JPS63228665A - Manufacture of semiconductor storage device - Google Patents

Manufacture of semiconductor storage device

Info

Publication number
JPS63228665A
JPS63228665A JP62063147A JP6314787A JPS63228665A JP S63228665 A JPS63228665 A JP S63228665A JP 62063147 A JP62063147 A JP 62063147A JP 6314787 A JP6314787 A JP 6314787A JP S63228665 A JPS63228665 A JP S63228665A
Authority
JP
Japan
Prior art keywords
silicon
film
insulating film
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063147A
Other languages
Japanese (ja)
Inventor
Naoki Kasai
直記 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62063147A priority Critical patent/JPS63228665A/en
Publication of JPS63228665A publication Critical patent/JPS63228665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To realize high packing density of elements by providing a recessed element forming region into an oxide silicon film on a silicon substrate and selectively polishing the silicon layer buried therein, CONSTITUTION:A SiO2 film 2 is deposited on a P-type silicon substrate 1 and a projected element region 20 is formed by etching the SiO2 film 2. Next, after a groove 4 is formed by etching the P-type silicon substrate, an insulating film 5 consisting of SiO2 film is formed. Thereafter, an opening 6 is provided to the SiO2 film 2 and the substrate surface is exposed. Next, a silicon layer 7 is deposited by selective epitaxial growth of silicon from the opening 6 and thereafter a polycrystalline silicon 8 is deposited to the entire part. Thereafter, the silicon 8 and silicon layer 7 are polished to make flat the surface. Next, a capacitance insulation film 10 of triple layer structure is formed on the surface of silicon 8, the groove 4 is filled with the polycrystalline silicon 11 and it is insulated by the SiO2 film 12. Next, after an electrode 14 is formed on the gate oxide film formed on the surface of silicon layer 7, the source drain 15 is formed by ion implantation of arsenic to the silicon layer 7. Then, an interlayer insulating film 16 is formed to the entire surface and the Al wiring 17 is formed. Thereby, high packing density can be realized by forming a narrow element isolation region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor memory device.

〔従来の技術〕[Conventional technology]

半導体デバイスは、素子を微細にすることで高密度化が
はかられ、とりわけ記憶装置であるダイナミックランダ
ムアクセスメモリー(DRAM)はほぼ3年に記憶容量
が4倍の装置が開発されるという目ざましい速度で発展
している。DRAMにおける1個の記憶素子(メモリー
セル)はスイッチングトランジスタ1つと電荷蓄積キャ
パシター1個の2素子で構成されており、微細化を行な
うために溝型キャパシターや蓄積トランジスタ等の開発
が行なわれている。
Semiconductor devices are becoming more dense by miniaturizing the elements, and in particular, dynamic random access memory (DRAM), which is a storage device, is being developed at a remarkable rate with devices with four times the storage capacity being developed every three years. It is developing in One storage element (memory cell) in DRAM consists of two elements: one switching transistor and one charge storage capacitor, and trench capacitors, storage transistors, etc. are being developed to achieve miniaturization. .

たとえば、エム・才力ムラ(M、Okam+ura )
等によって1985年米国ワシントンで開催されたイン
ターナショナンレ エレクトロン デバイス ミーティ
ング(International Electron
 DevicesMeeting )の講演予稿集29
.7番718〜721頁において、ア スリーディメン
ジオナル DRAM セル オブ スタックド スイッ
チングトランジスタ インS○I (A THREE−
DIMENSIONALDRAM  CELL  OF
  ST八へKE 5WITCHTNG−TRANSI
STORlN5ol  (SSS))と題した論文で第
2図に示すような記憶素子の構造と製造方法が報告され
た。
For example, M, uneven talent (M, Okam+ura)
The International Electron Device Meeting was held in Washington, U.S.A. in 1985.
DevicesMeeting) Lecture Proceedings 29
.. No. 7, pages 718-721, A THREE-dimensional DRAM cell of stacked switching transistors inS○I (A THREE-
DIMENSIONAL DRAM CELL OF
KE to ST8 5WITCHTNG-TRANSI
In a paper entitled STORlN5ol (SSS)), the structure and manufacturing method of a memory element as shown in FIG. 2 was reported.

