JPS63226929A - Microwave transmission window - Google Patents

Microwave transmission window

Info

Publication number
JPS63226929A
JPS63226929A JP5997287A JP5997287A JPS63226929A JP S63226929 A JPS63226929 A JP S63226929A JP 5997287 A JP5997287 A JP 5997287A JP 5997287 A JP5997287 A JP 5997287A JP S63226929 A JPS63226929 A JP S63226929A
Authority
JP
Japan
Prior art keywords
alumina
microwave
transmission window
microwave transmission
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5997287A
Other languages
Japanese (ja)
Inventor
Shuzo Fujimura
藤村 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5997287A priority Critical patent/JPS63226929A/en
Publication of JPS63226929A publication Critical patent/JPS63226929A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a window with the excellent resistance to thermal shock by using a dense alumina plate where at least a part coming into contact with a vacuum is composed of a porous layer. CONSTITUTION:A microwave 1 is introduced into a vacuum container through a microwave transmission window which is used to keep a vacuum and to introduce the microwave; a plasma is generated; a process is executed. As an insulator constituting the microwave transmission window at this microwave plasma processing system, a dense alumina plate 21 where at least a part coming into contact with the vacuum is composed of a porous layer 22 is used. The alumina plate for said microwave transmission window is manufactured, e.g., in such a way that the dense alumina plate 21 is coated with porous alumina by injecting the molten alumina. By this setup, because the thermal conduction of the porous alumina is inferior to that of the dense alumina, the resistance to thermal shock of the porous alumina is higher than that of the dense alumina and the coefficient of thermal expansion for both is almost the same, it is possible to obtain the microwave transmission window with the high resistance against thermal shock.

Description

【発明の詳細な説明】 〔概要〕 マイクロ波プラズマ処理装置のマイクロ波透過窓の真空
に接する部分の少なくとも一部が多孔質である緻密質ア
ルミナ板を用いることを特徴とするマイクロ波透過窓で
ある。
[Detailed Description of the Invention] [Summary] A microwave transmitting window of a microwave plasma processing apparatus, characterized in that at least a part of the part of the microwave transmitting window in contact with vacuum uses a porous dense alumina plate. be.

〔産業上の利用分野〕[Industrial application field]

本発明はマイクロ波透過窓、特に熱衝撃性に優れたマイ
クロ波プラズマ処理装置のマイクロ波透過窓に関する。
The present invention relates to a microwave transmission window, particularly to a microwave transmission window for a microwave plasma processing apparatus that has excellent thermal shock resistance.

〔従来の技術〕[Conventional technology]

従来の半導体集積回路製造プロセスは、イオ“ン打込み
を除くと、結晶成長、酸化、拡散、化学蒸着等には熱的
なプロセスが用いられていたが、最近は、放電によって
発生したプラズマを利用する技術が開発され、従来の熱
的なプロセスよりもより低温でよりよい結果が得られる
ようになってきている。そして、高い密度のプラズマを
得るためマイクロ波が用いられる。
Traditional semiconductor integrated circuit manufacturing processes have used thermal processes for crystal growth, oxidation, diffusion, chemical vapor deposition, etc., except for ion implantation, but recently, thermal processes have been used for crystal growth, oxidation, diffusion, chemical vapor deposition, etc.; Techniques have been developed to produce better results at lower temperatures than traditional thermal processes, and microwaves are used to obtain high-density plasma.

