JPS63228037A - Force measuring device - Google Patents
Force measuring deviceInfo
- Publication number
- JPS63228037A JPS63228037A JP3295188A JP3295188A JPS63228037A JP S63228037 A JPS63228037 A JP S63228037A JP 3295188 A JP3295188 A JP 3295188A JP 3295188 A JP3295188 A JP 3295188A JP S63228037 A JPS63228037 A JP S63228037A
- Authority
- JP
- Japan
- Prior art keywords
- force
- measuring
- force measuring
- measuring device
- measuring element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims description 8
- 230000008602 contraction Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 claims 1
- 238000001228 spectrum Methods 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 241000255925 Diptera Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/16—Measuring force or stress, in general using properties of piezoelectric devices
- G01L1/162—Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明の対象は、力変換器として構成した少くとも1つ
の測定部材と、測定部材に結合してあって評価・表示装
置に接続できる少くとも1つの力測定素子とを有する、
荷重測定のための力測定装置に関する。Detailed description of the invention [Industrial field of application] The object of the invention is at least one measuring element designed as a force transducer and at least one measuring element connected to the measuring element and connectable to an evaluation and display device. and one force measuring element.
The present invention relates to a force measuring device for measuring loads.
〔従来の技術及び発明が解決しようとする課題〕小さい
数分の1gから中程度の数−までの力の測定は、多(の
場合、多様な物理的性質に依拠する力検知器またはスト
ローク検知器で行うが、この種の検知器は、経験的に極
めて敏感であり、大きい力には不適である。従って、大
きい力を測定するには、機械的で二またはバネ秤を使用
する必要があるが、この場合、もちろん、精度は低下す
る。[Prior Art and Problems to be Solved by the Invention] Measuring forces from a small fraction of a gram to a moderate number of grams is difficult with force detectors or stroke detectors that rely on a variety of physical properties. Empirically, this type of detector is extremely sensitive and unsuitable for large forces.Therefore, to measure large forces, it is necessary to use mechanical, double or spring scales. However, in this case, of course, the accuracy decreases.
もちろん、大きい力、特に、最大数トンの力を簡単に迅
速に、かつ、正確に検知するという重大な問題がある。Of course, there is a serious problem of simply, quickly and accurately sensing large forces, especially forces of up to several tons.
本発明の目的は、このように大きい力も高精度で測定で
きる装置を創生ずることにある。An object of the present invention is to create a device that can measure such large forces with high precision.
〔課題を解決するための手段及び作用〕この目的は、冒
頭に述べた種類の力測定装置において、本発明にもとづ
き、測定部材を弾性範囲内で変形可能な部材として構成
し、測定すべき力を受けて荷重方向とは異なる方向へ力
に比例して生ずる測定部材の弾性変形が測定素子に作用
するよう、測定部材に力測定素子を結合することによっ
て、達成される。[Means and effects for solving the problem] This object is to provide a force measuring device of the type mentioned at the beginning, in which the measuring member is configured as a member that can be deformed within an elastic range, and the force to be measured is This is achieved by coupling the force-measuring element to the measuring element such that an elastic deformation of the measuring element proportional to the force in a direction different from the load direction acts on the measuring element.
この場合、荷重によって誘起される測定部材の横方向伸
びまたは横方向縮みが力測定素子に作用するよう、力測
定素子を荷重方向に対して垂直に測定部材に結合するの
が好ましい。かくして、第1に、高荷重についても、極
めて正確な力測定素子を直接に、即ち、てこ装置を中間
に設けることなく、使用することもできる。In this case, the force-measuring element is preferably coupled to the measuring element perpendicularly to the direction of the load, such that the lateral elongation or contraction of the measuring element induced by the load acts on the force-measuring element. Thus, firstly, even for high loads, highly accurate force-measuring elements can also be used directly, ie without intermediate lever devices.
