JPS63227544A - Production of carboxylic acids - Google Patents

Production of carboxylic acids

Info

Publication number
JPS63227544A
JPS63227544A JP62063413A JP6341387A JPS63227544A JP S63227544 A JPS63227544 A JP S63227544A JP 62063413 A JP62063413 A JP 62063413A JP 6341387 A JP6341387 A JP 6341387A JP S63227544 A JPS63227544 A JP S63227544A
Authority
JP
Japan
Prior art keywords
acid
reaction
hydrogen peroxide
dicyclopentanetetracarboxylic
adduct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063413A
Other languages
Japanese (ja)
Inventor
Tsuratake Fujitani
貫剛 藤谷
Mikiro Nakazawa
中澤 幹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP62063413A priority Critical patent/JPS63227544A/en
Publication of JPS63227544A publication Critical patent/JPS63227544A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

NEW MATERIAL:Dicyclopentanetetracarboxylic acid expressed by formula I. USE:A raw material for various resins, such as polyimide, polyester, polyamide and epoxy resins, plasticizers and resin modifying agents. PREPARATION:An adduct of maleic anhydride with dicyclopentadiene (a compound expressed by formula II) or the corresponding hydrous acid obtained by hydrolysis in the presence of water or both are subjected to oxidative cleavage with hydrogen peroxide in the presence of one or two or more catalysts selected from the group consisting of tungstic acid, molybdic acid and heteropoly acids thereof to afford the aimed dicyclopentanetetracarboxylic acid compound formula I.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、ジシクロペンタンテトラカルボン酸の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing dicyclopentanetetracarboxylic acid.

当該カルボン酸は、ポリイミド、ポリエステル、ポリア
ミド、エポキシ等の各種樹脂原料や可塑剤原料並びに樹
脂変性剤原料として有用な化合物である。
The carboxylic acid is a compound useful as a raw material for various resins such as polyimide, polyester, polyamide, and epoxy, a raw material for a plasticizer, and a raw material for a resin modifier.

[従来の技術] 本発明者らは、無水マレイン酸とジエン類とのディール
ス・アルダ−反応物を酸化開裂して対応するカルボン酸
を製造する方法について種々検討の結果、タングステン
酸、モリブデン酸及びそれらのヘテロポリ酸から選択さ
れた1種以上を触媒とし、過酸化水素により酸化開裂す
ることを特徴とする工業的に優れた方法を確立し、既に
提案したところである(特開昭62−30737号)。
[Prior Art] As a result of various studies on the method of producing the corresponding carboxylic acid by oxidative cleavage of the Diels-Alder reaction product of maleic anhydride and dienes, the present inventors found that tungstic acid, molybdic acid and We have established and already proposed an industrially excellent method characterized by oxidative cleavage with hydrogen peroxide using one or more selected from these heteropolyacids as a catalyst (Japanese Patent Laid-Open No. 62-30737). ).

[発明が解決しようとする問題点] 引続く検討の中で、無水マレイン酸とジシクロペンタジ
ェンとの付加体を同様に酸化開裂したところ、文献未記
載の油溶性の新規な多環式ポリカルボン酸が極めて効率
よく製造できることが判明した。
[Problems to be solved by the invention] In the course of subsequent studies, we similarly conducted oxidative cleavage of an adduct of maleic anhydride and dicyclopentadiene, and found that a novel oil-soluble polycyclic polycyclic polycyclic compound, which has not been described in any literature, was discovered. It has been found that carboxylic acids can be produced extremely efficiently.

即ち、本発明は、新規な多環式ポリカルボン酸の製造方
法を提供することを目的とする。
That is, an object of the present invention is to provide a novel method for producing a polycyclic polycarboxylic acid.

[問題点を解決するための手段] 本発明は、無水マレイン酸とジシクロペンタジェンとの
付加体及び/又は当該付加体の有水酸をタングステン酸
、モリブデン酸及びそれらのヘテロポリ酸からなる群か
ら選ばれる1種又は2種以上の触媒の存在下、過酸化水
素により酸化開裂して下記の構造式(I>で表わされる
ジシクロペンタンテトラカルボン酸を製造することを特
徴とする。
[Means for Solving the Problems] The present invention provides an adduct of maleic anhydride and dicyclopentadiene, and/or a hydroxide of the adduct, in the group consisting of tungstic acid, molybdic acid, and their heteropolyacids. It is characterized by producing dicyclopentanetetracarboxylic acid represented by the following structural formula (I>) by oxidative cleavage with hydrogen peroxide in the presence of one or more catalysts selected from the following.

