JPS63228034A - Noise prediction chart - Google Patents

Noise prediction chart

Info

Publication number
JPS63228034A
JPS63228034A JP6189987A JP6189987A JPS63228034A JP S63228034 A JPS63228034 A JP S63228034A JP 6189987 A JP6189987 A JP 6189987A JP 6189987 A JP6189987 A JP 6189987A JP S63228034 A JPS63228034 A JP S63228034A
Authority
JP
Japan
Prior art keywords
sound
noise
chart
sound insulation
sound source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6189987A
Other languages
Japanese (ja)
Other versions
JPH0440645B2 (en
Inventor
Kyoji Mugikura
麦倉 喬次
Yuji Korenaga
雄二 是永
Masahiro Tsuruta
政博 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6189987A priority Critical patent/JPS63228034A/en
Publication of JPS63228034A publication Critical patent/JPS63228034A/en
Publication of JPH0440645B2 publication Critical patent/JPH0440645B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To utilize a chart as a tool, etc., for environmental control over field construction by obtaining various noise source data from measurement results and entering noise propagation calculation parts into the chart. CONSTITUTION:At a model site, there are houses nearby housing site preparation construction in a city, and two bulldozers and one back hoe are in operation. When sound insulation countermeasures are investigated, numerals obtained by sound sources are enters into a specific calculation table. Further, the noise levels of the sound sources are corrected with -3dB for a low noise type and -10dB for an extremely low noise type. Further, the distances between the sound sources and a sound reception point are read out of respective longitudinal sections with a rule, etc. At this time, 50dBA is obtained indoors, a sound insulation wall needs to be used, and a sound insulation rank 1 is used for the sound insulation wall. In this case, the difference between the distance of a noise arriving through the wall and the distance of a noise arriving directly and a necessary route difference delta are read out of a cross section connecting the sound source and sound reception point with the rule on the chart. Thus, the sound insulation effect of each sound source is obtained, the noise becomes <=40dBA indoors, and a complaint is eliminated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は騒音源から周囲に伝搬する騒音を簡易に予測し
、且つ算出できるチャート図に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a chart that can easily predict and calculate noise propagating from a noise source to the surroundings.

く技術的背景〉 建設工事現場においては、近接する住戸に工事騒音を与
え騒音に対する苦情が発生し、更に(よ反対運動等によ
って建設工事等が中断する場合もある。
Technical background At construction sites, construction noise is generated in nearby residential units, causing complaints about the noise, and furthermore, construction work may be interrupted due to counter-movements, etc.

この様な騒音苦情等に対処する源泉的な対策として工事
工程の変化に応じた騒音の予測と効果的な対策を素早く
行う現場管理が望まれてしまた。
As a primary measure to deal with such noise complaints, it is desired to have on-site management that can predict noise in response to changes in the construction process and quickly take effective countermeasures.

〈発明の目的〉 本発明は斯かる現場の要請に基づき案出されたもので、
各種騒音源データを実測結果力)ら得、建設機械の種別
、仕様別に整理されており、し力)も騒音伝搬計算部分
がチャート化されてしするので極めて容易に数値的に予
測できる。しかも屋外や室内における予測結果を直ちに
評価できる等各種の図表を1枚のシート上に表示したも
のであり、現場施工における環境管理のツールとして丈
ではなく、基本計画段階に於いても防音計画の道具とし
て活用できるものである。
<Object of the invention> The present invention was devised based on the needs of the field, and
Various noise source data are obtained from actual measurement results, organized by type and specification of construction machinery, and noise propagation calculations are also charted, making it extremely easy to predict numerically. In addition, various charts and tables are displayed on a single sheet, allowing immediate evaluation of prediction results outdoors and indoors, and it is not only useful as a tool for environmental management during on-site construction, but also for soundproofing plans at the basic planning stage. It can be used as a tool.

尚、本予測チャート図は、建設機械以外の各種騒音源の
騒音についても適用が可能である。
Note that this prediction chart can also be applied to noise from various noise sources other than construction machinery.