本発明対象の場合、測定部材の材料の弾性変形範囲にお
いて力に比例する横方向伸びまたは横方向縮みを利用す
るのが好ましい。一定の係数、即ち、ポアッソン比だけ
荷重方向の変形より小さい、荷重方向に垂直な測定部材
の変形を利用することによって、てこを中間に設けるこ
となく、力の方向変更および変成を行うことができる。In the case of the object of the invention, it is preferable to use the force-proportional lateral elongation or lateral contraction in the range of elastic deformation of the material of the measuring element. By using a deformation of the measuring member perpendicular to the loading direction that is smaller than the deformation in the loading direction by a constant factor, i.e. Poisson's ratio, it is possible to redirect and transform the force without intermediate levers. .
この力の変成は、各種のパラメータによって、特に、測
定部材の外側受け面の寸法、受け面の相互間隔又はリン
グ形状の場合は径、力測定素子の幾何学的寸法、測定部
材および力測定素子の材料の弾性データ(弾性率および
ポアッソン比)および中間の結合要素を選択することに
よって、実質的に任意に設定でき、所望の要求に適合さ
せることができる。This force transformation depends on various parameters, in particular the dimensions of the outer bearing surface of the measuring element, the mutual spacing of the bearing surfaces or the diameter in the case of a ring shape, the geometrical dimensions of the force-measuring element, the measuring element and the force-measuring element. By selecting the elastic data of the material (elastic modulus and Poisson's ratio) and the intermediate coupling elements, it can be set virtually arbitrarily and adapted to the desired requirements.
かくして、唯一つの力測定素子によって、多様な荷重ス
ペクトルのための力測定装置シリーズを作製できると云
う利点が得られる。かくして、更に、例えば、荷重スペ
クトル同一の条件において、精度が異なり、従って、コ
ストも異なる力測定素子を使用して、要件に対応して精
度の異なるタイプの力測定装置を得ることができる。The advantage thus obtained is that with a single force-measuring element it is possible to create a series of force-measuring devices for diverse load spectra. Thus, it is furthermore possible to obtain force-measuring devices of different types with different accuracies depending on the requirements, for example by using force-measuring elements with different accuracies and therefore with different costs under the same load spectrum conditions.
本発明に係る装置の別の利点は、(荷重方向の)構造高
さが低い点にある。即ち、装置の幾何学的寸法に関して
より大きい自由度が得られる。比較的小さい容積で、場
合によっては、高級で高価な材料で、大きい力を極めて
簡単に測定できる。Another advantage of the device according to the invention is its low structural height (in the loading direction). That is, greater degrees of freedom are obtained regarding the geometrical dimensions of the device. Large forces can be measured very easily in relatively small volumes, and in some cases in high grade and expensive materials.
測定部材の材料選択に関しても、同じく、大きい自由度
が得られる0弾性的なカー変移特性曲線がある範囲にお
いて線形に推移する材料(例えば、金属、セラミック材
料1等)を使用するのが好ましい、バネ特性が極めて良
い材料(僅かな弾性残存作用;ヒステリシス)が特に好
適である。Regarding the material selection of the measurement member, it is also preferable to use a material (for example, metal, ceramic material, etc.) whose 0-elastic Kerr transition characteristic curve changes linearly within a certain range, allowing a large degree of freedom. Particularly suitable are materials with very good spring properties (slight residual elasticity; hysteresis).
特定の用途について、力測定素子を適切に構成すれば、
本発明にもとづき、更に、荷重方向とは異なる方向へ荷
重の大きさに対応して弾性的に湾曲する弾性部材として
測定部材を構成し、測定部材に結合された力測定素子に
上記変形が作用されるよう、装置を構成することができ
る。For a particular application, the force-measuring element can be configured appropriately.
Based on the present invention, the measuring member is further configured as an elastic member that elastically curves in a direction different from the load direction in accordance with the magnitude of the load, and the above deformation acts on a force measuring element coupled to the measuring member. The device can be configured to
この場合、意図するのは、全く、測定部材の横方向伸び
または横方向縮みではなく、測定部材の弾性湾曲である
。In this case, what is intended is not a lateral elongation or lateral contraction of the measuring element at all, but an elastic curvature of the measuring element.