マイクロ波プラズマ処理装置の要部、すなわちマイクロ
波透過窓の部分は第2図に断面図で示され、図中、11
はプラズマ処理が行われるチャンバの壁、12はプラズ
マ、13はマイクロ波導波管、14はマイクロ波(μ波
)、15は真空を保持し、かつ、マイクロ波を導入する
ためのマイクロ波透過窓、16は真空封止に用いる0リ
ングである。図示しないマグネトロン装置により発生さ
れ、マイクロ波導波管13内を伝搬してくるマイクロ波
14を用いてプラズマ12を発生し、チャンバ内で例え
ばエツチングのような処理を行う。
The main part of the microwave plasma processing apparatus, namely the microwave transmission window, is shown in cross-section in FIG.
12 is a plasma, 13 is a microwave waveguide, 14 is a microwave (μ wave), and 15 is a microwave transmission window for maintaining vacuum and introducing microwaves. , 16 are O-rings used for vacuum sealing. Plasma 12 is generated using microwaves 14 generated by a magnetron device (not shown) and propagated within a microwave waveguide 13, and processing such as etching is performed within a chamber.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記したような真空容器にマイクロ波を導入してプラズ
マを起し、処理を行うマイクロ波プラズマ処理装置にお
いて、真空を保持しかつマイクロ波を導入させるための
マイクロ波透過窓は、プラズマ自身またはプラズマによ
る生成物質に接触するためにいくつかの考慮すべき問題
をかかえている。マイクロ波透過窓には一般に石英がよ
く用いられるが、フッ素系ガス(CF4 、CHF3+
CユF6 、NF3+SF6など)を含むガスを用いた
プラズマ処理装置では、プラズマにより生じたフッ素イ
オン(F″″)やフッ素ラジカル等により石英窓がエツ
チングされ、ゴミの原因となったり、長期間の使用によ
り変形してマイクロ波の整合を狂わせたりする。アルミ
ナはフッ素系のガスにもエツチングされずこの点では望
ましい。
In the microwave plasma processing equipment described above, which introduces microwaves into a vacuum container to generate plasma and performs processing, the microwave transmission window for maintaining the vacuum and introducing the microwaves is used to protect the plasma itself or the plasma. There are several issues to consider when contacting the product produced by a chemical. Quartz is generally used for microwave transmission windows, but fluorine-based gases (CF4, CHF3+
In plasma processing equipment that uses gases containing fluorine ions (F''), NF3+SF6, etc., the quartz window is etched by fluorine ions (F'''') and fluorine radicals generated by the plasma, causing dust and long-term damage. When used, it becomes deformed and may disrupt the matching of microwaves. Alumina is desirable in this respect because it is not etched by fluorine-based gases.

真空封止の目的からアルミナは緻密質が望ましいが、緻
密質のアルミナで作ったマイクロ波透過窓15は熱衡撃
性が弱く、プラズマに触れ温度が上がると大気圧に耐え
られず割れることがある。第2図を参照すると、マイク
ロ波透過窓15のプラズマ12に接する部分は200〜
300℃に加熱され、他方それのOリング16の近くの
部分は大気温度にあり、この温度差もアルミナ窓割れの
原因である。
For the purpose of vacuum sealing, it is desirable that the alumina be dense, but the microwave transmission window 15 made of dense alumina has weak thermal stability, and if it comes into contact with plasma and the temperature rises, it may not be able to withstand atmospheric pressure and break. be. Referring to FIG. 2, the portion of the microwave transmission window 15 in contact with the plasma 12 is 200~
It is heated to 300° C., while the part of it near the O-ring 16 is at ambient temperature, and this temperature difference is also a cause of alumina window cracking.

このアルミナ窓割れを防ぐためにアルミナ板の冷却を強
化する方法が提案されているが、処理効率向上のために
投入するマイクロ波の電力を増大させる場合には同時に
冷却も強化せねばならず、種々の治具を必要とするので
装置構成上の大きな制約となってしまう。
In order to prevent this alumina window cracking, a method has been proposed to strengthen the cooling of the alumina plate, but when increasing the microwave power input to improve processing efficiency, cooling must also be strengthened at the same time. Since this method requires several jigs, it becomes a major constraint on the device configuration.

これらの問題を解決するために窓を二重にする試みも報
告されているが、やはり装置構成に制約を与える要因と
なっているだけでな(、二重構造の隙間にプラズマが発
生する問題がある。
Attempts to double the windows to solve these problems have been reported, but these only serve to limit the equipment configuration (e.g., the problem of plasma generation in the gaps in the double structure). There is.

さらには、5i02の上にアルミナをコーティングして
、5iOz側で真空封止しアルミナ側で耐フツ素性を分
担させることも提案されたが、前記した200〜300
℃の温度では、5iOzとアルミナの膨張率の差によっ
てアルミナが剥離する問題がある。
Furthermore, it has been proposed to coat 5i02 with alumina, vacuum seal it on the 5iOz side, and have the alumina side share the fluorine resistance.
At a temperature of .degree. C., there is a problem that alumina peels off due to the difference in expansion coefficient between 5iOz and alumina.

本発明はこのような点に鑑みて創作されたもので、マイ
クロ波プラズマ処理装置において、熱衝撃性の強いマイ
クロ波透過窓を提供することを目的とする。
The present invention was created in view of these points, and an object of the present invention is to provide a microwave transmission window with strong thermal shock resistance in a microwave plasma processing apparatus.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明にかかるマイクロ波透過窓の断面図で、
図中、21は緻密質アルミナ板、22は多孔質アルミナ
層である。
FIG. 1 is a cross-sectional view of a microwave transmission window according to the present invention.
In the figure, 21 is a dense alumina plate, and 22 is a porous alumina layer.