〈実施例〉 以下、本発明の騒音予測チャート図とその使用例を詳細
に説明する。第1図は、本願に係る騒音予測チャート図
を示す概略図である。又、第2図は第1図に示された予
測チャート図による予測手段を順次示すものである。騒
音予測チャート図は、1枚のシート上に第1の図表乃至
第5の図表が適宜の位置に表示されている。
<Example> Hereinafter, a noise prediction chart of the present invention and an example of its use will be described in detail. FIG. 1 is a schematic diagram showing a noise prediction chart according to the present application. Further, FIG. 2 sequentially shows prediction means based on the prediction chart shown in FIG. 1. In the noise prediction chart, the first to fifth charts are displayed at appropriate positions on one sheet.

第1の図表は別途設けられた音源表の音源から5mの距
離における騒音レベルVsと、音源から受音点までの距
離とにより距離減衰後の騒音レベルVdを算出するもの
である。又、第2の図表は音源又は受音点から所定の距
離(例えば20m)以内に建物等反射音を生じるものが
ある場合に、その反射による補正量(Vr)を算出する
ものである。更に、第3の図表は音源−受音点間に防音
壁等がある時、音の伝搬行路差δと防音壁の遮音ランク
及び音源タイプ(音源周波数特性型二M。
The first chart calculates the noise level Vd after distance attenuation based on the noise level Vs at a distance of 5 m from the sound source in a separately provided sound source table and the distance from the sound source to the sound receiving point. The second chart is for calculating the amount of correction (Vr) due to the reflection when there is a building or other object that causes reflected sound within a predetermined distance (for example, 20 m) from the sound source or the sound receiving point. Furthermore, the third chart shows the sound propagation path difference δ, the sound insulation rank of the soundproof wall, and the sound source type (sound source frequency characteristic type 2M) when there is a soundproof wall etc. between the sound source and the sound receiving point.

H)とにより、防音効果量vbを算出する図表である。H) is a chart for calculating the soundproofing effect amount vb.

防音壁の遮音ランクとしては次の三種を考える。ランク
ト・・市販されている工事用騒音壁。
Consider the following three types of sound insulation ranks for soundproof walls. Rankt: Commercially available noise wall for construction use.

ランク2・・・鉄板製工事用板り囲い、ランク3・・・
ビデイ足場に貼られた工事用シート。
Rank 2... Steel plate construction fence, Rank 3...
Construction sheet pasted on bidet scaffolding.

上記第1の図表及び第3の図表によって得られた容量を
夫々次式に代入してV d −V r −V b =V
iを求める。このViは個々の音源から受音点への騒音
レベルである。騒音レベルViは、音源が単一の場合は
そのままトータル騒音レベルVtとなり、複数の場合に
は第4の図表によって騒音レベルを加算し、全音源から
のトータル騒音レベルVtを算出する。すなわち、個々
の音源からの騒音レベルViを求め、Viのうちで最大
のものを先ずVtとおき、このVtとViのうちで2番
目に大きいものとの差から第4の図表によって加える値
Vaを求めてVtに加え、その値を新たにVtとする。
By substituting the capacitances obtained from the first chart and the third chart above into the following formulas, V d −V r −V b =V
Find i. This Vi is the noise level from each sound source to the sound receiving point. The noise level Vi becomes the total noise level Vt when there is a single sound source, and when there are multiple sound sources, the noise levels are added according to the fourth chart to calculate the total noise level Vt from all the sound sources. That is, find the noise level Vi from each sound source, first set the largest one among Vi as Vt, and then calculate the value Va to be added from the difference between this Vt and the second largest one among Vi according to the fourth chart. is calculated and added to Vt, and that value is newly set as Vt.

この手順なりiの大きい順に順次繰返してViがVtよ
り10dB以上小さくなった。
By repeating this procedure in order of increasing i, Vi became smaller than Vt by 10 dB or more.

