JPS6322660Y2 - - Google Patents

Info

Publication number
JPS6322660Y2
JPS6322660Y2 JP1982109040U JP10904082U JPS6322660Y2 JP S6322660 Y2 JPS6322660 Y2 JP S6322660Y2 JP 1982109040 U JP1982109040 U JP 1982109040U JP 10904082 U JP10904082 U JP 10904082U JP S6322660 Y2 JPS6322660 Y2 JP S6322660Y2
Authority
JP
Japan
Prior art keywords
laminated
core
inductance
current
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982109040U
Other languages
Japanese (ja)
Other versions
JPS5914326U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10904082U priority Critical patent/JPS5914326U/en
Publication of JPS5914326U publication Critical patent/JPS5914326U/en
Application granted granted Critical
Publication of JPS6322660Y2 publication Critical patent/JPS6322660Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Transformers For Measuring Instruments (AREA)

Description

【考案の詳細な説明】 本考案は直流リアクトルの鉄心構造の改良に関
するものである。
[Detailed Description of the Invention] The present invention relates to an improvement of the core structure of a DC reactor.

従来、この種直流リアクトルはリツプル分を含
有する直流電源に接続されて上記リツプル分を除
去するために使用されるもので、そのインダクタ
ンスと直流電流の特性は直流電流値の如何に係ら
ずインダクタンスがほぼ一定であつた。
Conventionally, this type of DC reactor is connected to a DC power supply containing ripple components and used to remove the ripple components, and its inductance and DC current characteristics are such that the inductance remains constant regardless of the DC current value. It remained almost constant.

ところが、近年半導体素子の発達によつて交流
から直流を形成する整流手段としてサイリスダが
用いられるようになつたが、このサイリスダはゲ
ート電流によつて主電極 電流波形の位相角を制
御するものであることから、整流電流には含有率
の甚だ大きいリツプルが含まれるという問題点が
ある。しかも、この含有リツプル量は整流電流値
が小さいときは、整流電流値が大きいときよりも
大きくなることから、例えば、この整流電流を用
いて直流モータの速度制御をする際に、モータへ
の印加電圧を小さくすると、リツプル含有量の大
きい直流がモータのブラシに流れて火花放電を生
じ、ブラシを破損して大事故の原因ともなつた。
この事故を防ぐのには、直流モータへ印加する整
流電流は小さい直流電流値で大きいインダクタン
スを有し、定格電流値でインダクタンスが小さい
直流リアクトルを介して直流モータへ接続される
ようにすればよい。
However, with the recent development of semiconductor devices, thyristors have come to be used as a rectifying means to form direct current from alternating current, but thyristors control the phase angle of the main electrode current waveform using gate current. Therefore, there is a problem in that the rectified current contains ripples with an extremely high content rate. Moreover, the amount of ripple contained in this ripple is larger when the rectified current value is small than when the rectified current value is large, so for example, when controlling the speed of a DC motor using this rectified current, When the voltage was reduced, direct current with high ripple content flowed through the motor's brushes, causing spark discharge, damaging the brushes and causing a major accident.
To prevent this accident, the rectified current applied to the DC motor should have a large inductance at a small DC current value, and should be connected to the DC motor via a DC reactor that has a small inductance at the rated current value. .

このように、使用目的によつてインダクタンス
と直流電流の特性が異なる各種の直流リアクトル
の出現が所望されるようになつた。
As described above, it has become desirable to have various types of DC reactors having different inductance and DC current characteristics depending on the purpose of use.

