JPS63226861A - Color picture tube device - Google Patents

Color picture tube device

Info

Publication number
JPS63226861A
JPS63226861A JP5998187A JP5998187A JPS63226861A JP S63226861 A JPS63226861 A JP S63226861A JP 5998187 A JP5998187 A JP 5998187A JP 5998187 A JP5998187 A JP 5998187A JP S63226861 A JPS63226861 A JP S63226861A
Authority
JP
Japan
Prior art keywords
magnetic field
axis
electron beam
horizontal
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5998187A
Other languages
Japanese (ja)
Inventor
Taketoshi Shimoma
下間 武敏
Katsue Morohashi
諸橋 勝栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5998187A priority Critical patent/JPS63226861A/en
Publication of JPS63226861A publication Critical patent/JPS63226861A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the distortion of an electron beam deflected in the horizontal direction and improve the resolution by providing the horizontal deflecting magnetic field having the barrel-shaped magnetic field near an electron gun and the pin cushion-shaped magnetic field near a fluorescent screen. CONSTITUTION:The horizontal deflecting magnetic field has a barrel shape on the incident side of an electron beam and a pin cushion shape on the outgoing side of the electron beam. The right and left magnetic field distribution is made asymmetrical, thereby the magnetic field distribution is made similar to the pin cushion magnetic field at the electron beam deflection side, and the good convergence characteristic can be obtained. At this time, the magnetic field distribution is similar to the barrel magnetic field at the opposite side, but little effect is given to the electron beam. The effect of the horizontal deflecting magnetic field on the electron beam spot shape is changed by the strength of the pin cushion or barrel of the magnetic field and the degree of the right and left asymmetry of the magnetic field. Accordingly, when such horizontal deflecting magnetic field is used, the distortion of the electron beam deflected in the horizontal direction is reduced, and the resolution can be improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はインライン型電子銃を備えたカラー受像管装置
に関し、特に偏向装置を備えたインライン型カラー受像
管装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a color picture tube device equipped with an in-line electron gun, and more particularly to an in-line color picture tube device equipped with a deflection device.

(従来の技術) インライン型カラー受像管装置は赤、緑、青3色発光の
蛍光体を被着した蛍光面を備えたパネル、この蛍光面に
向って電子ビームを照射する電子銃を備えたネック、こ
のネックとパルスとの間を接続するファンネルを外囲器
としている。ネック内部には中央および両側から、つま
り3本の電子ビームを照射するインライン型電子銃が内
蔵され、ファンネル外部には電子銃から照射された電子
ビームが蛍光面の表面領域に射突するように電子ビーム
を水平方向および垂直方向に偏向する偏向磁界発生装置
が装着される。またパネル内面には蛍光面に接近してシ
ャドウマスクが対向配置され、このシャドウマスクに開
けられた多数の小開口を通過した電子ビームが3色蛍光
体の所定位置に射突するようにされている。
(Prior art) An in-line color picture tube device is equipped with a panel equipped with a phosphor screen coated with phosphors that emit light in three colors: red, green, and blue, and an electron gun that irradiates an electron beam toward the phosphor screen. The envelope is a funnel that connects the neck and the pulse. Inside the neck, there is an in-line electron gun that emits three electron beams from the center and both sides, and outside the funnel, the electron beam from the electron gun hits the surface area of the phosphor screen. A deflection magnetic field generator is installed to deflect the electron beam in horizontal and vertical directions. In addition, a shadow mask is placed on the inner surface of the panel, close to the phosphor screen, and facing the phosphor screen, so that the electron beams that pass through a number of small apertures in this shadow mask impinge on predetermined positions on the three-color phosphors. There is.

さて電子銃から照射された3本の電子ビームは蛍光面上
で集中(コンバージェンス)するように、水平偏向磁界
がピンクッション形に、垂直偏向磁界がバレル形になる
ように偏向磁界発生装置に工夫がなされている。これを
自己集中(セルフコンバージェンス)型磁界と称する。
Now, in order for the three electron beams emitted from the electron gun to converge on the phosphor screen, the deflection magnetic field generator has been devised so that the horizontal deflection magnetic field is pincushion-shaped and the vertical deflection magnetic field is barrel-shaped. is being done. This is called a self-convergence type magnetic field.