時点で加算を終え、このVtをトータル騒音レベルVt
とする。
The addition is finished at this point, and this Vt is the total noise level Vt.
shall be.

上述の手法によって得られたトータル騒音レベルVtを
第5の図表に表示された評価表E□により屋外受音点へ
の影響を評価する。次いで、受音点が室内にある時は窓
の遮音グレード別(例えば、二重サツシ窓、−重すッシ
窓、木製の窓等)によって室内に於ける騒音レベルvh
を求め、この室内騒音レベルvhを評価表E2によって
屋内受音点への影響を評価するものである。
The influence of the total noise level Vt obtained by the above method on the outdoor sound receiving point is evaluated using the evaluation table E□ displayed in the fifth chart. Next, when the sound receiving point is indoors, the indoor noise level vh is determined by the sound insulation grade of the window (for example, double sash window, heavy sash window, wooden window, etc.).
is determined, and the influence of this indoor noise level vh on the indoor sound receiving point is evaluated using evaluation table E2.

上記予測手順によって得られた数値を第3図に示す算定
表に夫々記入してゆく。
The numerical values obtained by the above prediction procedure are entered into the calculation table shown in FIG. 3, respectively.

次に、本予測チャート図によって具体的な現場における
騒音予測手順を説明する。
Next, a concrete on-site noise prediction procedure will be explained using this prediction chart.

先ず、モデル現場を仮定する。このモデル現場は某都市
部の宅地造成工事で、敷地境界線の近くには既存の住戸
か存在している。予測時点としては、この住戸近くに2
台のブルドーザ(15t、うち1台は低騒音型)と1台
のバックホウ(0,4m″、超低騒音型)が稼働してい
る現場である。上記現場において、防音対策の要否を検
討する。受音点は二階建木造モルタル造住戸の二階の一
重アルミサツシ窓が取付けられた室内とする。
First, assume a model site. This model site is a residential land development project in a certain urban area, and there are existing housing units near the property line. At the time of prediction, there are 2 buildings near this residential unit.
This is a site where two bulldozers (15t, one of which is a low-noise type) and one backhoe (0.4m, ultra-low-noise type) are in operation.At the above site, the necessity of soundproofing measures is being considered. The sound receiving point will be a room on the second floor of a two-story wooden mortar dwelling unit equipped with a single-panel aluminum sash window.

この現場を概略図示したものが第4図(a)及び同(b
)である。第4図(a)はその平面概略図、同(b)は
同側面概略図である。
Figures 4(a) and 4(b) are schematic diagrams of this site.
). FIG. 4(a) is a schematic plan view thereof, and FIG. 4(b) is a schematic side view thereof.

先ず、上述した予測の手順に従って、第3図で示す算定
表に音源毎に得られた数値を記入する。
First, according to the above-described prediction procedure, the numerical values obtained for each sound source are entered in the calculation table shown in FIG.

音源の騒音レベルについては低騒音型(−3dB)、超
低音騒音型(−10dB)の補正が行われてる。又、音
源−受音点間距離は夫々のA−A’ 、B−B’ 、C
−C’の縦断面図から定規等で読み取る。防音対策を行
わない場合は外側窓面で70dBAとなり、法規則はク
リアーするが、室内では50dBAとなり、環境騒音と
しては会話も妨げられる虞れかある。従って、防音壁を
用いて対策することを考慮しなければならない。防音壁
は遮音ランクlのものを用い、部屋から機械か見えなく
なる高さとし、5.4mを採用した。防音壁による防音
効果は予測チャート図の第3の図表によって算出される
。この時先ず、騒音が壁を越えてくる距離と直接くる距
離の差、所謂行路差δを求める。δを求める場合には第
5図で示す如く、各音源と受音点を結ぶ各断面図から誦
+op−丁千を求めればよい。
The noise level of the sound source is corrected for low noise type (-3 dB) and super low noise type (-10 dB). Also, the distance between the sound source and the sound receiving point is A-A', B-B', and C, respectively.
- Read from the longitudinal cross-sectional view of C' with a ruler, etc. If no soundproofing measures are taken, the outside window surface will have a noise level of 70 dBA, which passes legal regulations, but indoors it will be 50 dBA, and there is a risk that it may interfere with conversation as an environmental noise. Therefore, consideration must be given to countermeasures using soundproof walls. The soundproof walls are of sound insulation rank I, and the height is 5.4 meters so that the machine cannot be seen from the room. The soundproofing effect of the soundproofing wall is calculated using the third diagram of the prediction chart. At this time, first, the difference between the distance at which the noise crosses the wall and the distance at which it comes directly, the so-called path difference δ, is determined. To find δ, as shown in FIG. 5, it suffices to find 详+op−dōsen from each cross-sectional view connecting each sound source and sound receiving point.