この種の装置の場合、少くとも2つの弾性部材を荷重受
け面の下方に対向させて設け、力測定素子を例えば共振
子として構成して上記弾性部材の間に延在させるのが好
ましい。In the case of a device of this type, it is preferable for at least two elastic members to be provided opposite each other below the load-receiving surface, and for the force-measuring element to be constructed, for example as a resonator, and to extend between the elastic members.
〔実施例] 以下に図示の本発明の実施例を詳細に説明する。〔Example] The illustrated embodiments of the invention will be described in detail below.
第1図に、本発明に係る2分割形力測定装置の横断面図
を示した0本来の測定部材1は、上半部1aと、この上
半部と同形の下半部1bとから成り、双方の半部は、本
質的に長方形に構成してあり、外面および内面に、それ
ぞれ、力導入用の外側受け面3′を有する突起3と、力
測定素子2をクランプする内側受け面4′を有する突起
4とを存する。im定部材1a、 lbの自由[5には
、結合要素7(本実施例では、ナツト7′を備えたビン
ネジ)のための貫通孔6が設けである。突起3,4は、
矢印で示した力の作用に関して、上下に同一線上にある
。FIG. 1 shows a cross-sectional view of a two-part force measuring device according to the present invention.The original measuring member 1 consists of an upper half 1a and a lower half 1b having the same shape as the upper half. , both halves are of essentially rectangular construction and have on their outer and inner surfaces respectively a projection 3 with an outer receiving surface 3' for introducing a force and an inner receiving surface 4 for clamping the force-measuring element 2. '. The free ends of the fixed members 1a, lb are provided with a through hole 6 for a connecting element 7 (in this example a pin screw with a nut 7'). The protrusions 3 and 4 are
They are collinear above and below with respect to the action of the forces indicated by the arrows.
第2図に、第1図の力測定装置の斜視図を示した。力測
定要素2の厚さは、判り易いよう、測定部材の寸法に比
して拡大して示しである。FIG. 2 shows a perspective view of the force measuring device shown in FIG. The thickness of the force measuring element 2 is shown enlarged compared to the dimensions of the measuring element for clarity.
2つの相互に垂直をなす力測定素子2a、2bを有する
円筒形力測定装置を第3.4図に示した。測定部材は、
分割してあり、上半部1aおよび下半部軸線方向横断面
図である第4図において、双方の相互に垂直に設けた力
測定素子2a、2bは、接着によりまたは別の方法でウ
ェブ8に固定しである。A cylindrical force-measuring device with two mutually perpendicular force-measuring elements 2a, 2b is shown in FIG. 3.4. The measurement member is
In FIG. 4, which is split and shows an axial cross-section of the upper half 1a and the lower half, the two mutually perpendicular force-measuring elements 2a, 2b are attached to the web 8 by gluing or otherwise. It is fixed to .
材料の熱膨張を考慮するため2つの同一の力測定素子2
.2′を設けた力測定装置を第5.6図に示した。か(
して、測定時、測定部材および力測定素子の異なる熱膨
張(および環境の他の影響)を自動的に補償できる。Two identical force measuring elements 2 to account for thermal expansion of the material
.. A force measuring device equipped with 2' is shown in Figure 5.6. mosquito(
Thus, different thermal expansions (and other influences of the environment) of the measuring member and force-measuring element can be automatically compensated for during measurements.
上述の測定装置の場合、測定すべき荷重kによる測定部
材の横方向伸びまたは横方向縮みを力測定素子に作用さ
せ、電子測定装置(図示してない)によって力を求める
。場合によっては、各測定値を加算することができる(
複数の力測定素子)。In the case of the measuring device described above, a lateral elongation or lateral contraction of the measuring member due to the load k to be measured acts on a force-measuring element, and the force is determined by means of an electronic measuring device (not shown). In some cases, each measurement can be added (
multiple force-measuring elements).
この実施例は、極めて高い精度を達成できる共振子(特
に、水晶共振子)を力測定素子として使用したことによ
って、大きい力の測定に特に好適である。This embodiment is particularly suitable for measuring large forces, since it uses a resonator (in particular a crystal resonator) as the force measuring element, which can achieve extremely high precision.
共振子に作用する測定せる力を求め表示する電しない。This method calculates and displays the measurable force acting on the resonator.
