JPS63227474A - Rear suspension for automobile - Google Patents

Rear suspension for automobile

Info

Publication number
JPS63227474A
JPS63227474A JP6204487A JP6204487A JPS63227474A JP S63227474 A JPS63227474 A JP S63227474A JP 6204487 A JP6204487 A JP 6204487A JP 6204487 A JP6204487 A JP 6204487A JP S63227474 A JPS63227474 A JP S63227474A
Authority
JP
Japan
Prior art keywords
toe
road surface
elastic members
low
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6204487A
Other languages
Japanese (ja)
Inventor
Yasuhei Matsumoto
松本 廉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP6204487A priority Critical patent/JPS63227474A/en
Publication of JPS63227474A publication Critical patent/JPS63227474A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/146Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by comprising means for steering by acting on the suspension system, e.g. on the mountings of the suspension arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/462Toe-in/out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/422Links for mounting suspension elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To improve safety of a vehicle on a road surface on which a vehicle is easy to slip, by a method wherein, in a device which supports a rocking member, supporting rear wheels, to a member on the car body side through a resilient member, the spring constant of the resilient member is variable based on the result of decision on whether a road surface friction factor is high or low. CONSTITUTION:In a device which vertically rockably supports a support member for each of rear wheels 1 on a shaft 6 supported to a member 5 on the car body through front and rear links 2 and 3, a resilient member 7 formed such that spring constants in directions X and Y are differed from each other and the spring constant is differed with an angle by formation of gap parts 73a in a part of a resilient annular ring 73 is located to a coupling part between each of the links 2 and 3 and the shaft 6. The resilient member 7 is rotationally displaceable through a link mechanism 11 through the action of an electric motor 9. The electric motor 9 is run and controlled so that a toe angle is changed such that when it is decided that the friction factor of a road surface is low, the outer rear wheel 1 is brought into a toe-in state and the inner rear wheel 1 is forced into a toe-out state by dint of a lateral force generated during turning.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車用リヤサスペンションに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rear suspension for an automobile.

従来の技術 例えば前後のリンクにより後輪”を上下揺動可能に支持
したパラレルリンク式リヤサスペンションを用いた自動
車において、前後のリンクの車体部材側への軸着点に介
装されるゴムブツシュに中空部を形成し、該中空部に油
圧を導入するよう構成すると共に、該中空部に導入され
る油圧を車速又は転舵角によって変化させることにより
、ゴムブツシュの硬度を車速又は転舵角に応じて変化さ
せ得るようにし、これにより高速走行時後輪が横力に対
しトーイン傾向となる制御を行い、又大転舵時後輪が横
力に対しトーイン傾向を弱める制御を行うようにしたも
のが従来より開発され、特開昭60−146707号公
報及び特開昭60−146708号公報にて公開されて
いる。
Conventional technology For example, in a car that uses a parallel link type rear suspension in which the rear wheels are vertically supported by front and rear links, a hollow rubber bushing is installed at the point where the front and rear links connect to the body member side. The hardness of the rubber bushing can be adjusted according to the vehicle speed or steering angle by forming a section and introducing hydraulic pressure into the hollow section, and by changing the hydraulic pressure introduced into the hollow section depending on the vehicle speed or steering angle. This controls the rear wheels to tend to toe-in in response to lateral forces when driving at high speed, and controls the rear wheels to weaken the tendency to toe-in in response to lateral forces during large steering turns. It has been developed in the past and disclosed in Japanese Patent Application Laid-open No. 146707/1982 and No. 146708/1982.

発明が解決しようとする問題点 上記のような従来装置によれば、中、低速走行域での旋
回性をあまり損なうことなく、高速走行域での安定性の
向上を一応は果たすことができるが、しかし自動車の操
縦性及び安定性は上記のようなサスペンション支持部(
ゴムブツシュ)の剛性や走行速度等のほかに、路面とタ
イヤとの間の摩擦係数ルによっても大きく変化するので
、この終に関する制御が行われない上記従来装置では、
上記用が比較的低い路面での操縦性及び安定性に的確に
は適応し得ないと言う問題を有している。
Problems to be Solved by the Invention According to the conventional device as described above, it is possible to improve stability in high-speed driving ranges without significantly impairing turning performance in medium and low-speed driving ranges. However, the maneuverability and stability of a car depend on the suspension support (
In addition to the rigidity of the rubber bushing (rubber bushing) and the running speed, the coefficient of friction between the road surface and the tire changes greatly.
The above-mentioned method has a problem in that it cannot accurately adapt to maneuverability and stability on relatively low road surfaces.

本発明はこのような問題に対処することを主目的とする
ものである。
The main purpose of the present invention is to address such problems.