この要望を満たす直流リアクトルとして、従来
はコイルを巻装した鉄心部分に適当な空隙を設け
て構成していた。すなわち、第1図に示されるよ
うに、鉄心1は薄鋼板2aを積層してなる鉄心2
と、同様に薄鋼板3a,4a,5aを夫々積層し
てなる鉄心3,4,5とからなり、鉄心2と3,
3と4,4と5との間には夫々図示しない絶縁物
のスペーサを介して空隙6,7,8を設け、鉄心
1の脚1a,1bには図示しないコイルを直列ま
たは並列に巻装し、各鉄心2ないし5を夫々ボル
ト挿通孔2b,3b,4bを介してボルト締する
とと共に、鉄心2ないし5を図示しない締金具で
緊締するか、または積層鉄心の両端側に締金具を
配置してボルト締をし、直流リアクトルを構成し
ていた。しかし、上記構成の直流リアクトルは第
2図の曲線9に示されるように、直流電流の小さ
い値でインダクタンスが大きく、定格電流におい
てインダクタンスは小であるものの、曲線10に
示されるように、電流値の変化に対してインダク
タンス値の変化が大きくない。また、曲線10に
示されるインダクタンスと直流電流との特性が得
られると、曲線9と10とで囲まれた斜線部分の
インダクタンスを生じるための鉄心が不必要とな
るので、直流リアクトルが小型化できるとともに
コスト安ともなる。また、従来方式の1つとして
は、特開昭50−139959号公報における従来例とし
て開示されている。すなわち、同形の一対の山形
状平板鋼板を、山形間に間隙gをもたせて同一平
面上に対向配設し、これらを積層して枠体を形成
し、この積層鉄心枠体を複数個重ねてスイギング
チヨークの鉄心を構成する方式である。すなわ
ち、この方式は、予め枠体の上記間隙gを選定
し、例えば、間隙g1,g2,g3を有する各鉄心枠体
3個を重ねて、好みの特性が得られるように組立
てる。しかるに、この方式は理論的には正しい
が、実際には、各鉄心枠体の磁気的特性のバラツ
キ、枠体間の磁気的干渉、間隙g1,g2,g3の誤差
等により好みのインダクタンス−直流電流特性を
得るのには、再度、加工、調整を必要とする。そ
のため、製作作業が面倒であり、かつ製作時には
機械の調整をする必要があつて、結果としては不
合理なものであつた。
A DC reactor that satisfies this requirement has conventionally been constructed by providing an appropriate gap in an iron core around which a coil is wound. That is, as shown in FIG. 1, the iron core 1 is made of laminated thin steel plates 2a.
, and iron cores 3, 4, and 5 made by laminating thin steel plates 3a, 4a, and 5a, respectively, and iron cores 2 and 3,
Gaps 6, 7, and 8 are provided between 3 and 4, and 4 and 5 through insulating spacers (not shown), respectively, and coils (not shown) are wound in series or parallel around the legs 1a and 1b of the iron core 1. Then, each of the cores 2 to 5 is tightened with bolts through the bolt insertion holes 2b, 3b, and 4b, respectively, and the cores 2 to 5 are tightened with fasteners (not shown), or fasteners are placed on both ends of the laminated core. The bolts were then tightened to form a DC reactor. However, as shown in curve 9 of FIG. 2, the DC reactor with the above configuration has a large inductance at a small value of DC current, and although the inductance is small at the rated current, the current value The change in inductance value is not large with respect to the change in . Furthermore, if the characteristics of inductance and DC current shown in curve 10 are obtained, an iron core for generating the inductance in the shaded area surrounded by curves 9 and 10 becomes unnecessary, so the DC reactor can be made smaller. At the same time, the cost will also be reduced. Further, one of the conventional methods is disclosed as a conventional example in Japanese Patent Laid-Open No. 139959/1983. That is, a pair of chevron-shaped flat steel plates of the same shape are arranged facing each other on the same plane with a gap g between the chevrons, and these are laminated to form a frame, and a plurality of these laminated iron core frames are stacked. This is a method of configuring the iron core of a swinging yoke. That is, in this method, the gap g between the frames is selected in advance, and three core frames each having gaps g 1 , g 2 , and g 3 are stacked on top of each other and assembled to obtain desired characteristics. However, although this method is theoretically correct, in practice it may not be possible to achieve the desired result due to variations in the magnetic properties of each core frame, magnetic interference between frames, errors in gaps g 1 , g 2 , g 3, etc. In order to obtain the inductance-DC current characteristics, processing and adjustment are required again. Therefore, the manufacturing work is troublesome, and it is necessary to adjust the machine during manufacturing, resulting in an unreasonable result.