このような自己集中型磁界にするとビーム集中の調整に
必要な各種端子やコンバージエンスヨークヤコンバージ
エンス回路が不要になる等、多くの利点を有する。しか
しビームの自己集中のために磁界の歪を利用しているの
で蛍光面上の電子ビーム形状が歪むという欠点がおる。
Such a self-concentrating magnetic field has many advantages, such as eliminating the need for various terminals, convergence yokes, and convergence circuits necessary for beam concentration adjustment. However, since the distortion of the magnetic field is used to self-focus the beam, it has the disadvantage that the shape of the electron beam on the phosphor screen is distorted.

第4図(2)は蛍光面水平端部に偏向された電子ビーム
形状を示し、横長の明るいコア部C@と、縦長の暗いハ
ロ一部OQとに別れた歪んだ形になる。また第4図υは
蛍光面垂直端部に偏向された電子ビーム形状を示し、小
ざく明るい縦長のコア部O@と、大きくて暗い縦長のハ
ロ一部(ロ)とに別れた歪んだ形になる。
FIG. 4(2) shows the shape of the electron beam deflected to the horizontal end of the phosphor screen, which has a distorted shape divided into a horizontally long bright core part C@ and a vertically long dark halo part OQ. Figure 4 υ shows the shape of the electron beam deflected to the vertical end of the phosphor screen, with a distorted shape divided into a small bright vertically elongated core part O@ and a large dark vertically elongated halo part (B). become.

(発明が解決しようとする問題点) 以上のようにインライン型陰極線管gAl!!において
は偏向された電子ビーム形状は歪むという問題があり、
カラー受像管の解像度劣化の一因になっている。
(Problems to be Solved by the Invention) As described above, in-line cathode ray tube gAl! ! There is a problem that the shape of the deflected electron beam is distorted.
This is one of the causes of resolution deterioration in color picture tubes.

そこで本発明は、水平方向に偏向された電子ビームの企
が少なく、解像度をより向上したインライン型陰@線!
!装置を提供することを目的とする。
Therefore, the present invention is an in-line type shadow@ray camera that has improved resolution with fewer horizontally deflected electron beams!
! The purpose is to provide equipment.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は真空外囲器と、この外囲器内に配置される蛍光
面と、この蛍光面に向って3本の電子ビームを照射する
インライン型電子銃と、前記電子ビームが前記蛍光面の
所定表示領域にする射突するよう電子ビームを水平方向
および垂直方向に偏向する偏向磁界発生装置とを備えた
カラー受像管装置を対象とするものである。
(Means for Solving the Problems) The present invention includes a vacuum envelope, a phosphor screen disposed inside the envelope, and an in-line electron gun that irradiates three electron beams toward the phosphor screen. The present invention is directed to a color picture tube device comprising: a deflection magnetic field generating device that deflects the electron beam in the horizontal and vertical directions so that the electron beam impinges on a predetermined display area of the phosphor screen.

本発明は蛍光面の中心を基点として、水平方向に延びる
軸をX軸、垂直方向に延びる軸をY軸、蛍光面に垂直な
軸をZ軸とするとき、 X軸とZ軸を含む平面<X−Z平面)に対しほぼ対称で
あり電子ビーム通過領域において主に水平方向成分を持
つピンクッション形成の垂直主偏向磁界と、 X軸と2軸を含む平面<X−Z平面)に対しほぼ反対称
であり電子ビーム通過領域において主に水平方向成分を
持つ垂直補助偏向磁界とを有する。
The present invention is based on the center of the phosphor screen, and when the axis extending in the horizontal direction is the X axis, the axis extending in the vertical direction is the Y axis, and the axis perpendicular to the phosphor screen is the Z axis, a plane including the X axis and the Z axis. <X-Z plane) and a pincushion-forming vertical main deflection magnetic field that is almost symmetrical with respect to the electron beam passing region and has mainly horizontal components; It has a vertical auxiliary deflection magnetic field that is almost antisymmetric and has a mainly horizontal component in the electron beam passage region.