問題点を解決するための手段 本発明は、後輪を支持する揺動部材を車体側部材に複数
個所においてそれぞれ弾性部材を介して取付支持すると
共に、旋回時に生ずる横力に対する上記複数の弾性部材
のばね定数をコントローラからの出力信号によりそれぞ
れ可変的に制御することにより旋回時における後輪のト
ー角変化を制御し得るよう構成した自動車のりャサスペ
ンシ躍ンにおいて、走行路面の摩擦係数が高いか低いか
を判断する要素となる信号を上記コントローラに入力さ
せる手段を設け、該信号に基づいてコントローラが路面
の摩擦係数が高いか低いかを判断し、該路面の摩擦係数
が低いと判断したとき該コントローラがすべての車速範
囲において旋回時発生する横力により外輪側の後輪がト
ーイン、内輪側の後輪がトーアウトにトー角変化する状
態に上記複数の弾性部材のそれぞれのばね定数を制御す
べき出力信号を発するよう構成したことを特徴とするも
のである。
Means for Solving the Problems The present invention provides a structure in which a swinging member that supports a rear wheel is attached and supported to a vehicle body side member at a plurality of locations via elastic members, and the plurality of elastic members are able to withstand lateral forces generated during turning. In an automobile rear suspension, which is configured to control changes in the toe angle of the rear wheels when turning by variably controlling the spring constants of the spring constants using output signals from the controller, the friction coefficient of the road surface is high or low. A means is provided for inputting a signal to the controller, which is a factor for determining whether the friction coefficient of the road surface is high or low. The controller should control the spring constant of each of the plurality of elastic members described above so that the toe angle changes such that the outer rear wheel is toe-in and the inner rear wheel is toe-out due to the lateral force generated when turning in all vehicle speed ranges. The device is characterized in that it is configured to emit an output signal.

作   用 上記のように路面摩擦係数が高いか低いかにより、コン
トローラによる弾性部材のばね定数制御を変える構成と
したことにより、路面摩擦係数の低いすべりやすい路面
での旋回時における後輪の横すべりに対するふんばりを
増大させ、すべりやすい路面での安定性の向上をはかる
ことができ、これによりあらゆる走行条件に的確に対応
した制御が可能となる。
Function As mentioned above, the spring constant control of the elastic member by the controller is changed depending on whether the road surface friction coefficient is high or low, so that the rear wheels can be prevented from skidding when turning on a slippery road surface with a low road surface friction coefficient. It is possible to increase the vehicle's suspension and improve stability on slippery roads, which enables control that accurately responds to all driving conditions.

実施例 以下本発明の実施例を附図を参照して説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図乃至第4図は本発明の一実施例を示すもので、第
1図において、lは後輪であり、該後輪lには前後のリ
ンク2及び3の先端部が軸着゛され、該前後のリンク2
及び3の基端部21及び31はクロスメンバ等の車体側
部材5に支持された軸6に第2図に示すような弾性部材
7を介して上下方向に揺動可能なるよう取付けられてい
る。4は後輪1.1の回転軸である。
1 to 4 show an embodiment of the present invention. In FIG. 1, l is a rear wheel, and the tips of the front and rear links 2 and 3 are pivoted to the rear wheel l. and the previous and next links 2
The base end portions 21 and 31 of 3 are attached to a shaft 6 supported by a vehicle body side member 5 such as a cross member so as to be swingable in the vertical direction via an elastic member 7 as shown in FIG. . 4 is the rotation axis of the rear wheel 1.1.

又後輪1には基端部81を後輪より前方(又は後方)の
車体側部材に弾性部材を介して揺動回部なるよう取付け
られたラジアスロッド8の先端部が取付けられ後輪lに
作用する前後方向の荷重を該ラジアスロッド8にて支持
するよう構成されている。
Further, the tip of a radius rod 8 is attached to the rear wheel 1, and the base end 81 is attached to a vehicle body side member forward (or rearward) of the rear wheel via an elastic member so as to function as a swinging portion. The radius rod 8 is configured to support the load acting in the longitudinal direction.