すなわち、面方位(100)のP型シリコン基板上21
上にイオン注入法によって形成された2μm深さのn+
イオン注入層22を形成し、3μm深さの溝を形成した
後、溝底部および側面部にSiO□/ S i s N
 4 / S i○2の3層からなる容量絶縁膜23を
形成し、つづいてリンをドープした多結晶シリコン24
を溝に埋め込みプレート電極を形成する。
That is, on a P-type silicon substrate with plane orientation (100) 21
A 2 μm deep n+ layer was formed on top by ion implantation.
After forming the ion implantation layer 22 and forming a groove with a depth of 3 μm, SiO□/S i s N is deposited on the bottom and side surfaces of the groove.
4/ A capacitive insulating film 23 consisting of three layers of Si○2 is formed, and then a polycrystalline silicon 24 doped with phosphorus is formed.
embed in the groove to form a plate electrode.

次にCVD法により5i02膜25を堆積した後、シー
ドとなる開口部を設け、前記開口部にのみ選択エピタキ
シャル層26を0.6μm堆積した後、厚さ0.4μm
の多結晶シリコンと600人のキャップ5i02をつづ
けて堆積した後アルゴンレーザーによって多結晶シリコ
ンを溶解再結晶化した再結晶層27を形成する。
Next, after depositing a 5i02 film 25 by the CVD method, an opening to serve as a seed is provided, and a selective epitaxial layer 26 is deposited to a thickness of 0.6 μm only in the opening, and then a selective epitaxial layer 26 is deposited to a thickness of 0.4 μm.
After sequentially depositing 600 polycrystalline silicon and 600 caps 5i02, a recrystallized layer 27 is formed by melting and recrystallizing the polycrystalline silicon using an argon laser.

次にキャップ5i02膜を除去後、再結晶層27にホウ
素をイオン注入し、選択酸化法によりフィールド酸化を
行い、つづいて厚さ500人のゲート酸化膜を形成した
後通常の工程によりnチャネルMOSトランジスタを形
成する。次にワード線28形成後PSGの層間絶縁膜2
9堆積後ビツト線30を形成することにより第2図に示
した構造と記憶素子が完成する。
Next, after removing the cap 5i02 film, boron ions are implanted into the recrystallized layer 27, field oxidation is performed using a selective oxidation method, and a gate oxide film with a thickness of 500 nm is formed. Form a transistor. Next, after forming the word line 28, the PSG interlayer insulating film 2
After 9 deposition, bit lines 30 are formed to complete the structure and memory element shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置の製造方法においては、スイ
ッチングトランジスタを分離するために選択酸化法を用
いるため幅1μm以下の分離領域の形成が困難である。
In the conventional semiconductor device manufacturing method described above, since selective oxidation is used to isolate the switching transistors, it is difficult to form isolation regions with a width of 1 μm or less.

