing from the crystal tail side, and although a high slicing yield was obtained by the present invention, the feeding direction of the slicing blade is It must be noted that the direction is 90° different from the direction in which the slice is sliced from the side.

父上記実施例では傾き10°の変位例を述べたが、0〜
106までの各種変位について第2図に示すA。
In the above embodiment, an example of displacement with an inclination of 10° was described, but 0 to
A shown in FIG. 2 for various displacements up to 106.

B及びCの3種の方向からスライスしたところ第3図に
示す結果が得られた。 即ち本発明の効果は変位角度が
3°以上になった場合は特に著しいことがわかる。
When sliced from three directions B and C, the results shown in FIG. 3 were obtained. That is, it can be seen that the effect of the present invention is particularly remarkable when the displacement angle is 3° or more.

なお本発明はGa P単結晶にとどまらず、他のGaA
sやInP等の■−v族単結晶への適用もできる。
Note that the present invention is not limited to GaP single crystals, but also applies to other GaA
It can also be applied to ■-v group single crystals such as S and InP.

[発明の効果] 前述のように本発明のGa P単結晶ウェーハの製造方
法によれば、従来のスライス工程でのソーマーク、チッ
ピング、ワレの発生を安定して抑えることができ、スラ
イス歩留りが大幅に向上すると同時に高品質ウェーハが
安定して得られるので、その工業上の効果は大きい。
[Effects of the Invention] As described above, according to the method for manufacturing a GaP single crystal wafer of the present invention, the generation of saw marks, chipping, and cracks in the conventional slicing process can be stably suppressed, and the slicing yield can be significantly increased. This has great industrial effects, as high-quality wafers can be stably obtained at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法におけるスライス刃とその送
り方向並びに単結晶インゴットの変位面との位置関係を
示す配置図、第2図はGa P単結晶の面装置を示す模
式図、第3図は本発明の効果を示す図である。 1・・・(100)面、 2・・・オリエンテーション
フラット、 3・・・変イ立面、 4・・・単結晶イン
ゴット、5・・・スライス刃、 6・・・交差する稜。 (a) 第1図
Fig. 1 is a layout diagram showing the positional relationship between the slicing blade, its feeding direction, and the displacement plane of the single crystal ingot in the manufacturing method of the present invention; Fig. 2 is a schematic diagram showing the plane device for GaP single crystal; The figure is a diagram showing the effects of the present invention. 1... (100) plane, 2... Orientation flat, 3... Unusual elevation, 4... Single crystal ingot, 5... Slice blade, 6... Intersecting edges. (a) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 GaP単結晶インゴットの{100}面から<11
0>方位に少なくとも3°以上傾いた変位面に沿ってス
ライスすると共に上記{100}面に近接する{111
}Ga面と上記{100}面に垂直な{011}面とが
交差する稜に対して垂直な方向にスライス刃を送つてス
ライスすることを特徴とするGaP単結晶ウェーハの製
造方法。
1 <11 from {100} plane of GaP single crystal ingot
0> Slice along a displacement plane tilted by at least 3° in the direction and {111} close to the {100} plane above.
} A method for manufacturing a GaP single crystal wafer, characterized in that slicing is carried out by sending a slicing blade in a direction perpendicular to an edge where the Ga plane and the {011} plane perpendicular to the {100} plane intersect.
JP6136587A 1987-03-18 1987-03-18 Manufacture of gap single crystal wafer Pending JPS63228721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6136587A JPS63228721A (en) 1987-03-18 1987-03-18 Manufacture of gap single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6136587A JPS63228721A (en) 1987-03-18 1987-03-18 Manufacture of gap single crystal wafer

Publications (1)

Publication Number Publication Date
JPS63228721A true JPS63228721A (en) 1988-09-22

Family

ID=13169063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6136587A Pending JPS63228721A (en) 1987-03-18 1987-03-18 Manufacture of gap single crystal wafer

Country Status (1)

Country Link
JP (1) JPS63228721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262825A (en) * 1996-03-29 1997-10-07 Shin Etsu Handotai Co Ltd Method of slicing semiconductor single crystal ingot
WO2016098662A1 (en) * 2014-12-18 2016-06-23 Dowaエレクトロニクス株式会社 Wafer group, wafer manufacturing device, and wafer manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262825A (en) * 1996-03-29 1997-10-07 Shin Etsu Handotai Co Ltd Method of slicing semiconductor single crystal ingot
WO2016098662A1 (en) * 2014-12-18 2016-06-23 Dowaエレクトロニクス株式会社 Wafer group, wafer manufacturing device, and wafer manufacturing method
JP2016119335A (en) * 2014-12-18 2016-06-30 Dowaエレクトロニクス株式会社 Wafer group, and device and method for manufacturing wafer
KR20170096031A (en) * 2014-12-18 2017-08-23 도와 일렉트로닉스 가부시키가이샤 Wafer group, wafer manufacturing device, and wafer manufacturing method
CN107112227A (en) * 2014-12-18 2017-08-29 同和电子科技有限公司 The manufacture method of sets of wafers, the manufacture device of wafer and wafer
US20180026092A1 (en) * 2014-12-18 2018-01-25 Dowa Electronics Materials Co., Ltd. Wafer group, wafer manufacturing device, and wafer manufacturing method
US10319807B2 (en) 2014-12-18 2019-06-11 Dowa Electronics Materials Co., Ltd. Wafer group, wafer manufacturing device, and wafer manufacturing method
CN107112227B (en) * 2014-12-18 2021-06-04 同和电子科技有限公司 Wafer set, wafer manufacturing apparatus, and wafer manufacturing method

Similar Documents

Publication Publication Date Title
EP0559986B1 (en) Method for producing semiconductor wafer and substrate used for producing the semiconductor
CN104786376B (en) The cutting-off method using multi-wire saw of high hardness material
KR101088953B1 (en) Epitaxially coated silicon wafer with ?110? orientation and method for producing it
JP5420281B2 (en) Method for producing group III nitride semiconductor single crystal and method for producing group III nitride semiconductor single crystal substrate
KR100415868B1 (en) Group Ⅲ-V compound semiconductor wafer
JP2015224143A (en) Manufacturing method of group iii nitride substrate
JP4385764B2 (en) Method for producing diamond single crystal substrate
US20040113236A1 (en) Semiconductor wafer and method for producing the same
JP6722578B2 (en) Method for manufacturing SiC wafer
JPS63228721A (en) Manufacture of gap single crystal wafer
JP6701417B1 (en) Indium phosphide substrate and method for manufacturing indium phosphide substrate
US6491753B2 (en) Method for the growing of single crystals
JPH09278595A (en) Iii-v compound semiconductor wafer and its production
US20220025545A1 (en) Sic crystalline substrates with an optimal orientation of lattice planes for fissure reduction and method of producing same
JPH0687691A (en) Production of diamond and diamond single crystal substrate used in the same
JP2007506639A5 (en)
JP6319598B2 (en) RAMO4 substrate and manufacturing method thereof
JP2005059354A (en) Manufacturing method of single crystal lump for use in slicing semiconductor wafer
JPS61214421A (en) Semiconductor wafer
JP7146988B1 (en) GaAs wafer manufacturing method and GaAs wafer group
JP6319597B2 (en) RAMO4 substrate and manufacturing method thereof
US20220025546A1 (en) Sic crystals with an optimal orientation of lattice planes for fissure reduction and method of producing same
JP2683602B2 (en) Semiconductor wafer
JP3531205B2 (en) Substrate for epitaxial growth and epitaxial wafer
JPS60118697A (en) Production of wafer