本発明におけるポリカルボン酸の原料である、無水マレ
イン酸とジシクロペンタジェンとの付加体は、両者を混
合加熱して得られる化合物であって、以下の構造式(n
)で表わされる。
The adduct of maleic anhydride and dicyclopentadiene, which is a raw material for polycarboxylic acid in the present invention, is a compound obtained by mixing and heating the two, and has the following structural formula (n
).

上記付加体は、水の存在下で容易に加水分解して、対応
する有水酸に変換し、この有水酸も又、本発明の酸化反
応において無水物と同様に挙動する。従って、本発明に
おいては当該無水物、その有水酸又はこれらの混合物の
いずれもが原料として使用できる(以下、これらを総称
して「基質」という。)。
The adducts are readily hydrolyzed in the presence of water to convert to the corresponding hydric acids, which also behave similarly to the anhydrides in the oxidation reactions of the present invention. Therefore, in the present invention, any of the anhydride, its hydric acid, or a mixture thereof can be used as a raw material (hereinafter, these are collectively referred to as "substrate").

本発明に係る触媒としては、タングステン酸、モリブデ
ン酸、あるいはこれらのヘテロポリ酸が掲げられる。こ
こにいうヘテロポリ酸とは、2種以上の酸素酸からなる
縮合酸であり、ポリ酸原子としては、タングステン及び
モリブデンであり、ヘテロ原子としては、以下に示すよ
うな各種のものが使用できる。タングステン酸のヘテロ
ポリ酸におけるヘテロ原子としては、P、、AS、S 
r、1’−i、co、Fe、B、V、Be、I、N1、
Qa等が例示される。タングステン酸のヘテロポリ酸の
具体例しては、次の構造式、 H3〔PW1204o〕、 H3(ASW12040)・ H4(S ! W18O49)、 H4[T ! W18O49)、 町(C0W12040)、 H5(F eW12040)、 +15 (BW1204Q)、 H3〔VW1204o〕、 H6(BeW9031)、 H6(TeW6024)、 H5(■W6024〕、 H4(N ! W6024H6)、 H3(GaW6024H6)、 H6(P2 W20O58)・ H6(AS2 WIBO62)・ H7〔PW11033〕 を有するものが例示できる。
Examples of the catalyst according to the present invention include tungstic acid, molybdic acid, and heteropolyacids thereof. The heteropolyacid referred to herein is a condensed acid consisting of two or more types of oxyacids, and the polyacid atoms include tungsten and molybdenum, and the heteroatoms include the following various types. Heteroatoms in the heteropolyacid of tungstic acid include P, AS, S
r, 1'-i, co, Fe, B, V, Be, I, N1,
Qa etc. are exemplified. Specific examples of heteropolyacids of tungstic acid include the following structural formulas: H3[PW1204o], H3(ASW12040), H4(S!W18O49), H4[T! W18O49), Town (C0W12040), H5 (FeW12040), +15 (BW1204Q), H3 [VW1204o], H6 (BeW9031), H6 (TeW6024), H5 (■W6024], H4 (N! W6024H) 6), H3 (GaW6024H6 ), H6 (P2 W20O58), H6 (AS2 WIBO62), H7 [PW11033].

又、モリブデン酸のヘテロポリ酸におけるヘテロ原子と
しては、P、AS、Si、Ge、Ti、Ce、Th、M
n、N i 、Te、I、C01Cr。
In addition, heteroatoms in the heteropolyacid of molybdic acid include P, AS, Si, Ge, Ti, Ce, Th, M
n, N i , Te, I, C01Cr.