本発明においては、マイクロ波透過窓を構成する緻密質
アルミナ板21の真空に接しマイクロ波の触れる部分が
多孔質アルミナN22となっているものである。
In the present invention, the portion of the dense alumina plate 21 constituting the microwave transmission window that is in contact with the vacuum and exposed to microwaves is made of porous alumina N22.

〔作用〕[Effect]

多孔質のアルミナは熱伝導が緻密質のアルミナに比べ悪
く熱衝撃性に強く、しかも熱膨張率はほぼ同じであるか
ら、温度が変化したときに多孔質層と緻密質層が遊離す
ることがない。
Porous alumina has poor thermal conductivity and is more resistant to thermal shock than dense alumina, and its coefficient of thermal expansion is almost the same, so the porous layer and dense layer are unlikely to separate when the temperature changes. do not have.

従って、緻密質アルミナ板で形成されたマイクロ波透過
窓の少なくともプラズマに接触する部分を多孔質化する
ことによって結果的に熱衝撃耐性の高いマイクロ波透過
窓を得ることができる。
Therefore, by making at least the portion of the microwave transmission window formed of a dense alumina plate porous which comes into contact with plasma, it is possible to obtain a microwave transmission window with high thermal shock resistance.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明においては、緻密性アルミナ板21として例えば
東芝セラミック社製の緻密質透過性アルミナTPA−1
0(厚さ101)をマイクロ波透過窓の構成要素として
用い、図示したような装置でN2200cc/ min
、 0.3Torr、 1.5 KW (2,45G)
lz)のプラズマを発生させた。アルミナ窓の温度は、
プラズマ発生後、5分で約100℃、 10分で約13
0℃、20分で約150℃、30分で約180℃となり
31分経過したところで大気圧のかかっている方向に割
れた。
In the present invention, as the dense alumina plate 21, for example, dense transparent alumina TPA-1 manufactured by Toshiba Ceramic Co., Ltd.
0 (thickness 101) as a component of the microwave transmission window, and with the device shown in the figure, N2200cc/min.
, 0.3 Torr, 1.5 KW (2,45G)
1z) plasma was generated. The temperature of the alumina window is
After plasma generation, the temperature rises to about 100℃ in 5 minutes, and about 13℃ in 10 minutes.
At 0°C, the temperature rose to about 150°C in 20 minutes, to about 180°C in 30 minutes, and after 31 minutes it cracked in the direction of atmospheric pressure.

次に同TPA−10の真空へ接触する部分(0リング面
は除く)にプラズマ溶射により約IIIIII+の多孔
質アルミナ層を形成し、これをマイクロ波透過窓に用い
た。プラズマ溶射としては、アルミナの粉末をプラズマ
トーチの中へ落下させ、緻密質アルミナ板21の表面に
吹き付けて表面コーティングを行った。かかる方法を採
用すると同時に、Oリング面は緻密質アルミナを露出し
たままにしておき、良好な真空封止を得ることが可能と
なった(そうしないと、多孔質アルミナ層を通して真空
リークが発生する)。
Next, a porous alumina layer of about III+ was formed by plasma spraying on the part of the TPA-10 that came into contact with the vacuum (excluding the O-ring surface), and this was used as a microwave transmission window. For plasma spraying, alumina powder was dropped into a plasma torch and sprayed onto the surface of the dense alumina plate 21 to coat the surface. By adopting such a method, it was possible to obtain a good vacuum seal by leaving the dense alumina exposed on the O-ring surface (otherwise, vacuum leakage would occur through the porous alumina layer). ).

上記と同様のプラズマを発生させたところ、窓はプラズ
マ発生後40分を経過しても割れず、明らかに多孔質ア
ルミナ層による熱衝撃への緩和効果が見られた。さらに
、室温に戻った後も多孔質アルミナ層が剥離することは
なかった。
When the same plasma as above was generated, the window did not crack even after 40 minutes had passed after the plasma was generated, clearly showing that the porous alumina layer had a mitigating effect on thermal shock. Furthermore, the porous alumina layer did not peel off even after the temperature returned to room temperature.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、マイクロ波プラ
ズマ処理装置のマイクロ波透過窓に緻密性アルミナ板に
多孔質アルミナをコーティングしたものを用いることに
より、従来例に見られた窓割れがなくなり、マイクロ波
プラズマ処理の歩留り向上に有効である。
As described above, according to the present invention, by using a dense alumina plate coated with porous alumina for the microwave transmission window of a microwave plasma processing apparatus, the window cracking seen in the conventional example is eliminated. , is effective in improving the yield of microwave plasma processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例断面図、 第2図はマイクロ波プラズマ処理装置のマイクロ波透過
窓部分を示す従来例断面図である。 第1図と第2図に、おいて、 11はチャンバ壁、 12はプラズマ、 13は導波管、 14はマイクロ波、 15はマイクロ波透過窓、 16は0リング、 21は緻密質アルミナ板、 22は多孔質アルミナ層である。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 4−f!−蛸突施例幹面l 第1図 従来例前面の 第2図
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional example showing a microwave transmission window portion of a microwave plasma processing apparatus. In Figures 1 and 2, 11 is a chamber wall, 12 is a plasma, 13 is a waveguide, 14 is a microwave, 15 is a microwave transmission window, 16 is an O-ring, and 21 is a dense alumina plate. , 22 is a porous alumina layer. Agent: Patent Attorney Hajime Kuki Agent: Patent Attorney Yoshiyoshi Osuga 4-f! - Trunk surface of the octopus example Fig. 1 Fig. 2 of the front of the conventional example