上記弾性部材7は第2図に示すように、内筒71と、該
内筒71と同心状の外筒72と、内筒71と外筒72と
の間に介装固定されたゴム等の弾性部材よりなる弾性円
環73とにより構成され、例えば第2図(イ)のように
弾性円環73の一部に空隙部73aを形成するとか第2
図(a)のように弾性内環73の一部に金属板等の中間
板73bを埋設する等の手段にて、例えばx−X線方向
は低いぼね定数としそれと直交するY−Y線方向は高い
ぼね定数とする等、角度によってばね定数が変化するよ
う構成されており該弾性部材7を軸6とリンク基端部と
の間に介装された状態において、リンク基端部に対して
回動させることによって、リンクを介して入力される後
輪側主荷重に対する弾性部材7のばね定数を可変的に制
御することができるようになっている。
As shown in FIG. 2, the elastic member 7 includes an inner cylinder 71, an outer cylinder 72 concentric with the inner cylinder 71, and a rubber or the like interposed and fixed between the inner cylinder 71 and the outer cylinder 72. For example, as shown in FIG. 2(a), a gap 73a may be formed in a part of the elastic ring 73, or a second
By embedding an intermediate plate 73b such as a metal plate in a part of the elastic inner ring 73 as shown in FIG. The spring constant is configured to change depending on the angle, such as a high spring constant in the direction, and when the elastic member 7 is interposed between the shaft 6 and the link base end, By rotating the elastic member 7 with respect to the link, the spring constant of the elastic member 7 relative to the main load on the rear wheel input via the link can be variably controlled.

上記弾性部材7を回動させるアクチュエータとしては電
動モータ或は油圧機器等が採用され得るが、図示実施例
では電動モータ9を用いた例を示している。
Although an electric motor or a hydraulic device may be used as the actuator for rotating the elastic member 7, the illustrated embodiment shows an example in which an electric motor 9 is used.

即ち電動モータ9は車体側部材5に取付けられ、減速機
10及びリンク機構11等を介して弾性部材7をリンク
基端部に対して回動変位させる。
That is, the electric motor 9 is attached to the vehicle body side member 5, and rotationally displaces the elastic member 7 with respect to the link base end via the reducer 10, link mechanism 11, etc.

第3図は弾性部材7の取付部の一具体例を示すものであ
る。
FIG. 3 shows a specific example of the attachment portion of the elastic member 7. As shown in FIG.

即ち第3図に示すように軸6は車体側部材5に溶接等に
て固着された筒部材12に軸受13を介して回動可能な
るよう嵌装支持され、該軸6の両端部分に弾性部材7の
内筒71をセレーション嵌合等の手段にて嵌合し、且つ
軸6の一方の端部には前記リンク機構11の被駆動側ア
ームllcの基端部をセレーション嵌合等の手段にて嵌
合し、該軸6の両端ねじ部にナツト14を螺合締付けて
弾性部材7及び被駆動側アームllc等を固定する。
That is, as shown in FIG. 3, the shaft 6 is rotatably fitted into and supported by a cylindrical member 12 fixed to the vehicle body side member 5 by welding or the like via a bearing 13. The inner cylinder 71 of the member 7 is fitted by means such as serration fitting, and the base end of the driven arm llc of the link mechanism 11 is fitted to one end of the shaft 6 by means such as serration fitting. Then, the nuts 14 are screwed onto the threaded portions at both ends of the shaft 6 and tightened to fix the elastic member 7, the driven arm llc, etc.

上記のようにして軸6の両端部にそれぞれ組付固定した
弾性部材7のうち、前側弾性部材7aの外筒には球面カ
ラー15が圧入され、該球面カラー15の外周面にリテ
ーナ16を介して前側リンク2の基端部21が回動可能
なるよう嵌挿組付けられ、後側弾性部材7bの外筒には
球面カラー15が圧入され、該球面カラー15の外周面
にリテーナ16を介して後側リンク3の基端部31が回
動可能なるよう嵌挿組付けられる。
Of the elastic members 7 assembled and fixed to both ends of the shaft 6 as described above, a spherical collar 15 is press-fitted into the outer cylinder of the front elastic member 7a, and a retainer 16 is placed on the outer peripheral surface of the spherical collar 15. The base end 21 of the front link 2 is fitted and assembled so as to be rotatable, and the spherical collar 15 is press-fitted into the outer cylinder of the rear elastic member 7b. The base end portion 31 of the rear link 3 is fitted and assembled so as to be rotatable.

尚第3図において17はリンク機構11の被駆動側アー
ムllcと連結ロッド(長さ調整機構をもっている)1
1bの一端部とを結合するジヨイントであり、該連結ロ
ッドllbの他端部は第1図(rl)に示すように減速
機10の出力軸に固定された駆動側アームllaの先端
部にジヨイントを介して結合されている。18はオイル
シールである。
In FIG. 3, reference numeral 17 indicates the driven arm llc of the link mechanism 11 and the connecting rod 1 (having a length adjustment mechanism).
The other end of the connecting rod llb is a joint that connects one end of the connecting rod llb to the tip of the driving arm lla fixed to the output shaft of the reducer 10, as shown in FIG. 1 (rl). are connected via. 18 is an oil seal.