平行偏向磁界は、 Y軸と2軸を含む平面(Y−Z平面)に対しほぼ対称で
あり電子ビーム通過領域において主に垂直成分を持ち電
子銃に近い側の磁界はバレル磁界であり蛍光面に近い側
の磁界はピンクッション磁界であり管軸上の磁界全体の
平均はバレル磁界である水平主偏向磁界と、 Y軸と2軸を含む平面(Y−Z平面)に対しほぼ反対称
であり電子ビーム通過領域において主に垂直方向成分を
持つ水平補助偏向磁界とを有する。
The parallel deflection magnetic field is almost symmetrical with respect to the plane (Y-Z plane) that includes the Y axis and two axes, and has mainly vertical components in the electron beam passage area. The magnetic field on the side near the axis is a pincushion magnetic field, and the average of the entire magnetic field on the tube axis is almost antisymmetric with respect to the horizontal main deflection magnetic field, which is the barrel magnetic field, and the plane containing the Y axis and two axes (Y-Z plane). It has a horizontal auxiliary deflection magnetic field with a mainly vertical component in the electron beam passage region.

(作 用) 本発明によれば、電子ビームは、磁界の作用により偏向
されても歪が少なく、解像度のよいカラー受像管装置を
実現することができる。
(Function) According to the present invention, even when an electron beam is deflected by the action of a magnetic field, there is little distortion, and a color picture tube device with good resolution can be realized.

(実施例) 本発明を実施例により説明する。第1図に本発明の好適
な磁界分布を示す。すなわち、水平偏向磁界は電子ビー
ム入射側ではバレル形状となっており、電子ビー出射側
ではピンクッション形をなしており、全体を平均すると
弱バレル形となっているが、バレル磁界および、ピンク
ッション磁界とも、通常用いられているセルフコンバー
ジェンス型の偏向ヨークのピンクッション磁界あるいは
バレル磁界の強度と比較すると弱い。
(Example) The present invention will be explained with reference to an example. FIG. 1 shows a preferred magnetic field distribution according to the present invention. In other words, the horizontal deflection magnetic field has a barrel shape on the electron beam incident side, and a pincushion shape on the electron beam exit side, and when averaged as a whole, it has a weak barrel shape, but the barrel magnetic field and the pincushion Both magnetic fields are weak compared to the strength of the pincushion magnetic field or barrel magnetic field of the normally used self-convergence type deflection yoke.

また、垂直偏向磁界は全体に弱ピンクッション磁界であ
り、かかるピンクッション磁界は、通常用いられるセル
フコンバージェンス型の偏向ヨークと比較すると非常に
小さい。実際にはカラー受像管の動作中はかかる偏向磁
界は水平偏向磁界は左右で非対称に、また垂直偏向磁界
は下上で非対称となっているため、従来の概念で示され
るピンクッションまたはバレル形状とは多少異なってい
る。
Further, the vertical deflection magnetic field is a weak pincushion magnetic field as a whole, and this pincushion magnetic field is extremely small compared to a normally used self-convergence type deflection yoke. In reality, during the operation of a color picture tube, the horizontal deflection magnetic field is asymmetrical on the left and right, and the vertical deflection magnetic field is asymmetrical on the bottom and top, so the shape is different from the pincushion or barrel shape shown in the conventional concept. are somewhat different.