Claims (2)

【特許請求の範囲】[Claims] (1)真空容器に、真空を保持しかつマイクロ波を導入
するためのマイクロ波透過窓を通じてマイクロ波を導入
し、プラズマを発生させ処理を行うマイクロ波プラズマ
処理装置において、該マイクロ波透過窓を構成する絶縁
物に少なくとも真空に接する部分が多孔質層(22)と
なった緻密質アルミナ板(21)を用いることを特徴と
するマイクロ波透過窓。
(1) In a microwave plasma processing apparatus that introduces microwaves into a vacuum container through a microwave transmission window that maintains a vacuum and introduces microwaves to generate plasma and perform processing, the microwave transmission window is A microwave transmitting window characterized by using a dense alumina plate (21) whose insulator is a porous layer (22) at least in the portion in contact with vacuum.
(2)上記マイクロ波透過窓用のアルミナ板が緻密質ア
ルミナ板(21)にアルミナ溶射によって多孔質アルミ
ナを付着させて形成されてなる特許請求の範囲第1項記
載のマイクロ波透過窓。
(2) The microwave transmitting window according to claim 1, wherein the alumina plate for the microwave transmitting window is formed by adhering porous alumina to a dense alumina plate (21) by alumina spraying.
JP5997287A 1987-03-17 1987-03-17 Microwave transmission window Pending JPS63226929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5997287A JPS63226929A (en) 1987-03-17 1987-03-17 Microwave transmission window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5997287A JPS63226929A (en) 1987-03-17 1987-03-17 Microwave transmission window

Publications (1)

Publication Number Publication Date
JPS63226929A true JPS63226929A (en) 1988-09-21

Family

ID=13128594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5997287A Pending JPS63226929A (en) 1987-03-17 1987-03-17 Microwave transmission window

Country Status (1)

Country Link
JP (1) JPS63226929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587039A (en) * 1992-01-09 1996-12-24 Varian Associates, Inc. Plasma etch equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587039A (en) * 1992-01-09 1996-12-24 Varian Associates, Inc. Plasma etch equipment

Similar Documents

Publication Publication Date Title
US5454903A (en) Plasma cleaning of a CVD or etch reactor using helium for plasma stabilization
US20140030533A1 (en) Innovative top-coat approach for advanced device on-wafer particle performance
KR20010075566A (en) Semiconductor device and method for manufacturing the same
JP2003109941A (en) Plasma treatment device and surface treatment method
KR100374885B1 (en) Process for producing insulating film
EP0841838B1 (en) Plasma treatment apparatus and plasma treatment method
JPH053732B2 (en)
JPH11135494A (en) Plasma treatment method
US6092486A (en) Plasma processing apparatus and plasma processing method
JP5001862B2 (en) Microwave plasma processing equipment
JPS60169139A (en) Vapor-phase treating apparatus
JPS63226929A (en) Microwave transmission window
JP3422292B2 (en) Plasma processing equipment
JPH07272897A (en) Microwave plasma device
JP4782316B2 (en) Processing method and plasma apparatus
KR0176271B1 (en) Method for plasma downstream processing
JPH04132220A (en) Plasma taper etching method
JP2000106298A (en) Plasma processing unit
JP4141021B2 (en) Plasma deposition method
JPH04293781A (en) Microwave plasma treating device
JPH01188678A (en) Plasma vapor growth apparatus
JPS63131519A (en) Dry etching apparatus
JP3966618B2 (en) Plasma processing equipment
JP2862779B2 (en) Electromagnetic wave transmitting body
US20150155141A1 (en) Plasma processing apparatus