力測定装置の特に簡単な実施例を第7図に示した。A particularly simple embodiment of a force measuring device is shown in FIG.
この場合、測定すべき力は、力測定素子2の一端にのみ
作用し、この力による横方向縮みが測定素子に作用する
。(単一形または分割形)測定部材1は、もちろん、測
定素子2(共振子)が有効に負荷されるよう力測定素子
の他端も固定する。In this case, the force to be measured acts only on one end of the force-measuring element 2, and a lateral contraction due to this force acts on the measuring element. The measuring element 1 (single or split) is of course also fixed at the other end of the force-measuring element so that the measuring element 2 (resonator) is effectively loaded.
第8図に、別の実施例、即ち、双方の力導入板10、1
1によって保持、固定された弾性要素9として測定部材
を構成した形式の力測定装置の横断面図を示した。この
場合、力測定素子2は、矢印で示した荷重方向に対して
垂直をなす弾性要素9の変形を検知する。この場合も、
荷重の大きさに応じて、力測定素子2を共振子として構
成できる。FIG. 8 shows another embodiment, namely both force introducing plates 10, 1.
FIG. 1 shows a cross-sectional view of a force-measuring device of the type in which the measuring element is constructed as an elastic element 9 held and fixed by 1. FIG. In this case, the force-measuring element 2 detects a deformation of the elastic element 9 perpendicular to the load direction indicated by the arrow. In this case too,
Depending on the magnitude of the load, the force measuring element 2 can be constructed as a resonator.
測定部材1に対する力測定素子2の固定は、単に機械的
にまたは接着によってまたは別の適切な方法で行い得る
。The fixation of the force-measuring element 2 to the measuring element 1 can take place solely mechanically or by gluing or in another suitable manner.
以上説明したように、本発明は荷重によって誘起される
測定部材の横方向伸びもしくは横方向縮み又は横方向の
弾性湾曲を力測定素子に直接作用させることによって、
高荷重についてもてこ装置等を中間に設けることなく正
確に測定を行うことができる。As explained above, the present invention allows lateral elongation or lateral contraction or lateral elastic curvature of a measuring member induced by a load to directly act on a force measuring element.
It is possible to accurately measure high loads without providing a lever device or the like in the middle.
また、荷重方向の変形より小さい横方向の変形を利用す
ることによって、多様な荷重スペクトルに対し所要の精
度で、また多様のシリーズの力測定装置を提供すること
ができると共に、比較的小さい容積で大きい力を簡単に
測定することができる。Furthermore, by utilizing lateral deformations that are smaller than deformations in the loading direction, it is possible to provide force measuring devices with the required accuracy for a variety of load spectra and in a variety of series, and with a relatively small volume. Large forces can be easily measured.
第1図は本発明の一実施例としての力測定素子をクラン
プした長方形の2背割形力測定装置の横断面図、第2図
は第1図の力測定装置の斜視図、第3図は本発明の他の
実施例としての2つの力測定素子を有する円形の多分割
形力測定装置の横断面図、第4図は第3図の力測定装置
の軸線方向横断面図、第5,6図は、温度補償のための
差動力測定素子の略図、第7図は本発明の特に簡単な実
施例の断面図、第8図は測定部材を弾性部材として構成
した本発明の更に他の実施例としての力測定装置の横断
面図である。
la;lb;9−−一測定部材、
2、2 ’ 、2a、2b−一一力測定素子、3.4−
・−突起。
代理人 弁理士 坂 間 暁
外3名
l−の浄侵(円シに変更なし)
Fig、 4 Fig、 2F+g、
3 F+9.4K K
Fig、 5 Fig、 6手続補正
書(自船
昭和63年 3月28日
特許庁長官 小 川 邦 夫 殿
1、事件の表示
昭和63年特許願第 32951号
2、発明の名称
力測定装置
3、補正をする者
事件との関係 特許出願人
メツトラ−・インストルメンテ・アー・ゲー4、代理人Fig. 1 is a cross-sectional view of a rectangular split-back force measuring device in which a force measuring element is clamped as an embodiment of the present invention, Fig. 2 is a perspective view of the force measuring device of Fig. 1, and Fig. 3 4 is a cross-sectional view in the axial direction of the force-measuring device of FIG. 3, and FIG. , 6 is a schematic diagram of a differential force measuring element for temperature compensation, FIG. 7 is a sectional view of a particularly simple embodiment of the invention, and FIG. 8 is a further embodiment of the invention in which the measuring member is constructed as an elastic member. 1 is a cross-sectional view of a force measuring device as an example of FIG. la; lb; 9--Measuring member, 2, 2', 2a, 2b--Force measuring element, 3.4-