また絶縁膜上の単結晶シリコン層を形成するために選択
エピタキシャル成長と、レーザー再結晶化技術という2
つの新技術が必要であるが、これらの技術は信頼性が十
分ではない。また、製造工程中にレーザーによる再結晶
化や選択酸化法という高温プロセスを用いることにより
不純物の熱拡散を生じるなど微細化が困難になるという
問題点がある。本発明の目的は上記問題点を除去し狭い
素子分離領域を容易に形成でき高密度化された半導体装
置を提供することにある。
In addition, in order to form a single crystal silicon layer on an insulating film, two methods are used: selective epitaxial growth and laser recrystallization technology.
New technologies are needed, but these technologies are not reliable enough. Further, there is a problem in that the use of high-temperature processes such as laser recrystallization and selective oxidation during the manufacturing process causes thermal diffusion of impurities, making it difficult to miniaturize. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems and provide a high-density semiconductor device in which a narrow element isolation region can be easily formed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体記憶装置の製造方法は、半導体基板上の
所定部分に凹状の領域のある絶縁膜を形成して素子形成
領域とする工程と、前記素子形成領域内の所定部分の絶
縁膜及び半導体基板をエツチングし溝を形成したのち該
溝の底面及び側面に絶縁膜を形成する工程と、前記素子
形成領域内の他の所定部分の絶縁膜をエツチングして開
口部を設け前記基板表面を露出する工程と、前記開口部
より選択的に半導体のエピタキシャル成長を行ない前記
素子形成領域内に素子形成領域を囲む前記絶縁膜より厚
い半導体層を形成したのち全面に導電体層を形成する工
程と、前記導電体層及び前記半導体層を選択研磨し平坦
化する工程とを含んで構成される。
A method of manufacturing a semiconductor memory device according to the present invention includes the steps of: forming an insulating film with a concave region in a predetermined portion on a semiconductor substrate to form an element formation region; A step of etching the substrate to form a groove and then forming an insulating film on the bottom and side surfaces of the groove, and etching the insulating film in other predetermined parts in the element formation region to form an opening and expose the surface of the substrate. a step of epitaxially growing a semiconductor selectively from the opening to form a semiconductor layer in the element formation region that is thicker than the insulating film surrounding the element formation region, and then forming a conductor layer over the entire surface; The method includes a step of selectively polishing and planarizing the conductor layer and the semiconductor layer.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を用いて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a)〜(h)は、本発明の一実施例を説明する
ための製造工程順に示した半導体チップの平面図および
断面図である。
FIGS. 1(a) to 1(h) are a plan view and a cross-sectional view of a semiconductor chip shown in the order of manufacturing steps for explaining one embodiment of the present invention.

まず第1(a)及び第1図(a)のA−A’線断面図で
ある第1図(b)に示すようにP型シリコン基板1上に
熱酸化により厚さ0.6μmのSi○2膜2を堆積し、
リソグラフィー技術とドライエツチング技術により所望
の領域のSiO□2膜を約0.15μmエツチングし、
SiO□膜2に底面及び側面を囲まれた凸状の素子領域
2oを形成する。この素子形成領域20は凹状の5i0
2膜3で分離される。
First, as shown in FIG. 1(a) and FIG. 1(b), which is a cross-sectional view taken along the line AA' in FIG. ○2 Deposit film 2,
Etch the SiO□2 film in the desired area by approximately 0.15 μm using lithography technology and dry etching technology,
A convex element region 2o whose bottom and side surfaces are surrounded is formed in the SiO□ film 2. This element formation region 20 has a concave shape of 5i0
The two are separated by a membrane 3.

次に第1図(C)及びそのB−B’線断面図である第1
図(d)に示すように、素子形成領域内の所定部分のS
iO□膜2続いてP型シリコン基板を3μmエツチング
して溝4を形成したのち、満面を熱酸化し、厚さ約10
00人のSiO□膜からなる絶縁膜5を形成する。
Next, Fig. 1(C) and the first
As shown in Figure (d), the S
iO□ film 2 Next, the P-type silicon substrate was etched by 3 μm to form grooves 4, and then the entire surface was thermally oxidized to a thickness of approximately 10 μm.
An insulating film 5 made of a SiO□ film of 0.0000000000000000 is formed.

次に、第1図(e)とそのc−c’線断面図である第1
図(f)に示すように、再び素子形成領域20内の他の
所定部分の5i02WA2をエッ°チングし開口部6を
設けシリコン基板の表面を露出する。
Next, FIG.
As shown in Figure (f), the 5i02WA2 in another predetermined portion within the element formation region 20 is etched again to form an opening 6 and expose the surface of the silicon substrate.