電動モータ9は、走行状態を検出するセンサ例えば車速
を検出する車速センサ19の車速信号と路面の摩擦係数
が高いか低いかを判断する要素となるセンサ類19′の
信号とに基づくコントローラ20の出力信号によって回
転方向及び回転角度等を制御される。
The electric motor 9 is operated by a controller 20 based on a vehicle speed signal from a sensor that detects the driving state, such as a vehicle speed sensor 19 that detects the vehicle speed, and a signal from sensors 19' that are elements that determine whether the friction coefficient of the road surface is high or low. The rotation direction, rotation angle, etc. are controlled by the output signal.

上記において、左側の前後の弾性部材7をそれぞれ7a
、7bとし右側の前後の弾性部材7をそれぞれ7a’、
7b’とし、前側の左右の弾性部材7a、7a’に対し
後側の左右の弾性部材7b、7b’を90″だけ角度変
位させた状態で組付け、例えば第4図(イ)に示すよう
に前側の左右の弾性部材7a 、 7a ”は左右方向
(リンク2の軸線方向)にばね定数が高く上下方向にば
ね定数が低い状態とし、後側の左右の弾性部材7b 、
 7b ’は左右方向(リンク3の軸線方向)にばね定
数が低く上下方向にはばね定数が高い状態とする。この
状態では旋回時に後輪1.1に作用する横力としてのコ
ーナリングフォースによる弾性部材7a、7a’及び7
b 、 7b ’のたわみ量は、前側弾性部材7a、7
a”より後側弾性部材7b 、 7b ’の方が大きく
、従って旋回時外輪側の後輪(以下外輪と称す)はトー
アウト、内輪側の後輪(以下内輪と称す)はトーイン状
態となる。
In the above, the left front and rear elastic members 7 are each 7a.
, 7b, and the front and rear elastic members 7 on the right side are respectively 7a',
7b', and the left and right elastic members 7b and 7b' on the rear side are assembled with an angular displacement of 90'' relative to the left and right elastic members 7a and 7a' on the front side, for example, as shown in FIG. 4(A). The front left and right elastic members 7a, 7a'' have a high spring constant in the left-right direction (the axial direction of the link 2) and a low spring constant in the vertical direction, and the rear left and right elastic members 7b,
7b' is a state in which the spring constant is low in the left-right direction (the axial direction of the link 3) and high in the vertical direction. In this state, the elastic members 7a, 7a' and 7 are caused by cornering force as a lateral force acting on the rear wheel 1.1 when turning.
b, 7b' is the amount of deflection of the front elastic members 7a, 7
The rear elastic members 7b and 7b' are larger than the rear elastic members 7b and 7b', so when turning, the outer rear wheel (hereinafter referred to as the outer wheel) is toe-out, and the inner rear wheel (hereinafter referred to as the inner wheel) is in a toe-in condition.

上記第4図(イ)の状態から電動モータ9が回転しリン
ク機構11を介して軸6,6を右方向に45°回動させ
ると、軸6,6と一体となって前側及び後側のすべての
弾性部材7は各リンク2.3の基端部21,31に対し
右側に45°回動変位し、第4図(0)に示すようにす
べての弾性部材7a、7a’、7b、7b’は各リンク
から入力される横力に対し中間のばね定数(低いぼね定
数と高いぼね定数との中間のばね定数)の状態となり、
旋回時のコーナリングフォースによる前側弾性部材7a
、7a’と後側弾性部材7b 、 7b ’のたわみ量
が同じとなり、外輪も内輪もトー角変化しない状態とな
る。
When the electric motor 9 rotates from the state shown in FIG. 4 (a) above and rotates the shafts 6, 6 by 45 degrees to the right via the link mechanism 11, the shafts 6, 6 are integrated with the shafts 6, 6 to the front and rear sides. All the elastic members 7 are rotated 45° to the right with respect to the base ends 21, 31 of each link 2.3, and all the elastic members 7a, 7a', 7b , 7b' has an intermediate spring constant (a spring constant between a low spring constant and a high spring constant) with respect to the lateral force input from each link,
Front elastic member 7a due to cornering force when turning
, 7a' and the rear elastic members 7b, 7b' have the same amount of deflection, and the toe angles of both the outer ring and the inner ring do not change.