動作中の磁界分布を第5図を用いて説明する。水平偏向
磁界は電子ビーム入射側では、バレル形状であり、電子
ビーム出射側ではピンクッション形状となっているが、
左右の磁界分布を非対称とすることにより、電子ビーム
偏向側(I子ビームが偏向される方向に位置する側)で
は、ピンクッション磁界に似た磁界分布となり、良好な
コンバージェンス特性が得られる。この時電子ビーム偏
向側と反対側では磁界分布はバレル磁界と似た磁界分布
となるが電子ビームは影響をめまり受けない。
The magnetic field distribution during operation will be explained using FIG. The horizontal deflection magnetic field has a barrel shape on the electron beam entrance side and a pincushion shape on the electron beam exit side.
By making the left and right magnetic field distribution asymmetrical, on the electron beam deflection side (the side located in the direction in which the I beam is deflected), the magnetic field distribution becomes similar to a pincushion magnetic field, and good convergence characteristics can be obtained. At this time, on the side opposite to the electron beam deflection side, the magnetic field distribution becomes similar to the barrel magnetic field, but the electron beam is rarely affected.

水平偏向磁界が電子ビームスポット形状に与える影響は
磁界のピンクッションあるいはバレルの強さ、および磁
界の左右の非対称の程度により変わる。また、水平偏向
時の電子ビームスポット形状の横長の程度は左右対称と
した場合のピンクッション、バレルの度合により変わり
、バレル磁界が強い程、電子ビームスポット形状は縦長
の度合が強くなる。従って水平偏向の場合にはバレル磁
界が強い程、ビームスポット形状は縦長になり、良好な
結果が得られるが、3色の電子ビームはスクリーンの手
前で集束するようになり、いわゆるオーバーコンバージ
ェンスの状態となる。従って、かかる、オーバーコンバ
ージェンス状態は水平偏向磁界の左右の非対称度合を強
くすれば解決できるが、非対称度合を強くするためには
一般的に偏向電流を強くしなければならないがこれは好
ましくない。また、水平偏向磁界は、左右対称とした場
合に弱いバレル磁界であれば、電子ビームスポット形状
も良好で偏向電流も小さくて良いことがわかっている。
The influence of the horizontal deflection magnetic field on the electron beam spot shape varies depending on the strength of the pincushion or barrel of the magnetic field and the degree of left-right asymmetry of the magnetic field. Further, the degree of horizontal elongation of the electron beam spot shape during horizontal deflection changes depending on the degree of pincushion and barrel when left and right symmetry is achieved, and the stronger the barrel magnetic field, the stronger the degree of vertical elongation of the electron beam spot shape. Therefore, in the case of horizontal deflection, the stronger the barrel magnetic field, the more vertically elongated the beam spot shape and better results can be obtained, but the three color electron beams will be focused in front of the screen, resulting in a so-called overconvergence state. becomes. Therefore, such an overconvergence state can be solved by increasing the degree of left-right asymmetry of the horizontal deflection magnetic field, but in order to increase the degree of asymmetry, it is generally necessary to increase the deflection current, which is not preferable. Furthermore, it has been found that when the horizontal deflection magnetic field is symmetrical and the barrel magnetic field is weak, the shape of the electron beam spot is good and the deflection current can be small.

更に、水平偏向磁界が電子ビームスポット形状に与える
影響(重み関数)は次の式%式% Zs :スタリン面位置、X:水平偏向伍、H皿:水平
磁界のピンクジョンバレル度合、工8′:入射ビームの
傾き、工8 二人対位置また、コンバージェンスに与え
る影響(重み関数)は (2kJ(Z−Z@)XHn・dZ)I!a′となり、
水平偏向磁界の電子ビーム入口側がコンバージェンスよ
りも電子ビーム形状に与える影響が大きい。従って、水
平偏向磁界は全体として弱バレル形状となすが、電子ビ
ームの入口側をバレル磁界とし、出口側をピンクッショ
ン磁界とすると温度のオーバーコンバージェンス状態に
することなく良好な電子ビームスポット形状が得られる
Furthermore, the influence (weighting function) of the horizontal deflection magnetic field on the electron beam spot shape is expressed by the following formula: %Zs: Stallin surface position, : Inclination of the incident beam, Eq. 8 Pairing position of the two people Also, the influence (weighting function) on convergence is (2kJ(Z-Z@)XHn・dZ)I! becomes a′,
The electron beam entrance side of the horizontal deflection magnetic field has a greater influence on the electron beam shape than the convergence. Therefore, the horizontal deflection magnetic field as a whole has a weak barrel shape, but if the entrance side of the electron beam is a barrel magnetic field and the exit side is a pincushion magnetic field, a good electron beam spot shape can be obtained without causing temperature overconvergence. It will be done.