尚、爾、op、spは図表上から定規によって読み取れ
ば、実用上十分な精度のδを求めることができる。
Incidentally, by reading op and sp from the diagram with a ruler, it is possible to obtain δ with sufficient accuracy for practical use.

以上の手順によって、第3図の算定表に示す如く、各音
源毎の防音効果が得られ、室内では40dBA以下とな
る。
By the above procedure, as shown in the calculation table of FIG. 3, the soundproofing effect for each sound source is obtained, and the soundproofing effect in the room is 40 dBA or less.

〈発明の効果〉 以上の如く、本発明の騒音予測チャート図は、建設現場
における騒音苦情に対する対応ツールとして極めて実用
性の高いものであり、更に、基本計画段階に於いても防
音計画のツールとして大いに活用できるものである。
<Effects of the Invention> As described above, the noise prediction chart of the present invention is extremely practical as a tool for responding to noise complaints at construction sites, and furthermore, it can be used as a tool for soundproofing plans even at the basic planning stage. It can be put to great use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の係る騒音予測チャート図を示す概略
図、 第2図は、予測手順のフロー図、 第3図は、予測手順に従って得られた数値を記入する算
定表、 第4図(a)は、モデル現場における工事状況を示す平
面概略図、 第4図(b)は、同側面概略図、 第5図は、モデル現場における音源から受音点への行路
差を求める説明図である。
Fig. 1 is a schematic diagram showing a noise prediction chart according to the present invention; Fig. 2 is a flow diagram of the prediction procedure; Fig. 3 is a calculation table in which numerical values obtained according to the prediction procedure are entered; Fig. 4. (a) is a schematic plan view showing the construction situation at the model site; Figure 4 (b) is a schematic side view of the same side; Figure 5 is an explanatory diagram for determining the path difference from the sound source to the sound receiving point at the model site. It is.

Claims (1)

【特許請求の範囲】[Claims] 音源表による騒音レベルと音源から受音点までの距離と
により距離減衰後の騒音レベルを算出する第1の図表と
、反射音による補正量を算出する第2の図表と、音源−
受音点間の障害物による音の伝搬行路差、障害物の遮音
ランク及び音源タイプにより防音効果量を算出する第3
の図表と、複数音源の騒音レベルを加算して全音源から
のトータル騒音レベルを算出する第4の図表と、前記ト
ータル騒音レベルにより屋外受音点の影響を評価すると
ともに、窓の遮音グレード別チャートによって屋内受音
点への影響を評価する第5の図表とを1枚のシート上に
表示したことを特徴とする騒音予測チャート図。
A first chart that calculates the noise level after distance attenuation based on the noise level based on the sound source table and the distance from the sound source to the sound receiving point, a second chart that calculates the amount of correction due to reflected sound, and the sound source -
The third method calculates the soundproofing effect amount based on the sound propagation path difference due to obstacles between sound receiving points, the soundproofing rank of the obstacles, and the sound source type.
A fourth chart that calculates the total noise level from all sound sources by adding up the noise levels of multiple sound sources, and a fourth chart that evaluates the influence of outdoor sound receiving points based on the total noise level, and also shows the results by window sound insulation grade. The noise prediction chart diagram is characterized in that a fifth chart for evaluating the influence on an indoor sound receiving point is displayed on one sheet.
JP6189987A 1987-03-17 1987-03-17 Noise prediction chart Granted JPS63228034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6189987A JPS63228034A (en) 1987-03-17 1987-03-17 Noise prediction chart