Fe、 Ga等が例示される。モリブデン酸のヘテロポ
リ酸の具体例としては、次の構造式、H3CP M O
12040)、 H3(ASM○1204o〕、 H4(81MO1204o)、 H4C08MO12040)、 町(T i M o 1204g)、 HB (Ce M O12042)、 H8〔丁h M O12042)、 H7,(PMo1103g)、 H7(ASMO11039)、 HB (08M01103g)、 H6(MnMog 032)、 町(N i M Og 032)、 H6〔丁e M Oe O24)、 H5(IMo6024)、 H3(GOMO6024H6)、 H3(Cr Mo6o24”6 )、 H3(FeM0602486 )、 H3(GaMO6024H6)、 H4(N ! Mo6o24H6)、 HB (P2 MOIBOB2)、 H6(A32 MOIBO62) を有するもの等が例示できる。
Examples include Fe, Ga, etc. A specific example of a heteropolyacid of molybdic acid is the following structural formula, H3CP M O
12040), H3 (ASM○1204o), H4 (81MO1204o), H4C08MO12040), Town (T i Mo 1204g), HB (Ce M O12042), H8 [Ce M O12042), H7, (PMo1103g) ), H7( ASMO11039), HB (08M01103g), H6 (MnMog 032), Machi (NiM Og 032), H6 [Dinge M Oe O24), H5 (IMo6024), H3 (GOMO6024H6), H3 (Cr Mo6o24"6) ), Examples include those having H3 (FeM0602486), H3 (GaMO6024H6), H4 (N!Mo6o24H6), HB (P2 MOIBOB2), and H6 (A32 MOIBO62).

更に、タングストモリブドリン酸、タンゲスドパナトリ
ン酸、バナドモリブドリン酸、タングストモリブドケイ
酸、タンゲスドパナトケイ酸、バナドモリブドケイ酸等
、ポリ原子に2種以上の原子を含む混合配位ヘテロポリ
酸、例えば、H4PMoW1104o、 H4PR0W11040・ H4PVMO11040゜ H5PV2M010040・ H3PM06W6040 等も使用可能で“ある。
Furthermore, polyatoms containing two or more types of atoms, such as tungstomolybdophosphoric acid, tangesdopanatophosphoric acid, vanadomolybdophosphoric acid, tungstomolybdosilicic acid, tangesdopanatosilicic acid, vanadomolybdosilicic acid, etc. Mixed coordination heteropolyacids, such as H4PMoW1104o, H4PR0W11040, H4PVMO11040°H5PV2M010040, H3PM06W6040, etc. can also be used.

上記に例示したこれらヘテロポリ酸はいずれも公知のも
のである。
All of these heteropolyacids exemplified above are known.

合成の容易さ又は入手の容易さの観点からは、ヘテロ原
子としてP又はSlを含有するヘテロポリ酸が好ましく
、特に 12−タングストリン酸(H3PW1204o)、12
−タングストケイ酸(H3S ! W18O49)、1
2−モリブドリン酸(H3PMO12040)等がより
好ましい。
From the viewpoint of ease of synthesis or availability, heteropolyacids containing P or Sl as a heteroatom are preferred, particularly 12-tungstophosphoric acid (H3PW1204o), 12-tungstophosphoric acid (H3PW1204o),
-Tungstosilicic acid (H3S! W18O49), 1
2-molybdophosphoric acid (H3PMO12040) and the like are more preferred.

又、上記触媒として用いるタングステン酸、モリブデン
酸又はこれらのヘテロポリ酸は、水和物であってもよく
、更に、反応系内で上記のタングステン酸、モリブデン
酸又はこれらのヘテロポリ酸を生成し得る化合物の形態
であってもよい。このような化合物としては、カリウム
、ナトリトウム、等のアルカリ金属、コバルト、ニッケ
ル、マンガン、銅等の重金属塩、アンモニウム塩等の塩
類が挙げられ、更にタングステン酸及びモリブデン酸に
関しては、MC3、MC16及びMS3(M=W又はM
C)で表わされる酸化物、塩化物及び硫化物の形態であ
ってもよい。
Further, the tungstic acid, molybdic acid, or a heteropolyacid thereof used as the catalyst may be a hydrate, and further, a compound capable of producing the tungstic acid, molybdic acid, or a heteropolyacid thereof in the reaction system. It may be in the form of Examples of such compounds include salts of alkali metals such as potassium and sodium, heavy metal salts such as cobalt, nickel, manganese, and copper, and ammonium salts. MS3 (M=W or M
It may be in the form of an oxide, chloride, or sulfide represented by C).