次に、第1図(g)に示すように、5i02C(! 2
 / HC!! / H2混合ガスを用イテ、900’
C50Torrの条件で前記開口部6より選択的にシリ
コンをエピタキシャル成長し素子形成領域20内に凸状
のS i 02膜3より厚いシリコン層7を堆積し、ひ
きつづき、S i H4/ P H3/ H2混合ガス
を用いて640℃2 Torrの条件で厚さ約1000
人の第1多結晶シリコン8を全面に堆積する。
Next, as shown in FIG. 1(g), 5i02C(! 2
/ HC! ! / Use H2 mixed gas, 900'
Silicon is epitaxially grown selectively from the opening 6 under the condition of C50 Torr, and a silicon layer 7 thicker than the convex Si02 film 3 is deposited in the element forming region 20, followed by a SiH4/PH3/H2 mixture. Using gas at 640℃2 Torr to a thickness of about 1000mm
First polycrystalline silicon 8 is deposited on the entire surface.

次に第1図(h)とそのD−D’線断面図である第1図
(i)に示すように、選択研磨法により、凸状の5i0
2膜3をストッパとし第1多結晶シリコン8およびシリ
コン層7を研磨し表面を平坦化する。
Next, as shown in FIG. 1(h) and FIG. 1(i), which is a sectional view taken along the line DD', a convex 5i0
Using the second film 3 as a stopper, the first polycrystalline silicon 8 and the silicon layer 7 are polished to planarize their surfaces.

次に第1図(j)に示すように従来の技術により第1多
結晶シリコン8の表面を約60人熱酸化し、つづいて8
0人のシリコン窒化膜を堆積し、さらに熱酸化して20
人のSiO2膜を形成した3層構造の容量絶縁膜10を
形成し、つづいて溝4を第1多結晶シリコン11で埋め
込みその表面を5i02膜12で絶縁する。
Next, as shown in FIG. 1(j), the surface of the first polycrystalline silicon 8 is thermally oxidized by about 60 people using a conventional technique.
0 silicon nitride film was deposited and further thermally oxidized to 20
A capacitor insulating film 10 having a three-layer structure made of a SiO2 film is formed, and then the trench 4 is filled with a first polycrystalline silicon 11 and its surface is insulated with a 5i02 film 12.

以下第1図(k)に示すように、シリコン層7の表面を
熱酸化してゲート酸化膜13を形成し、次でゲート酸化
膜上の所望の領域にゲート電極(ワード線)14を形成
したのち、シリコン層7にヒ素をイオン注入してソース
・ドレイン15を形成する0次いで全面に層間絶縁ll
5(16を堆形し、コンタンクトホール形成後、At’
配線(ビット線)17を形成することによりダイナミッ
クランダムメモリーが完成する。
As shown in FIG. 1(k), the surface of the silicon layer 7 is thermally oxidized to form a gate oxide film 13, and then a gate electrode (word line) 14 is formed in a desired region on the gate oxide film. After that, arsenic is ion-implanted into the silicon layer 7 to form the source/drain 15. Next, interlayer insulation is applied to the entire surface.
After depositing 5 (16) and forming a contact hole, At'
A dynamic random memory is completed by forming wiring (bit line) 17.

このように、本実施例においては5i02膜内に凸状の
素子形成領域を形成し、この中に埋込んだシリコン層7
を選択研磨することにより、凸状の5i02膜3からな
る狭い素子分離領域が容易に形成でき、また凸状の5i
02膜3の段差を、必要とするソース・ドレインの最小
の厚さに等しくすることにより寄生容量の低減及びα線
のソフトエラーの防止を行うことができる。
As described above, in this example, a convex element formation region is formed in the 5i02 film, and the silicon layer 7 buried therein is
By selectively polishing the convex 5i02 film 3, a narrow element isolation region made of the convex 5i02 film 3 can be easily formed.
By making the step of the 02 film 3 equal to the required minimum thickness of the source/drain, parasitic capacitance can be reduced and soft errors caused by α rays can be prevented.