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6189987A JPS63228034A (en) 1987-03-17 1987-03-17 Noise prediction chart

Publications (2)

Publication Number Publication Date
JPS63228034A true JPS63228034A (en) 1988-09-22
JPH0440645B2 JPH0440645B2 (en) 1992-07-03

Family

ID=13184453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6189987A Granted JPS63228034A (en) 1987-03-17 1987-03-17 Noise prediction chart

Country Status (1)

Country Link
JP (1) JPS63228034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093251A (en) * 2005-09-27 2007-04-12 Chubu Electric Power Co Inc Simulation method for noise countermeasure
WO2023053589A1 (en) * 2021-10-01 2023-04-06 株式会社エスパシオコンサルタント Sound level predicting tool, and sound level predicting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093251A (en) * 2005-09-27 2007-04-12 Chubu Electric Power Co Inc Simulation method for noise countermeasure
JP4629544B2 (en) * 2005-09-27 2011-02-09 中部電力株式会社 Noise suppression simulation method
WO2023053589A1 (en) * 2021-10-01 2023-04-06 株式会社エスパシオコンサルタント Sound level predicting tool, and sound level predicting method
JP2023053554A (en) * 2021-10-01 2023-04-13 株式会社エスパシオコンサルタント Sound volume prediction tool and sound volume prediction method

Also Published As

Publication number Publication date
JPH0440645B2 (en) 1992-07-03

Similar Documents

Publication Publication Date Title
Thomas et al. Factor model of construction productivity
Illingworth Construction methods and planning
Goodrum et al. The divergence in aggregate and activity estimates of US construction productivity
Veitch Soundscape of the street: Architectural acoustics in Ostia
Farghal et al. Learning curves: Accuracy in predicting future performance
Bullen et al. Sound propagation in a street
Galbrun The prediction of airborne sound transmission between two rooms using first-order flanking paths
Vancura et al. Concrete pavement thickness variation assessment with cores and nondestructive testing measurements
Díaz et al. The reverberation time of furnished rooms in dwellings
Rosenfeld et al. Forecasting methodology of national demand for construction labour
Morandi et al. Application of seismic design procedures on three modern URM buildings struck by the 2012 Emilia earthquakes: inconsistencies and improvement proposals in the European codes
Kylliäinen The measurement uncertainty of single-number quantities for rating the impact sound insulation of concrete floors
JPS63228034A (en) Noise prediction chart
Metzen Accuracy of CEN-prediction models applied to German building situations
Yang et al. Acoustic characteristics of outdoor spaces in an apartment complex
Felisberto et al. BIM cost estimation guidelines for Brazilian public sector infrastructure
Hall et al. Comparison of outdoor microphone locations for measuring sound insulation of building facades
Manjia et al. Urban self-building labour cost modelling in Cameroon
Ishiyama et al. An analysis of traffic noise propagation around main roads in Tokyo
Rosão et al. Comparison of EN 12354-1 to-4 of 2000 with EN 12354-1 to-4 of 2017
Gerretsen Possibilities to improve the modelling in EN 12354 for lightweight elements
Hopkins Sound transmission across a separating and flanking cavity wall construction
Heiss A SUPPLEMENT OF SOUND MEASUREMENT TECHNIQUE BY AN ONLINE QUALITY TEST PROCEDURE FOR THE INDICESLEQ AND LX%
Medeiros et al. A comparative study between drywall and masonry partitions in concrete framework buildings
Dance et al. Absorption coefficients of common construction materials for use in computer modelling of enclosed spaces