このような塩、酸化物、塩化物、硫化物を使用する場合
には、例えばリン酸、塩酸、硫酸等の鉱酸を反応系内に
加え、pH4以下の酸性条件下で反応を行なうことが好
ましい。
When using such salts, oxides, chlorides, and sulfides, it is possible to add a mineral acid such as phosphoric acid, hydrochloric acid, or sulfuric acid to the reaction system and conduct the reaction under acidic conditions with a pH of 4 or less. preferable.

又、触媒を酸の形態で使用すれば、分離操作においてア
ンモニウムや金属イオンを除去する必要がなく有利でお
る。この際、リン酸、塩酸、硫酸、過塩素酸等の鉱酸が
共存しても何ら差支えない。
Furthermore, it is advantageous to use the catalyst in the form of an acid, since there is no need to remove ammonium or metal ions in the separation operation. At this time, there is no problem even if mineral acids such as phosphoric acid, hydrochloric acid, sulfuric acid, perchloric acid, etc. coexist.

上記に例示した触媒は、単独で使用しても2種以上を併
用してもよい。
The catalysts exemplified above may be used alone or in combination of two or more.

反応性からはヘテロポリ酸が好ましく、反応性と価格と
のバランス上からはタングステン酸が好ましい。
In terms of reactivity, heteropolyacids are preferred, and in terms of balance between reactivity and cost, tungstic acid is preferred.

本発明に係る製造法は、一般に次の如くして行なわれる
。即ち、反応器に原料である基質及び触媒を所定量仕込
み、過酸化水素を添加し、溶媒中で加熱撹拌下に反応を
行なう。
The manufacturing method according to the present invention is generally carried out as follows. That is, predetermined amounts of the substrate and catalyst as raw materials are charged into a reactor, hydrogen peroxide is added, and the reaction is carried out in a solvent while being heated and stirred.

反応時の基質の濃度は、特に限定がなく、広い範囲から
選択できる。しかし、反応の操作性及び生産性の観点か
ら、基質濃度は2〜70重量%程度とするのが好ましく
、30〜50重最%とすることがより好ましい。
The concentration of the substrate during the reaction is not particularly limited and can be selected from a wide range. However, from the viewpoint of reaction operability and productivity, the substrate concentration is preferably about 2 to 70% by weight, more preferably 30 to 50% by weight.

触媒の使用量は、触媒活性が発揮されるのに有効な量で
ある限り、広い範囲から選択される。しかし、反応速度
及び触媒のコストの観点からは、遊離酸(タングステン
酸、モリブデン酸又はこれらのヘテロポリM)換算で、
基質に対しO,O’1〜30重岨%程度、好ましくは1
〜10重量%程度が有利である。
The amount of catalyst to be used is selected from a wide range as long as it is an effective amount to exhibit catalytic activity. However, from the viewpoint of reaction rate and catalyst cost, in terms of free acid (tungstic acid, molybdic acid, or their heteropoly M),
About 1 to 30% by weight of O,O' to the substrate, preferably 1%
A content of the order of ~10% by weight is advantageous.

本反応に必要な過酸化水素の化学量論量は基質1モルに
対し4モルであるが、実際にはその10〜50%過剰に
使用するのが望ましい。反応混合物中の過酸化水素の濃
度は、広い範囲から選択できる。その下限は、基質を酸
化した触媒が過酸化水素により酸化能力を回復するのに
充分な濃度であって、かなり稀薄な場合であっても反応
速度の低下は避けられないものの酸化反応は進行する。
The stoichiometric amount of hydrogen peroxide required for this reaction is 4 moles per mole of substrate, but in reality it is desirable to use a 10 to 50% excess. The concentration of hydrogen peroxide in the reaction mixture can be selected from a wide range. The lower limit is the concentration sufficient for the catalyst that has oxidized the substrate to recover its oxidizing ability with hydrogen peroxide, and even if the catalyst is quite dilute, the oxidation reaction will proceed, although a decrease in the reaction rate is inevitable. .

又、上限は特に存在せず、かなりの高濃度であってもよ
い。しかしながら、反応速度を向上させ、かつ低濃度の
過酸化水素を用いて製造コストの低減を図る観点からは
、0.1ミリモル/l〜12モル/l程度、好ましくは
10ミリモル/l〜8モル/l程度が有利である。過酸
化水素は、通常、水溶液の形態で供給される。
Further, there is no particular upper limit, and the concentration may be quite high. However, from the viewpoint of improving the reaction rate and reducing production costs by using low concentration hydrogen peroxide, it is about 0.1 mmol/l to 12 mol/l, preferably 10 mmol/l to 8 mol. /l is advantageous. Hydrogen peroxide is usually supplied in the form of an aqueous solution.