玉記第4図(イ)の状態では旋回時外輪がトーアウト、
内輪がトーインとなるので、旋回性が良好となり、第4
図(n)の状態では旋回時外輪、内輪が共にトー角変化
しないので、主として中速走行時等の常用車速での操縦
性が良好であると言う性質をもち、第4図(ハ)の状態
では旋回時外輪がトーイン、内輪がトーアウトとなり後
輪の横すべりに対する抗力が増大し安定性が良好となる
と言う性質をもっている。従って例えば低車速域では旋
回性を優先させて第4図(イ)の状態とし、中車速域で
は第4図(a)の状態とし、高車速域では安全性を優先
させて第4図(ハ)の状態する等、車速に応じて上記第
4図の(4)  、 (o)  、 (ハ)の各状態を
切換制御することによりほぼ適切なコーナリング特性を
得ることができる。
In the condition shown in Figure 4 (a) of the ball chart, the outer ring toes out when turning.
Since the inner ring has toe-in, turning performance is improved and the fourth
In the state shown in Fig. 4 (n), the toe angle of both the outer and inner wheels does not change when turning, so the maneuverability is good mainly at normal vehicle speeds such as when driving at medium speeds, and as shown in Fig. 4 (c). In this state, when turning, the outer wheel toe-in and the inner wheel toe-out, which increases the resistance against skidding of the rear wheels and improves stability. Therefore, for example, in a low vehicle speed range, priority is given to turning performance and the state shown in Fig. 4 (a) is achieved, in a medium vehicle speed range the state is shown in Fig. 4 (a), and in a high vehicle speed range, safety is given priority and the state shown in Fig. 4 (a) is achieved. Approximately appropriate cornering characteristics can be obtained by controlling the switching between the states (4), (o), and (c) in FIG. 4 according to the vehicle speed, such as state (c).

しかしながら、上記のような車速に応じた制御は、路面
とタイヤとの間の摩擦係数用が所定値以上の道路(以下
高鉢路と称す)を走行している場合においてはほぼ成立
するが、路面とタイヤとの間の川が低い例えば濡れた路
面、雪路或は凍結路等(以下低終路と称す)では低速で
のコーナリング時でも後輪が横すべりしがちとなり、上
記のように低速時外輪はトーアウト。
However, the control according to the vehicle speed as described above is almost effective when the vehicle is traveling on a road where the coefficient of friction between the road surface and the tires is higher than a predetermined value (hereinafter referred to as Takabachi Road). On wet, snowy, or icy roads (hereinafter referred to as low end roads) where the distance between the road surface and the tires is low, the rear wheels tend to skid even when cornering at low speeds. The outer ring is toe out.

内輪はトーインになる状態にしておくと後輪がますます
横すべりし易くなり非常に危険である。
If the inner wheels are left in a toe-in condition, the rear wheels will be more likely to skid, which is extremely dangerous.

そこで本発明では、路面の川が高いか低いかを判断する
要素となるセンサ類19′からの信号によりコントロー
ラ20が先ず走行している路面が高弘路であるか低鉢路
であるかを判断し、高ル路であれば例えば上記のように
車速に応じて第4図(イ)、(o)及び(ハ)の各状態
のいずれかを選択する制御を行い、コントローラ20が
低用路であると判断した場合は、車速に関係なくすべて
の車速域において第4図(ハ)の状態即ちコーナリング
フォースにより外輪がトーイン、内輪がトーアウトにト
ー角変化する状態に保持する制御を行うように構成した
ものである。
Therefore, in the present invention, the controller 20 first determines whether the road surface on which the vehicle is traveling is Takahiroji or Hyobachiji based on signals from the sensors 19' which are elements for determining whether the road surface is high or low. However, if the road is high, for example, as described above, the controller 20 performs control to select one of the states shown in FIG. If it is determined that this is the case, control is performed to maintain the toe angle in the state shown in Figure 4 (c) in all vehicle speed ranges regardless of the vehicle speed, that is, the state in which the toe angle changes such that the outer wheel toe-in and the inner wheel toe-out due to cornering force. It is composed of

このように低p路にてすべての車速域において第4図(
ハ)の状態に保持する制御を行うことにより、低車速で
のコーナリング時でも後輪は外輪がトーイン、内輪がト
ーアウトにトー角変化し、横すべりに対するふんばり力
が増大して、例えば濡れた路面、雪路或は凍結路等すべ
り易い路面でのコーナリング時の安定性を著しく向上さ
せることができる。
As shown in Figure 4 (
By performing control to maintain state C), even when cornering at low vehicle speeds, the toe angle of the rear wheels changes such that the outer wheel is toe-in and the inner wheel is toe-out, increasing the force to prevent sideslips. Stability during cornering on slippery roads such as snowy or frozen roads can be significantly improved.

尚コントローラ20が高鉢路であると判断したときは、
上記のように低車速域では第4図(イ)の状態、中車速
域では第4図(o)の状態。
Note that when the controller 20 determines that it is Takabachiji,
As mentioned above, the state shown in FIG. 4(a) is in the low vehicle speed range, and the state in FIG. 4(o) is in the middle vehicle speed range.