かかる重み関数は第6図に図示される。Such a weighting function is illustrated in FIG.

また、水平偏向磁界を左右非対称とする方法は種々考え
られる。第7図に1例を示す。(ハ)には左右非対称磁
界とするために水平偏向コイルを左右に分割し、それぞ
れ異なる大きざの電流を供給する。左右コイルの電流差
は偏向量に応じ調整する。
Further, various methods can be considered to make the horizontal deflection magnetic field bilaterally asymmetrical. An example is shown in FIG. In (c), in order to create a left-right asymmetrical magnetic field, the horizontal deflection coil is divided into left and right parts, and currents of different magnitudes are supplied to each part. The current difference between the left and right coils is adjusted according to the amount of deflection.

本図では水平偏向コイルの上半分のみ図示しており、実
際の偏向ヨークは水平軸の軸対称位置に下半分がある。
In this figure, only the upper half of the horizontal deflection coil is shown, and the actual deflection yoke has a lower half located at a position symmetrical to the horizontal axis.

第7図0には水平偏向磁界を左右非対称とするためのト
ロイダルコイル00が示される。
FIG. 70 shows a toroidal coil 00 for making the horizontal deflection magnetic field bilaterally asymmetrical.

トロイダルコイル(至)はコア(至)にトロイダル状に
巻回される。かかるトロイダルコイルは第7図(C)に
示される磁界を発生し、対称なサドル磁界により発生す
る。対称な水平偏向磁界に重畳される。水平偏向磁界の
非対称の度合は、第7図υ、(C)の場合ではトロイダ
ルコイル00の巻回数およびトロイダルコイル0Φに流
す電流値を変えることにより所望の値が得られる。また
、水平偏向磁界のピンクッション、バレル成分は第7図
(ハ)には示さないがかかるトロイダルコイル0Φと組
合わす、サドル形コイルによって決まり、かかるコイル
によりピンクッション型あるいはバレル型磁界を形成す
る方法は通常のセルフコンバージェンス型の偏向ヨーク
の場合と同様である。また、第7図に示した形の他に、
水平偏向コイルはずべてトロイダル形状にする等種々の
例が考えられるが、かかる変形例も本発明に含まれるこ
とは言うまでもない。
The toroidal coil is wound around the core in a toroidal manner. Such a toroidal coil generates the magnetic field shown in FIG. 7(C), which is generated by the symmetrical saddle magnetic field. superimposed on a symmetrical horizontal deflection magnetic field. In the case of FIG. 7 υ, (C), the degree of asymmetry of the horizontal deflection magnetic field can be obtained to a desired value by changing the number of turns of the toroidal coil 00 and the value of the current flowing through the toroidal coil 0Φ. Further, the pincushion and barrel components of the horizontal deflection magnetic field are determined by the saddle-shaped coil combined with the toroidal coil 0Φ, which is not shown in FIG. The method is the same as in the case of a normal self-convergence type deflection yoke. In addition to the shape shown in Figure 7,
Various examples can be considered, such as making all the horizontal deflection coils toroidal, and it goes without saying that such modifications are also included in the present invention.