反応溶媒としては、水が適当である。水と混和可能な有
機溶媒、例えば炭素数1〜4のアルコール、炭素数1〜
4のカルボン酸、ジオキサン、テトラヒドロフラン、ジ
メチルホルムアミド等を単独で使用し、又は均一相を保
つ範囲で水と併用することも可能である。
Water is suitable as a reaction solvent. Water-miscible organic solvents, such as alcohols having 1 to 4 carbon atoms, and alcohols having 1 to 4 carbon atoms.
It is also possible to use the carboxylic acid No. 4, dioxane, tetrahydrofuran, dimethylformamide, etc. alone, or in combination with water within a range that maintains a homogeneous phase.

反応温度は、反応速度の点から、通常、20〜100℃
程度の温度範囲が採用されるが、加圧下で反応した場合
には150’C程度までの反応温度を採用することもで
きる。現実的な反応速度を維持する観点及び過酸化水素
の分解を防止又は抑制する観点からは、50〜130’
C程度にて反応を行なうのが好ましい。
The reaction temperature is usually 20 to 100°C from the viewpoint of reaction rate.
However, when the reaction is carried out under pressure, a reaction temperature of up to about 150'C can be employed. From the viewpoint of maintaining a realistic reaction rate and preventing or suppressing the decomposition of hydrogen peroxide, the range of 50 to 130'
It is preferable to carry out the reaction at about C.

反応時間は、水質、触媒及び過酸化水素の濃度、反応温
度等により変わり得るが、通常1〜24時間程度である
The reaction time may vary depending on the water quality, the concentration of the catalyst and hydrogen peroxide, the reaction temperature, etc., but is usually about 1 to 24 hours.

[実 施 例] 以下に実施例を掲げ、本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to Examples.

(原料のテトラカルボン酸二無水物の製造)窒素置換し
た51ステンレス製オートクレイブにジシクロペンタジ
ェン823g、無水マレイン= 11− 酸588tj、キシレン150CHJを仕込み、230
’Cで3時間加熱した。反応後、キシレンをトッピング
し、減圧下で蒸留した。得られた留分を更に精留して、
中和価436(理論値453)の付加体350gを得た
(Manufacture of raw material tetracarboxylic dianhydride) Into a 51 stainless steel autoclave purged with nitrogen, 823 g of dicyclopentadiene, 588 tj of maleic anhydride = 11-acid, and 150 tj of xylene were charged.
'C for 3 hours. After the reaction, it was topped with xylene and distilled under reduced pressure. The obtained fraction is further rectified,
350 g of an adduct with a neutralization value of 436 (theoretical value 453) was obtained.

実施例1 撹拌機付きガラス製4つ目フラスコに上記付加体46.
0g(0,2モル)、水60g、タングステン酸1.0
gを入れ、90℃に加熱し、激しく撹拌しながら60%
過酸化水素水57gを滴下し、更に同温度に保ちながら
10時間反応した。
Example 1 The above adduct 46.
0g (0.2 mol), water 60g, tungstic acid 1.0
g, heat to 90℃ and reduce to 60% while stirring vigorously.
57 g of hydrogen peroxide solution was added dropwise, and the reaction was continued for 10 hours while maintaining the same temperature.

反応終了後、反応溶液の中和価より算定した遊離カルボ
キシル基の増加率は85%であった。
After the reaction was completed, the increase rate of free carboxyl groups calculated from the neutralization value of the reaction solution was 85%.

尚、遊離カルボキシル基の増加率とは、過酸化水素添加
前の反応混合物の中和価と反応終了後の中和価との差が
、酸化反応において生じたカルボキシル基に基づくもの
として算出した値である(以下同様)。
Incidentally, the increase rate of free carboxyl groups is a value calculated assuming that the difference between the neutralization value of the reaction mixture before addition of hydrogen peroxide and the neutralization value after the completion of the reaction is based on the carboxyl groups generated in the oxidation reaction. (the same applies hereafter).