尚、上記実施例において、エピタキシャル成長条件およ
び第1多結晶シリコン堆積条件を指示したが、その値に
限定するものでなく、同様の結果の得られる条件であれ
ばよい。また上記実施例では素子領域を規定する絶縁膜
として5i02を用いたが、Si3N4など他の絶縁膜
を用いてもよい。また素子領域を形成する絶縁膜の凹み
の形成方法としては、選択酸化を2回行なう等の方法も
ある。さらに、上記実施例ではシリコンを選択エピタキ
シャル成長したが、GeやGaAs等他の半導体でもよ
い。
In the above embodiments, the epitaxial growth conditions and the first polycrystalline silicon deposition conditions are specified, but the conditions are not limited to these values, and any conditions that provide similar results may be used. Further, in the above embodiment, 5i02 was used as the insulating film for defining the element region, but other insulating films such as Si3N4 may be used. Further, as a method for forming the recesses in the insulating film forming the element region, there is also a method such as performing selective oxidation twice. Furthermore, although silicon was selectively epitaxially grown in the above embodiment, other semiconductors such as Ge and GaAs may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、シリコン基板上の酸化シ
リコン膜内に凹状の素子形成領域を設け、この中に埋込
まれたシリコン層を選択研磨することにより、容易に平
坦な狭い素子分離領域を形成でき素子を高密度化できる
効果がある。また、酸化シリコン膜の段差をソース・ド
レインの厚さに等しくすることで寄生容量の低減が図ら
れかつα線のソフトエラー防止にもなる。
As explained above, the present invention provides a concave element formation region in a silicon oxide film on a silicon substrate, and selectively polishes the silicon layer embedded therein, thereby easily creating a flat narrow element isolation region. This has the effect of increasing the density of the device. Furthermore, by making the step difference in the silicon oxide film equal to the thickness of the source and drain, parasitic capacitance can be reduced and soft errors caused by alpha rays can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(k>は本発明の一実施例を説明するた
めの主な製造工程順に示した半導体チップの平面図と断
面図、第2図は従来の半導体記憶装置の斜視図である。 1・・・P型シリコン基板、2・・・S i 02膜、
3・・・凸状の5i02膜、4・・・溝、5・・・絶縁
膜、6・・・開口部、7・・・シリコン層、8・・・第
1多結晶シリコン、10・・・容量絶縁膜、11・・・
多結晶シリコン、12・・・5i02膜、13・・・ゲ
ート酸化膜、14・・・ゲート電極(ワード線)、15
・・・ソース・ドレイン、16・・・層間絶縁膜、17
・・・AffWl線(ビット線)、21・・・P型シリ
コン基板、22・・・n+イオン注入層、23・・・容
量絶縁膜、24・・・リンドープ多結晶シリコン、25
・・・5i02膜、26・・・選択エピタキシャル層、
27・・・再結晶層、28・・・ワード線、29・・・
層間絶縁膜、30・・・ビット線。   ・″曳埋人弁
理士内原  晋?゛ 第1図 翳1 面 牛2凹
FIGS. 1(a) to (k) are a plan view and a cross-sectional view of a semiconductor chip shown in order of main manufacturing steps to explain an embodiment of the present invention, and FIG. 2 is a perspective view of a conventional semiconductor memory device. 1...P-type silicon substrate, 2...S i 02 film,
3... Convex 5i02 film, 4... Groove, 5... Insulating film, 6... Opening, 7... Silicon layer, 8... First polycrystalline silicon, 10...・Capacitive insulation film, 11...
Polycrystalline silicon, 12...5i02 film, 13... Gate oxide film, 14... Gate electrode (word line), 15
...source/drain, 16...interlayer insulating film, 17
. . . AffWl line (bit line), 21 . . . P-type silicon substrate, 22 .
...5i02 film, 26... selective epitaxial layer,
27... Recrystallization layer, 28... Word line, 29...
Interlayer insulating film, 30... bit line.・"Susumu Uchihara, patent attorney?" Figure 1, shadow 1, mengyu 2 indentations