垂直偏向コイルと同様に上下非対称な磁界により電子ビ
ームスポット形状とコンバージェンスを最適にすること
が可能である。本発明による好適な偏向磁界の1例を第
8図に示す。すなわち、垂直偏向磁界は上下対称とした
場合は弱いピンクッション磁界を形成する。また、上下
の偏向磁界の非対称は好適には1個のフェライトコアに
巻回された1対のトロイダルコイルに流す偏向電流の電
流差により非対称磁界を形成する。かかる、磁界によれ
ば垂直偏向時の電子ビームスポット形状および、コンバ
ージェンスが良好になることが確認された。上記例の他
に本発明の垂直偏向磁界は種々な方法で形成することが
可能である。すなわち、通常のトロイダル巻の垂直偏向
コイルが上下対称の磁界を形成する場合は全体として弱
ピンクッション磁界となる様な巻線分布とし、上下のト
ロイダルコイルに流す電流値に差をつける第9図に示す
前記方法の他に、水平偏向コイルの場合と同様に、サド
ル巻コイルとトロイダル巻コイルあるいは、サドル巻コ
イルとサドル巻コイル、またはトロイダル巻コイルとト
ロイダル巻コイルを組合わせる等の実施例も考えられる
が、カラー受像管のコンバージェンスおよび電子ビーム
スポット形状を良好に改善せしめる効果には変わりない
Similar to the vertical deflection coil, it is possible to optimize the electron beam spot shape and convergence using a vertically asymmetric magnetic field. An example of a suitable deflection magnetic field according to the present invention is shown in FIG. That is, when the vertical deflection magnetic field is vertically symmetrical, a weak pincushion magnetic field is formed. Further, the asymmetry between the upper and lower deflection magnetic fields is preferably caused by a current difference between deflection currents flowing through a pair of toroidal coils wound around one ferrite core to form an asymmetric magnetic field. It was confirmed that such a magnetic field improves the electron beam spot shape and convergence during vertical deflection. In addition to the above example, the vertical deflection magnetic field of the present invention can be formed in various ways. In other words, when a normal toroidal-wound vertical deflection coil forms a vertically symmetrical magnetic field, the winding distribution is such that the overall magnetic field is a weak pincushion field, and the current values flowing through the upper and lower toroidal coils are differentiated. In addition to the above-mentioned method shown in , similar to the case of the horizontal deflection coil, there are also embodiments such as combining a saddle-wound coil and a toroidal-wound coil, a saddle-wound coil and a saddle-wound coil, or a combination of a toroidal-wound coil and a toroidal-wound coil. However, the effect of improving the convergence of the color picture tube and the shape of the electron beam spot remains unchanged.

本発明による偏向磁界によって第10図に示す様に、カ
ラー受像管の水平軸端ではハローの小さな真円に近い電
子ビームスポットが得られる。また垂直軸端においても
同様にハローのない真円に近い電子ビームスポットが得
られた。
As shown in FIG. 10, by the deflection magnetic field according to the present invention, an electron beam spot with a small halo, which is close to a perfect circle, can be obtained at the horizontal axis end of the color picture tube. Furthermore, a nearly perfect circular electron beam spot without a halo was similarly obtained at the vertical axis end.

〔発明の効果〕〔Effect of the invention〕

本発明により、電子ビームスポット形状の歪が小さく、
コンバージェンスも良好なカラー受像管が実現できる。
According to the present invention, the distortion of the electron beam spot shape is small;
A color picture tube with good convergence can be realized.