高車速域では第4図(ハ)の状態と言うように車速によ
って切換制御するようにしても良いが、その他例えば低
車速域と中車速域は第4図(0)のようにコーナリング
フォースによるトー角変化が生じない状態とし高車速域
のみ第4図(ハ)のようなコーナリングフォースにより
外輪がトーイン、内輪がトーアウトとなる状態にする制
御態様を採っても良く1、又車によっては高鉢路の場合
はあらゆる車速範囲において第4図(0)のようなコー
ナリングフォースによるトー角変化が生じない状態に保
持する制御を採用しても良い。
In the high vehicle speed range, switching control may be performed depending on the vehicle speed, as shown in Figure 4 (c), but in other cases, for example, in the low and medium speed range, cornering force is used as shown in Figure 4 (0). It is also possible to adopt a control mode in which no toe angle changes occur and the outer wheel is toe-in and the inner wheel is toe-out due to cornering force only in the high vehicle speed range as shown in Figure 4 (c). In the case of a corner road, control may be adopted to maintain a state in which no toe angle change occurs due to cornering force as shown in FIG. 4(0) in all vehicle speed ranges.

上記路面の終が高いか低いかを判断する要素となるセン
サ類としては、例えばドツプラセンサ等の対地車体速度
センサを用い該対地車体速度センサの信号と駆動輪の回
転数から車速を求める車速セン゛す19の車速信号との
差からコントローラ20が高延路か低経路かを判断する
方策、又は従動輪の回転数を検出する従動輪回転数セン
サと駆動輪の回転数を検出・する駆動輪回転数センサと
から発せられるそれぞれの信号の差に基づきコントロー
ラ20が路面ルを判断する方策等が採用され得るが、そ
の他例えば2輪駆動と4輪駆動とを切換使用できるパー
トタイム4輪駆動自動車では該パートタイム4輪駆動自
動車の特性としてスリップし易い路面では4輪駆動に切
換えられるのが一般的であるので、4輪駆動への切換信
号を低経路の判断要素として用い、2輪駆動のときはコ
ントローラ20が高p路であると判断し4輪駆動になる
とコントローラ20が低に路であると判断するよう構成
することもできる。更に又ドライバが手動で切換える手
動スイッチを用い、ドライバの該手動スイッチの切換操
作によってコントローラ20が高p路での制御から低μ
路での制御に切換えるようにすることもできる。
For example, a vehicle speed sensor that determines whether the end of the road surface is high or low is a ground vehicle speed sensor such as a Doppler sensor. A method in which the controller 20 determines whether it is a high route or a low route based on the difference between the vehicle speed signal in step 19, or a driven wheel rotation speed sensor that detects the rotation speed of the driven wheels and a drive wheel rotation speed that detects the rotation speed of the driving wheels. A method may be adopted in which the controller 20 determines the road surface level based on the difference between the respective signals emitted from the sensors. Part-time 4-wheel drive vehicles typically switch to 4-wheel drive on slippery roads, so the 4-wheel drive switching signal is used as a factor in determining the low route; It may be configured such that when the controller 20 determines that the vehicle is on a high p road and enters four-wheel drive, the controller 20 determines that the vehicle is on a low p road. Furthermore, a manual switch that is manually switched by the driver is used, and the controller 20 changes from high p road control to low μ road control by the driver's switching operation of the manual switch.
It is also possible to switch to road control.

尚弾性部材の具体的構造及び弾性部材の回動制御構造等
は図示実施例のもの以外本発明の目的の範囲内において
任意の構成を採用でき、又本発明は図、示のようなパラ
レルリンク式サスペンションに限らずその他トレーリン
グアーム式或はセミトレーリングアーム式等、後輪を上
下揺動可能に支持する揺動部材を複数個所において車体
側部材に弾性部材を介して取付支持したあらゆる形式の
りャサスペンシ菖ンに適用可能なることは言うまでもな
い。
It should be noted that the specific structure of the elastic member and the rotation control structure of the elastic member may have any structure other than that of the illustrated embodiment within the scope of the object of the present invention. Not limited to type suspensions, any type of suspension such as trailing arm type or semi-trailing arm type, in which a swinging member that supports the rear wheel so that it can swing up and down is attached to and supported by elastic members at multiple locations on the vehicle body side member. It goes without saying that this can be applied to Norya Suspension Iris.