又、液体クロマトグラフィー内部標準法により、ジシク
ロペンタンテトラカルボン酸が82%の収率で生成して
いることが確認された。尚、原料の付加体は全く検出さ
れなかった。
Furthermore, it was confirmed by liquid chromatography internal standard method that dicyclopentanetetracarboxylic acid was produced at a yield of 82%. Note that no adducts of the raw materials were detected.

実施例2 触媒としてモリブデン酸5.0g、リン酸5.0gを使
用した以外は、実施例1と同様の操作を行なった結果、
遊離カルボキシル基増加率は80%で、ジシクロペンタ
ンテトラカルボン酸が収率75%で得られた。
Example 2 The same operation as in Example 1 was performed, except that 5.0 g of molybdic acid and 5.0 g of phosphoric acid were used as catalysts.
The increase rate of free carboxyl groups was 80%, and dicyclopentanetetracarboxylic acid was obtained in a yield of 75%.

実施例3 触媒として12−タングストリン酸 (H3PW12040−29H20>1.0’iを使用
した以外は、実施例1と同様の操作を行なった結果、遊
離カルボキシル基増加率は88%で、ジシクロペンタン
テトラカルボン酸が収率85%で得られた。
Example 3 The same operation as in Example 1 was performed except that 12-tungstophosphoric acid (H3PW12040-29H20>1.0'i) was used as a catalyst. As a result, the increase rate of free carboxyl groups was 88%, and dicyclo Pentanetetracarboxylic acid was obtained with a yield of 85%.

実施例4 溶媒としてジオキサン60gを使用した以外は実施例3
と同様の操作を行なった結果、遊離カルボキシル基増加
率は86%で、ジシクロペンタンテトラカルボン酸が収
率82%で得られた。
Example 4 Example 3 except that 60 g of dioxane was used as the solvent.
As a result of carrying out the same operation as above, the increase rate of free carboxyl groups was 86%, and dicyclopentanetetracarboxylic acid was obtained in a yield of 82%.

 13 一 実施例5 原料の付加体46.0g(0,2モル)と水60gを激
しく撹拌しながら2時間加熱還流させて有水酸とした。
13 Example 5 46.0 g (0.2 mol) of the adduct of the raw material and 60 g of water were heated under reflux for 2 hours with vigorous stirring to obtain a hydroacid.

この溶液に、12−モリブドリン酸(H3PMo120
40−291−120)3.0g、リン酸5.0gを加
え、90’Cに保ちながら60%過酸化水素水57gを
滴下し、更に10時間反応させた。分析の結果、遊離カ
ルボキシル基の増加率は82%で、ジシクロペンタンテ
トラカルボン酸の収率は79%であった。
Add 12-molybdophosphoric acid (H3PMo120
40-291-120) and 5.0 g of phosphoric acid were added thereto, and while maintaining the temperature at 90'C, 57 g of 60% hydrogen peroxide solution was added dropwise, followed by further reaction for 10 hours. As a result of analysis, the increase rate of free carboxyl groups was 82%, and the yield of dicyclopentanetetracarboxylic acid was 79%.

実施例6 触媒として12−タングストケイ酸 (H3PW12040・29H20>6.0 gを使用
した以外は、実施例1と同様の操作を行なった結果、遊
離カルボキシル基増加率は80%で、ジシクロペンタン
テトラカルボン酸が収率76%で得られた。
Example 6 The same operation as in Example 1 was performed except that 12-tungstosilicic acid (H3PW12040.29H20>6.0 g) was used as a catalyst. As a result, the increase rate of free carboxyl groups was 80%, and dicyclopentanetetra Carboxylic acid was obtained with a yield of 76%.

[発明の効果コ 本発明に係る製造法は、過酸化水素を用いるので、有害
金属を使用することなく安全、かつ安価に、収率よく、
工業的に新規なカルボン酸であるジシクロペンタンテト
ラカルボン酸を製造することができる。
[Effects of the Invention] Since the production method according to the present invention uses hydrogen peroxide, it can be produced safely, inexpensively, and with good yield without using harmful metals.
Dicyclopentanetetracarboxylic acid, which is an industrially new carboxylic acid, can be produced.