したがって、本発明は一般のカラー受像管はもとより、
より精細度が要求されるカラー受像管の性能向上に効果
が大であり、工業的な利用価値は多大である。
Therefore, the present invention applies not only to general color picture tubes but also to
It is highly effective in improving the performance of color picture tubes, which require higher definition, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の偏向ヨーク磁界分布を説明する線図
、第2図は従来例のカラー受像管を説明する断面図、第
3図は従来例の偏向磁界の模式図、第4図は従来例の偏
向磁界による電子ビームスポット形状を示す線図、第5
図は本発明の水平偏向磁界を示す線図、第6図は重み関
数を示す線図、第7図は水平偏向巻線の好適な1例を示
す線図、第8図は本発明の垂直偏向磁界分布を示す線図
、第9図は本発明の垂直偏向磁界を示す線図、第10図
は本発明の磁界分布による、電子ビームスポット形状を
示す図である。 1・・・・・・パネル   2・・・・・・蛍光面3・
・・・・・ファンネル   4・・・・・・ネック5・
・・・・・電子銃    6・・・・・・電子ビーム7
・・・・・・ステムビン   8・・・・・・フレーム
9・・・・・・シャドウマスク 10・・・・・・偏向
ヨーク11・・・・・・水平偏向ta界  12・・・
・・・垂直偏向磁界13・・・・・・コア部14・・・
・・・ハロ一部代理人 弁理士 則 近 憲 佑 同  大胡典夫 第  l  図 7尺手り靜句スポット町         1計直Aら
向スポットy〉第  4 図 (b)1に194向二諷岑(左りt十称ビ(た脩〕第 
 5 図 第  6  図 (α)t′+発のみ尽す (6)            (C)第  7 図 第  8 図 (a) 1oL・Ib * 4h 第 (α)7に才鳴刺1でよる ビームスポット 第 9図 ビームスポット 10図
Fig. 1 is a diagram illustrating the deflection yoke magnetic field distribution of the present invention, Fig. 2 is a sectional view illustrating a conventional color picture tube, Fig. 3 is a schematic diagram of the deflection magnetic field of the conventional example, and Fig. 4. is a diagram showing the shape of the electron beam spot due to the deflection magnetic field in the conventional example;
6 is a diagram showing the horizontal deflection magnetic field of the present invention, FIG. 6 is a diagram showing the weighting function, FIG. 7 is a diagram showing a preferred example of the horizontal deflection winding, and FIG. 8 is a diagram showing the vertical deflection magnetic field of the present invention. FIG. 9 is a diagram showing the deflection magnetic field distribution, FIG. 9 is a diagram showing the vertical deflection magnetic field of the present invention, and FIG. 10 is a diagram showing the electron beam spot shape according to the magnetic field distribution of the present invention. 1... Panel 2... Fluorescent screen 3.
... Funnel 4 ... Neck 5.
...Electron gun 6 ...Electron beam 7
... Stem bin 8 ... Frame 9 ... Shadow mask 10 ... Deflection yoke 11 ... Horizontal deflection ta field 12 ...
... Vertical deflection magnetic field 13 ... Core part 14 ...
...Halo Partial Agent Patent Attorney Nori Ken Chika Yudo Norio Ogo No. 1 Figure 7 Shakuteri Seiki Spot Town 1 Keicho A Direction Spot Y> Figure 4 (b) 1 194 Mukojimata岑 (left)
5 Figure 6 Figure 6 (α) t' + exhaustion (6) (C) Figure 7 Figure 8 (a) 1oL・Ib * 4h Beam spot 9 based on the beam spot 1 on the 7th (α) Figure beam spot 10 diagram

Claims (1)