・-Protrusion. Agent Patent Attorney Sakama Akigai 3 person l- purification (no change to Enshi) Fig, 4 Fig, 2F+g,
3 F+9.4K K Fig, 5 Fig, 6 Procedural amendment (own ship March 28, 1988 Director General of the Patent Office Kunio Ogawa 1, Indication of the case Patent Application No. 32951 of 1988 2, Title of the invention Force Measuring Device 3, Relationship with the Amendment Case Patent Applicant Mettler Instrumente AG 4, Agent
Claims (1)
、測定部材に結合してあって評価・表示装置に接続でき
る少くとも1つの力測定素子とを有する、荷重測定のた
めの力測定装置において、測定部材が、弾性範囲内で変
形可能な部材(1a、1b;9)であり、力測定素子(
2)が、測定すべき力を受けて荷重方向(k)とは異な
る方向(k′)へ力に比例して生ずる測定部材の弾性変
形が測定素子に作用するよう、測定部材(1a、1b;
9)に結合してあることを特徴とする力測定装置。 2、力測定素子(2)が、荷重方向(k)に対して垂直
に測定部材(1a、1b;9)に結合してあることを特
徴とする請求項1に記載の力測定装置。 3、力測定要素(2)が、荷重によって誘起される測定
部材の横方向伸びまたは横方向縮み(ポアッソン)を測
定し、かくして、ポアッソン比にもとづき測定部材に作
用する力に対して所定の比をなす力を測定するよう、測
定部材(1a、1b)が構成してあることを特徴とする
請求項1又は2に記載の力測定装置。 4、測定部材が、均一材料の成形部材から成ることを特
徴とする請求項1〜3のいづれかに記載の力測定装置。 5、測定部材が、多部分、例えば、少くとも2つの、例
えば、同形の半部(1a、1b)から構成されているこ
とを特徴とする請求項1〜3のいづれかに記載の力測定
装置。 6、測定部材が、パイプ状またはリング状に構成してあ
り、周囲の少くとも一部にわたって延びる1つまたは複
数の力導入用受け面(8)を有することを特徴とする請
求項1〜5のいづれかに記載の力測定装置。 7、力測定素子が、共振子(例えば、水晶共振子)とし
て構成してあることを特徴とする請求項1〜6のいづれ
かに記載の力測定装置。 8、2つの相互に垂直に配置した力測定素子が、荷重方
向とは異なる方向へ向く測定面内で、測定部材に結合し
てあることを特徴とする請求項1〜7のいづれかに記載
の力測定装置。 9、環境の影響(例えば、温度変動、圧力変動、湿度変
動)を排除するため、少くとも1つの別の力測定素子が
設けてあることを特徴とする請求項1〜8のいづれかに
記載の力測定装置。 10、測定部材の力導入に役立つ受け面が、本質的に、
測定部材と力測定素子との結合個所の直上または直下に
設けてあることを特徴とする請求項1〜9のいづれかに
記載の力測定装置。 11、各力測定素子の少くとも一端が、多部分から成る
測定部材の上半部と下半部との間にクランプしてあるこ
とを特徴とする請求項1〜3、5〜10のいづれかに記
載の力測定装置。 12、各力測定素子が、測定部材の突起(8)に固定し
てあることを特徴とする請求項1〜10のいづれかに記
載の力測定装置。 13、測定部材が、荷重方向とは異なる方向へ荷重の大
きさに対応して弾性的に湾曲する弾性部材(9)として
構成してあり、この変形が、測定部材に結合された力測
定要素に作用することを特徴とする請求項1又は2のい
づれかに記載の力測定装置。 14、少くとも2つの弾性部材(9)が、荷重受け面(
10)の下方に対向させて設けてあり、例えば共振子と
して構成された力測定素子(2)が、上記部材(9)の
間に延在してあることを特徴とする請求項13に記載の
力測定装置。[Claims] 1. Load measurement having at least one measuring element configured as a force transducer and at least one force measuring element connected to the measuring element and connectable to an evaluation and display device. In the force measuring device for, the measuring member is a member (1a, 1b; 9) deformable within an elastic range, and the force measuring element (
2) receives the force to be measured, and the measuring members (1a, 1b ;
9) A force measuring device characterized by being coupled to. 2. Force measuring device according to claim 1, characterized in that the force measuring element (2) is connected to the measuring member (1a, 1b; 9) perpendicularly to the loading direction (k). 3. The force measuring element (2) measures the load-induced lateral elongation or lateral contraction (Poisson) of the measuring member, thus giving a predetermined ratio to the force acting on the measuring member based on the Poisson's ratio. The force measuring device according to claim 1 or 2, characterized in that the measuring members (1a, 1b) are configured to measure the force exerted by the force. 4. The force measuring device according to claim 1, wherein the measuring member is made of a molded member made of a uniform material. 5. Force measuring device according to any one of claims 1 to 3, characterized in that the measuring member is composed of multiple parts, for example at least two halves (1a, 1b) of the same shape. . 