(以下余白) = 15−(Margin below) = 15-

Claims (1)

【特許請求の範囲】[Claims] 無水マレイン酸とジシクロペンタジエンとの付加体及び
/又は当該付加体の有水酸をタングステン酸、モリブデ
ン酸及びそれらのヘテロポリ酸からなる群から選ばれる
1種又は2種以上の触媒の存在下、過酸化水素により酸
化開裂することを特徴とするジシクロペンタンテトラカ
ルボン酸の製造方法。
An adduct of maleic anhydride and dicyclopentadiene and/or a hydric acid of the adduct in the presence of one or more catalysts selected from the group consisting of tungstic acid, molybdic acid, and their heteropolyacids, A method for producing dicyclopentanetetracarboxylic acid, characterized by oxidative cleavage with hydrogen peroxide.
JP62063413A 1987-03-17 1987-03-17 Production of carboxylic acids Pending JPS63227544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063413A JPS63227544A (en) 1987-03-17 1987-03-17 Production of carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063413A JPS63227544A (en) 1987-03-17 1987-03-17 Production of carboxylic acids

Publications (1)

Publication Number Publication Date
JPS63227544A true JPS63227544A (en) 1988-09-21

Family

ID=13228579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063413A Pending JPS63227544A (en) 1987-03-17 1987-03-17 Production of carboxylic acids

Country Status (1)

Country Link
JP (1) JPS63227544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596111A (en) * 1995-06-05 1997-01-21 North Dakota State University Method for preparation of carboxylic acids
JP2001278842A (en) * 2000-01-28 2001-10-10 Sumitomo Chem Co Ltd Method for producing esters of 3,3-dimethyl-2- formylcyclopropanecarboxylic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969640A (en) * 1972-11-02 1974-07-05
JPS5922925A (en) * 1982-07-30 1984-02-06 Japan Synthetic Rubber Co Ltd Polyimide compound
JPS6230737A (en) * 1985-04-09 1987-02-09 New Japan Chem Co Ltd Production of carboxylic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969640A (en) * 1972-11-02 1974-07-05
JPS5922925A (en) * 1982-07-30 1984-02-06 Japan Synthetic Rubber Co Ltd Polyimide compound
JPS6230737A (en) * 1985-04-09 1987-02-09 New Japan Chem Co Ltd Production of carboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596111A (en) * 1995-06-05 1997-01-21 North Dakota State University Method for preparation of carboxylic acids
JP2001278842A (en) * 2000-01-28 2001-10-10 Sumitomo Chem Co Ltd Method for producing esters of 3,3-dimethyl-2- formylcyclopropanecarboxylic acid

Similar Documents

Publication Publication Date Title
Cavani et al. Main aspects of the selective oxidation of isobutane to methacrylic acid catalyzed by Keggin-type polyoxometalates
KR100937891B1 (en) Production process of bifunctional epoxy monomer by selective oxidation of diolefin compound
CS229939B2 (en) Production method of catalyst on a base of mixed oxide vanadium and phosphorus
JPS62102832A (en) Maleic anhydride producing catalyst
US2510605A (en) Production of nitriles
JPS5952532A (en) Reaction body or catalyst body for oxidizing olefinic substrate or hydrocarbon and production thereof
US4833272A (en) Process for preparing polycarboxylic acid
JPS63227544A (en) Production of carboxylic acids
JP2010163412A (en) Method for producing carbonyl compound
US4510259A (en) Catalysts for the production of maleic anhydride by the oxidation of butane
JPS6393746A (en) Production of carboxylic acid
JPS61212531A (en) Manufacture of methacrylic acid
JP2003146964A (en) Method for producing diarylsulfone polycarboxylic acid or its anhydride
JPS5936546A (en) Catalyst for gas phase oxidation of butane
JP4450138B2 (en) Method for producing fluoroalkylcarboxylic acid
CA1160241A (en) Process for manufacturing maleic anhydride
JPS6230737A (en) Production of carboxylic acid
JP2631866B2 (en) Method for producing pyrimidines
US3439029A (en) Process for the production of acetic acid by catalytic gas-phase oxidation of n-butenes
US3459797A (en) Process for the production of acetic acid by catalytic gas-phase oxidation of butenes
JP3500676B2 (en) Method for producing phosphorus-vanadium oxide catalyst precursor
US4416802A (en) Catalysts for the production of maleic anhydride by the oxidation of butane
JPS62174038A (en) Production of hydroxy carboxylic acid
US4564688A (en) Process for the production of maleic anhydride by the oxidation of butane
JPH03255049A (en) Preparation of biphenylcarboxylic acid