発明の効果 以上のように本発明によれば、後輪を支持する揺動部材
を複数個所において車体側部材に弾性部材を介して取付
支持すると共に、該複数の弾性部材の後輪に作用する横
力に対するばね定数をコントローラからの出力信号によ
りそれぞれ可変的に制御することにより旋回時における
後輪のトー角変化を制御し得るよう構成した自動車のリ
ヤサスペンションにおいて、コントローラが自動的に又
はドライバのスイッチ操作によって走行路面の摩擦係数
が高いか低いかを判断し、該摩擦係数が低いと判断した
ときは、該コントローラが全ての車速範囲において旋回
時発生する横力により外輪側がトーイン、内輪側がトー
アウトに後輪がトー角変化する状態に上記複数の弾性部
材の各ばね定数を制御するよう構成したことにより、濡
れた路面、雪路或は凍結路等すべりやすい路面走行時に
おける安定性の著しい向上をはかることができ、路面の
摩擦係数が高いとコントローラが判断したときの例えば
車速に応じたコーナリング時の後輪トー角変化制御と本
発明とを組合わせることによって、あらゆる走行条件も
より安全に、より快適な運転を可能とす払ことができる
もので、実用上多大の効果をもたらし得るものである。
Effects of the Invention As described above, according to the present invention, the swinging member that supports the rear wheel is attached and supported to the vehicle body side member at a plurality of locations via elastic members, and the plurality of elastic members act on the rear wheel. In an automobile rear suspension configured to control changes in the toe angle of the rear wheels during turning by variably controlling spring constants for lateral forces using output signals from the controller, the controller automatically or instructs the driver to The controller determines whether the coefficient of friction of the road surface is high or low by operating a switch, and when it determines that the coefficient of friction is low, the controller controls toe-in for the outer wheels and toe-out for the inner wheels based on the lateral force generated when turning in all vehicle speed ranges. By controlling the spring constants of the plurality of elastic members described above so that the toe angle of the rear wheel changes, the stability is significantly improved when driving on slippery roads such as wet, snowy, or icy roads. By combining the present invention with rear wheel toe angle change control during cornering according to the vehicle speed when the controller determines that the friction coefficient of the road surface is high, for example, the present invention can be used to improve safety under all driving conditions. , which enables more comfortable driving and can bring about great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(4)、(El)は本発明の実施例を示す平面説
明図及び正面説明図、第2図(イ)、(α)は本発明に
おいて使用される弾性部材の構造例をそれぞれ示す正面
図、第3図(イ)、(a)は第1図、におけるリンクの
車体側部材への取付支持部の具体的構造例を示す横断平
面図及び正面図、第4図(4)  、 (o)  、 
(ハ)はリンクの車体側部材への取付支持部に介装され
た前側左右及び後側左右の4個の弾性部材の回動制御態
様例をそれぞれ示す正面図である。 l・・・後輪、2.3・・・リンク、5・・・車体側部
材、6・・・軸、7・・・弾性部材、9・・・電動モー
タ、19・・・車速センサ、19”・・・路面摩擦係数
判断の要素となるセンサ類、20・・・コントローラ。 以   上
Figures 1 (4) and (El) are plan and front views showing embodiments of the present invention, and Figures 2 (a) and (α) are structural examples of elastic members used in the present invention, respectively. The front view shown in FIG. , (o) ,
(c) is a front view showing an example of a rotation control mode of four elastic members on the front left and right and the rear left and right which are interposed in the attachment support portion of the link to the vehicle body side member. l... Rear wheel, 2.3... Link, 5... Vehicle body side member, 6... Axis, 7... Elastic member, 9... Electric motor, 19... Vehicle speed sensor, 19”...sensors that are elements for determining the road surface friction coefficient, 20...controller.

Claims (4)