【特許請求の範囲】[Claims] (1)真空外囲器と、この外囲器内に配置される蛍光面
と、この蛍光面に向って3本の電子ビームを照射するイ
ンライン型電子銃と、 前記電子ビームが前記蛍光面の所定表示領域にする射突
するよう電子ビームを水平方向および垂直方向に偏向す
る偏向磁界発生装置とを備えたカラー受像管装置におい
て、 蛍光面の中心を基点として、水平方向に延びる軸をX軸
、垂直方向に延びる軸をY軸、蛍光面に垂直な軸をZ軸
とするとき、 前記偏向磁界発生装置による垂直偏向磁界はX軸とZ軸
を含む平面(X−Z平面)に対しほぼ対称であり電子ビ
ーム通過領域において主に水平方向成分を持つピンクッ
ション形状の垂直主偏向磁界と、 X軸とZ軸を含む平面(X−Z平面)に対しほぼ反対称
であり電子ビーム通過領域において主に水平方向成分を
持つ垂直補助偏向磁界とを有し、水平偏向磁界は、 Y軸とZ軸を含む平面(Y−Z平面)に対しほぼ対称で
あり電子ビーム通過領域において主に垂直成分を持ち電
子銃に近い側の磁界はバレル磁界であり蛍光面に近い側
の磁界はピンクッション磁界であり管軸上の磁界全体の
平均はバレル磁界である水平主偏向磁界と、 Y軸とZ軸を含む平面(Y−Z平面)に対しほぼ反対称
であり電子ビーム通過領域において主に垂直方向成分を
持つ水平補助偏向磁界とを有することを特徴とするカラ
ー受像管装置。
(1) A vacuum envelope, a phosphor screen disposed within the envelope, an in-line electron gun that irradiates three electron beams toward the phosphor screen, and the electron beams are directed toward the phosphor screen. In a color picture tube device equipped with a deflection magnetic field generator that deflects electron beams horizontally and vertically so that they strike a predetermined display area, the X-axis is an axis that extends horizontally with the center of the phosphor screen as a base point. , when the axis extending in the vertical direction is the Y axis and the axis perpendicular to the phosphor screen is the Z axis, the vertical deflection magnetic field from the deflection magnetic field generator is approximately parallel to the plane containing the X axis and the Z axis (X-Z plane). A pincushion-shaped vertical main deflection magnetic field that is symmetrical and has mainly horizontal components in the electron beam passing region, and a vertical main deflection field that is almost antisymmetric with respect to the plane containing the X-axis and Z-axis (X-Z plane) and has mainly horizontal components in the electron beam passing region. The horizontal deflection magnetic field has a vertical auxiliary deflection magnetic field that mainly has a horizontal component, and the horizontal deflection magnetic field is almost symmetrical with respect to the plane (Y-Z plane) containing the Y-axis and the Z-axis, and is mainly vertical in the electron beam passage area. The magnetic field on the side closer to the electron gun is the barrel magnetic field, and the magnetic field on the side closer to the phosphor screen is the pincushion magnetic field.The average of the entire magnetic field on the tube axis is the barrel magnetic field. A color picture tube device characterized by having a horizontal auxiliary deflection magnetic field that is substantially antisymmetric with respect to a plane including the Z axis (YZ plane) and has a mainly vertical component in an electron beam passing region.
JP5998187A 1987-03-17 1987-03-17 Color picture tube device Pending JPS63226861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5998187A JPS63226861A (en) 1987-03-17 1987-03-17 Color picture tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5998187A JPS63226861A (en) 1987-03-17 1987-03-17 Color picture tube device

Publications (1)

Publication Number Publication Date
JPS63226861A true JPS63226861A (en) 1988-09-21

Family

ID=13128856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5998187A Pending JPS63226861A (en) 1987-03-17 1987-03-17 Color picture tube device

Country Status (1)

Country Link
JP (1) JPS63226861A (en)

Similar Documents

Publication Publication Date Title
US5598055A (en) Deflection device for use in a color cathode-ray tube
JP3492409B2 (en) Deflection yoke with shunt branch
JPH0324733B2 (en)
JPS63226861A (en) Color picture tube device
US6373180B1 (en) Deflection yoke for a cathode-ray tube with both improved geometry and convergence
US5014029A (en) Deflection yoke for cathode ray tube
JPH06245216A (en) Color display tube
JP3500163B2 (en) Deflection device for color picture tube
JP2862575B2 (en) Color picture tube
JP3215132B2 (en) In-line color picture tube device
JPH0359931A (en) Deflection yoke for color television picture tube
JPH0433238A (en) Color picture tube device
JPS63308851A (en) Color picture tube device
JP3057720B2 (en) Cathode ray tube
JPS63226860A (en) Color picture tube device
KR100594647B1 (en) Deflection yoke for cathode ray tube
JP3436002B2 (en) Color picture tube equipment
JP2685797B2 (en) Color picture tube device
JPS58225543A (en) Color picture tube apparatus
JPH05234537A (en) Monochrome cathode-ray tube device
KR20030072888A (en) Deflection Yoke for CRT
JPH0456047A (en) Deflection yoke of cathode-ray tube
JPH1021850A (en) Deflecting yoke apparatus
JPH07336707A (en) Color picture tube device
JPS63226858A (en) Color picture tube device