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上の所定部分に凹状の領域のある絶縁膜を
形成して素子形成領域とする工程と、前記素子形成領域
内の所定部分の絶縁膜及び半導体基板をエッチングし溝
を形成したのち該溝の底面及び側面に絶縁膜を形成する
工程と、前記素子形成領域内の他の所定部分の絶縁膜を
エッチングして開口部を設け前記基板表面を露出する工
程と、前記開口部より選択的に半導体のエピタキシャル
成長を行ない前記素子形成領域内に素子形成領域を囲む
前記絶縁膜より厚い半導体層を形成したのち全面に導電
体層を形成する工程と、前記導電体層及び前記半導体層
を選択研磨し平坦化する工程とを含むことを特徴とする
半導体記憶装置の製造方法。
forming an insulating film with a concave region on a predetermined portion of the semiconductor substrate to form an element formation region; etching the insulating film and the semiconductor substrate at a predetermined portion within the element formation region to form a groove; forming an insulating film on the bottom and side surfaces of the substrate, etching the insulating film at other predetermined portions in the element formation region to provide an opening and exposing the surface of the substrate, and selectively forming the substrate surface through the opening. A step of epitaxially growing a semiconductor to form a semiconductor layer in the element formation region that is thicker than the insulating film surrounding the element formation region, and then forming a conductor layer on the entire surface, and selectively polishing the conductor layer and the semiconductor layer. 1. A method of manufacturing a semiconductor memory device, comprising the step of planarizing.
JP62063147A 1987-03-17 1987-03-17 Manufacture of semiconductor storage device Pending JPS63228665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063147A JPS63228665A (en) 1987-03-17 1987-03-17 Manufacture of semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063147A JPS63228665A (en) 1987-03-17 1987-03-17 Manufacture of semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS63228665A true JPS63228665A (en) 1988-09-22

Family

ID=13220842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063147A Pending JPS63228665A (en) 1987-03-17 1987-03-17 Manufacture of semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS63228665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365097A (en) * 1992-10-05 1994-11-15 International Business Machines Corporation Vertical epitaxial SOI transistor, memory cell and fabrication methods
US5641694A (en) * 1994-12-22 1997-06-24 International Business Machines Corporation Method of fabricating vertical epitaxial SOI transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365097A (en) * 1992-10-05 1994-11-15 International Business Machines Corporation Vertical epitaxial SOI transistor, memory cell and fabrication methods
US5641694A (en) * 1994-12-22 1997-06-24 International Business Machines Corporation Method of fabricating vertical epitaxial SOI transistor

Similar Documents

Publication Publication Date Title
JP2994239B2 (en) SOI trench structure and method of manufacturing the same
KR900002885B1 (en) Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor
US4920065A (en) Method of making ultra dense dram cells
US5528062A (en) High-density DRAM structure on soi
EP0262294B1 (en) A fabrication method for forming a selfaligned contact window and connection in an epitaxial layer and device structures employing the method
US5744386A (en) Method of fabricating a memory cell in a substrate trench
US4894697A (en) Ultra dense dram cell and its method of fabrication
US5064777A (en) Fabrication method for a double trench memory cell device
JPH0344419B2 (en)
JPH04233271A (en) Manufacture of memory cell
US5034787A (en) Structure and fabrication method for a double trench memory cell device
JPH021164A (en) Formation of buried transistor and capacitor
JPS62286270A (en) Semiconductor memory
US5156993A (en) Fabricating a memory cell with an improved capacitor
US5635740A (en) Semiconductor device and method of manufacturing the same
JP2581654B2 (en) One-transistor cell device for dynamic semiconductor memory and manufacturing method thereof
US5292679A (en) Process for producing a semiconductor memory device having memory cells including transistors and capacitors
JP3450682B2 (en) Semiconductor storage device and method of manufacturing the same
US6037199A (en) SOI device for DRAM cells beyond gigabit generation and method for making the same
JPS63228665A (en) Manufacture of semiconductor storage device
US5300800A (en) Low leakage substrate plate DRAM cell
JPH022672A (en) Semiconductor memory cell and manufacture thereof
JPH0434831B2 (en)
JPH0451565A (en) Semiconductor memory device and its manufacture
JPH06204429A (en) Semiconductor memory device and manufacture thereof