6. Claims 1 to 5, characterized in that the measuring member is constructed in the form of a pipe or a ring and has one or more force-introducing receiving surfaces (8) extending over at least part of its periphery. A force measuring device according to any of the above. 7. The force measuring device according to claim 1, wherein the force measuring element is configured as a resonator (for example, a crystal resonator). 8. According to any one of claims 1 to 7, characterized in that two mutually perpendicularly arranged force measuring elements are connected to the measuring member in a measuring plane oriented in a direction different from the loading direction. Force measuring device. 9. According to any one of claims 1 to 8, at least one further force-measuring element is provided in order to eliminate environmental influences (e.g. temperature fluctuations, pressure fluctuations, humidity fluctuations). Force measuring device. 10. The receiving surface serving for the force introduction of the measuring member is essentially
10. The force measuring device according to claim 1, wherein the force measuring device is provided directly above or directly below a joint location between the measuring member and the force measuring element. 11. Any one of claims 1 to 3 and 5 to 10, characterized in that at least one end of each force measuring element is clamped between an upper half and a lower half of the multipart measuring member. Force measuring device as described in . 12. A force measuring device according to any one of claims 1 to 10, characterized in that each force measuring element is fixed to a protrusion (8) of the measuring member. 13. The measuring member is configured as an elastic member (9) that elastically curves in a direction different from the load direction in accordance with the magnitude of the load, and this deformation causes the force measuring element coupled to the measuring member to 3. The force measuring device according to claim 1, wherein the force measuring device acts on the force measuring device. 14. At least two elastic members (9) are connected to the load receiving surface (
14. According to claim 13, characterized in that a force-measuring element (2) arranged oppositely below 10) and configured, for example, as a resonator, extends between the parts (9). force measuring device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873705471 DE3705471A1 (en) | 1987-02-20 | 1987-02-20 | Force-measuring device |
DE3705471.6 | 1987-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63228037A true JPS63228037A (en) | 1988-09-22 |
Family
ID=6321423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3295188A Pending JPS63228037A (en) | 1987-02-20 | 1988-02-17 | Force measuring device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS63228037A (en) |
DE (1) | DE3705471A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019536048A (en) * | 2016-11-30 | 2019-12-12 | キストラー ホールディング アクチエンゲゼルシャフト | Measurement pick-up for measuring force |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5578759A (en) * | 1995-07-31 | 1996-11-26 | Quartzdyne, Inc. | Pressure sensor with enhanced sensitivity |
EP1008191A1 (en) * | 1997-08-05 | 2000-06-14 | Siemens Aktiengesellschaft | Prestressed piezoelectric actuator |
CN102410864B (en) * | 2011-07-27 | 2013-06-05 | 莆田市力天量控有限公司 | Load sensor |
EP3330687A1 (en) | 2016-11-30 | 2018-06-06 | Kistler Holding AG | Measurement element for simultaneously measuring a force which can be both dynamic as well as static |