【特許請求の範囲】[Claims] (1)後輪を支持する揺動部材を車体側部材に複数個所
においてそれぞれ弾性部材を介して取付支持すると共に
、旋回時に生じる横力に対する上記複数の弾性部材のば
ね定数をコントローラからの出力信号によりそれぞれ可
変的に制御することにより旋回時における後輪のトー角
変化を制御し得るよう構成した自動車のリヤサスペンシ
ョンにおいて、走行路面の摩擦係数が高いか低いかを判
断する要素となる信号を上記コントローラに入力させる
手段を設け、該信号に基づいてコントローラが路面の摩
擦係数が高いか低いかを判断し、該路面の摩擦係数が低
いと判断したとき該コントローラがすべての車速範囲に
おいて旋回時発生する横力により外輪側の後輪がトーイ
ン、内輪側の後輪がトーアウトにトー角変化する状態に
上記複数の弾性部材のそれぞれのばね定数を制御すべき
出力信号を発するよう構成したことを特徴とする自動車
用リヤサスペンション。
(1) The swinging member that supports the rear wheels is attached and supported at multiple locations on the vehicle body side member via elastic members, and the spring constants of the plurality of elastic members against the lateral force generated during turning are output signals from the controller. In the rear suspension of an automobile configured to be able to control changes in the toe angle of the rear wheels during turning by variably controlling each of A means for inputting the signal to the controller is provided, and the controller determines whether the coefficient of friction of the road surface is high or low based on the signal, and when the controller determines that the coefficient of friction of the road surface is low, the controller determines whether the coefficient of friction of the road surface is low or not. The invention is characterized in that the output signal is configured to emit an output signal to control the spring constant of each of the plurality of elastic members in a state where the toe angle changes such that the outer rear wheel changes toe-in and the inner rear wheel changes toe-out due to a lateral force. Rear suspension for automobiles.
(2)コントローラは、路面の摩擦係数が高いと判断し
たとき、旋回時発生する横力により、低車速域では外輪
がトーアウト、内輪がトーインの状態に、中車速域では
外輪及び内輪が共にトー角変化しない状態に、高車速域
では外輪がトーイン、内輪がトーアウトの状態になるよ
う複数の弾性部材のばね定数を車速に応じて制御するよ
うになっていることを特徴とする特許請求の範囲第1項
に記載の自動車用リヤサスペンション。
(2) When the controller determines that the friction coefficient of the road surface is high, the lateral force generated during turning causes the outer wheels to toe out and the inner wheels toe in at low speeds, and both the outer and inner wheels toe at medium speeds. Claims characterized in that the spring constants of the plurality of elastic members are controlled according to the vehicle speed so that the outer ring is in a toe-in state and the inner ring is in a toe-out state in a high vehicle speed range with no angular change. The automobile rear suspension according to item 1.
(3)コントローラは、路面の摩擦係数が高いと判断し
たとき、旋回時発生する横力により、低、中車速域では
外輪及び内輪が共にトー角変化しない状態に、高車速域
では外輪がトーイン、内輪がトーアウトの状態になるよ
う、複数の弾性部材のばね定数を車速に応じて制御する
ようになっていることを特徴とする特許請求の範囲第1
項に記載の自動車用リヤサスペンション。
(3) When the controller determines that the friction coefficient of the road surface is high, due to the lateral force generated during turning, the toe angle of both the outer and inner wheels does not change in the low to medium speed range, and the outer wheel causes toe-in in the high speed range. Claim 1, characterized in that the spring constants of the plurality of elastic members are controlled according to the vehicle speed so that the inner ring is in a toe-out state.
The rear suspension for automobiles described in section.
(4)コントローラは、路面の摩擦係数が高いと判断し
たとき、すべての車速範囲において、旋回時発生する横
力により外輪及び内輪が共にトー角変化しない状態にな
るよう、複数の弾性部材のばね定数を保持するようにな
っていることを特徴とする特許請求の範囲第1項に記載
の自動車用リヤサスペンション。
(4) When the controller determines that the coefficient of friction of the road surface is high, the controller uses springs made of multiple elastic members so that the toe angle of both the outer and inner wheels does not change due to the lateral force generated during turning in all vehicle speed ranges. 2. The rear suspension for an automobile according to claim 1, wherein the rear suspension maintains a constant.
JP6204487A 1987-03-17 1987-03-17 Rear suspension for automobile Pending JPS63227474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6204487A JPS63227474A (en) 1987-03-17 1987-03-17 Rear suspension for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6204487A JPS63227474A (en) 1987-03-17 1987-03-17 Rear suspension for automobile

Publications (1)

Publication Number Publication Date
JPS63227474A true JPS63227474A (en) 1988-09-21

Family

ID=13188767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6204487A Pending JPS63227474A (en) 1987-03-17 1987-03-17 Rear suspension for automobile

Country Status (1)

Country Link
JP (1) JPS63227474A (en)

Similar Documents

Publication Publication Date Title
US6634654B2 (en) Wheel suspension for motor vehicles, in particular independent wheel suspension for passenger cars
US5845918A (en) All terrain vehicle with semi-independent rear suspension
US4373743A (en) Wheel suspension system for vehicles
US20010035617A1 (en) Variable camber suspension system
WO2009099178A1 (en) Controller and vehicle
WO2008001913A1 (en) Control device for vehicle
JP2002542975A (en) Wheel suspension for front axle of automobile
US11260923B2 (en) Four-wheel off-road vehicle having an anti-lock braking system assembly
JPH0356944B2 (en)
US5009447A (en) Zero camber steering suspension
US4842295A (en) Vehicle wheel suspension
US5749594A (en) Method and structure for camber and caster adjustment for motor vehicle wheel end assembly
JPS63227474A (en) Rear suspension for automobile
US11643143B2 (en) Spherical wheel leaning systems for vehicles
KR100462242B1 (en) torsion beam suspension
KR100507096B1 (en) Suspension system for vehicles
JP4952949B2 (en) Tow camber angle adjustment device
JPH08198128A (en) Steering device of car
JPH06312607A (en) Air presure control device for vehicular tire
KR100514867B1 (en) Return apparatus of steering for motor vehicle
KR100192379B1 (en) Suspension control system of semi-trailing arm
JPS62289413A (en) Rear suspension for automobile
JP2802499B2 (en) Rear suspension used in automobiles
KR100649964B1 (en) Geometry Control Joint
JPS62289410A (en) Rear suspension for automobile