DE102017121347A1 (en) | 2017-09-14 | 2019-03-14 | Turck Holding Gmbh | Hose pressure sensor for a peristaltic pump arrangement |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5081787A (en) * | 1973-11-24 | 1975-07-02 | ||
JPS52150085A (en) * | 1976-06-08 | 1977-12-13 | Toray Industries | Method of measuring force |
JPS5720633B2 (en) * | 1973-07-25 | 1982-04-30 | ||
JPS5984130A (en) * | 1982-10-02 | 1984-05-15 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Load cell |
JPS61194325A (en) * | 1985-02-25 | 1986-08-28 | Shinko Denshi Kk | Force converting mechanism |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE862376C (en) * | 1951-09-27 | 1953-01-12 | Fritz Dr-Ing Faulhaber | Pressure load cell |
DE1548706B2 (en) * | 1965-07-26 | 1971-11-25 | Lord Corp , Erie, Pa (V St A ) | FORCE TRANSDUCER |
DE2333964A1 (en) * | 1972-07-13 | 1974-01-31 | Hewlett Packard Co | SIGNAL CONVERTER WITH A THICK SHEAR QUARTZ CRYSTAL RESONATOR |
-
1987
- 1987-02-20 DE DE19873705471 patent/DE3705471A1/en not_active Withdrawn
-
1988
- 1988-02-17 JP JP3295188A patent/JPS63228037A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5720633B2 (en) * | 1973-07-25 | 1982-04-30 | ||
JPS5081787A (en) * | 1973-11-24 | 1975-07-02 | ||
JPS52150085A (en) * | 1976-06-08 | 1977-12-13 | Toray Industries | Method of measuring force |
JPS5984130A (en) * | 1982-10-02 | 1984-05-15 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Load cell |
JPS61194325A (en) * | 1985-02-25 | 1986-08-28 | Shinko Denshi Kk | Force converting mechanism |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019536048A (en) * | 2016-11-30 | 2019-12-12 | キストラー ホールディング アクチエンゲゼルシャフト | Measurement pick-up for measuring force |
US11022509B2 (en) | 2016-11-30 | 2021-06-01 | Kistler Holding Ag | Measurement transducer for measuring a force |
Also Published As
Publication number | Publication date |
---|---|
DE3705471A1 (en) | 1988-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4079624A (en) | Load washer transducer assembly | |
US4326424A (en) | Web tension transducer arrangement | |
US3439761A (en) | Strain-gage transducer structures | |
US4064744A (en) | Strain sensorextensiometer | |
US3376537A (en) | Shear strain load cell | |
US4459863A (en) | Shear beam load cell | |
US2859613A (en) | Multiple bending beam force measuring device | |
US4703663A (en) | Force sensor for electrical measuring of forces, torques, acceleration pressures and mechanical stresses | |
US3411348A (en) | Electronic dynamometer | |
US5925832A (en) | Torsional sensing load cell | |
US4009608A (en) | Shear measuring flexure isolated load cells | |
US5398194A (en) | Electronic sensing circuit using piezoresistors | |
US3666032A (en) | Flexure base scale | |
US4285234A (en) | Load-measuring devices | |
EA004197B1 (en) | Tensile testing sensor for measuring mechanical jamming deformations on first installation and automatic calibrating based on said jamming | |
US4522066A (en) | Temperature-compensated extensometer | |
US5983729A (en) | Slender column force transducer | |
US4558756A (en) | Cantilever support beam assembly for a load cell and the like | |
US5569866A (en) | Force measuring device | |
US3713333A (en) | Force measuring apparatus | |
KR100413807B1 (en) | Parallel type 6-axis force-moment measuring device | |
US4007800A (en) | Force measuring device | |
JPS63228037A (en) | Force measuring device | |
US4475409A (en) | Transducer for dynamometer | |
JPH01197621A (en) | Dual side type pressure sensor |