本考案は上記問題点の解決に鑑みなされたもの
で、直流電流に対するインダクタンスの変化の割
合を大きくできる外に、この変化の割合を任意に
設定でき、しかも小型化した直流リアクトルを提
供することを目的とし、積層鉄心が空隙を設けた
脚にコイルが巻装されると共にその両側端面を締
金具によつて緊締されてなるものにおいて、前記
積層鉄心は、積層方向に所定の比率を有する多く
とも3つの積層鉄心に絶縁物を介して仕切られる
外に、その1つの積層鉄心の前記空隙の長さを調
整すべく前記緊締の緩めを可能とし、かつ前記各
積層鉄心は透磁率が急減しない程度の空隙長また
は、および空隙個数において所定のインダクタン
ス対直流電流の特性を生じる空隙を有してなるこ
とを特徴とする。
The present invention was developed in view of solving the above problems, and aims to provide a DC reactor that not only can increase the rate of change in inductance with respect to DC current, but also allows the rate of change to be set arbitrarily, and is also miniaturized. The laminated core has a coil wound around a leg with a gap, and its both end faces are tightened with fasteners, and the laminated core has at least a predetermined ratio in the lamination direction. In addition to being partitioned into three laminated cores through insulators, the tightening can be loosened to adjust the length of the gap in one of the laminated cores, and each of the laminated cores has a structure in which the magnetic permeability does not suddenly decrease. It is characterized by having voids that produce a predetermined inductance vs. DC current characteristic at a void length or number of voids.

本考案の実施例を説明するのに先立つて、本考
案の原理を説明する。第3図は空隙長G1を有す
る積層鋼板の単一鉄心からなる直流リアクトルの
鉄心構造を示す斜視図である。上記鉄心にコイル
を巻装して直流リアクトルを形成し、このコイル
にリツプル分を含有する直流電流を流すと、この
直流リアクトルのインダクタンスと直流電流の特
性は第4図の曲線aとなる。次に前記空隙長G1
の寸法を増大してG2とし、同様な特性を求める
と、第4図の曲線bとなる。この曲線a,bは直
流リアクトルにおける鉄心の空隙長を増大する
と、鉄心の透磁率が減少し直流電流の増加に対す
るインダクタンスの減少が大きくなることを示し
ている。
Prior to describing embodiments of the present invention, the principle of the present invention will be explained. FIG. 3 is a perspective view showing the core structure of a DC reactor consisting of a single core of laminated steel plates having a gap length G1 . When a DC reactor is formed by winding a coil around the above-mentioned iron core and a DC current containing a ripple component is passed through this coil, the characteristics of the inductance and DC current of this DC reactor become curve a in FIG. 4. Next, the void length G 1
If we increase the dimension of G2 and obtain similar characteristics, we obtain curve b in Fig. 4. These curves a and b show that when the air gap length of the iron core in the DC reactor is increased, the magnetic permeability of the iron core decreases, and the decrease in inductance with respect to an increase in DC current increases.

次に本考案に係る第1実施例を図面を参照して
説明する。第5図は第1実施例の鉄心構造の斜視
図である。同図において、直流リアクトルの鉄心
は積層の厚さS1を有すると共に、空隙長G1を有
する積層鉄心11と、積層の厚さS2を有すると共
に、空隙長G2(ただし、G2>G1とする)を有する
積層鉄心12とによつて形成される。なお13は
鉄心11と12との間の絶縁部材である。
Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a perspective view of the core structure of the first embodiment. In the figure, the core of the DC reactor has a laminated core 11 having a laminated thickness S 1 and a gap length G 1 , and a laminated core 11 having a laminated thickness S 2 and a gap length G 2 (however, G 2 > G1 ). Note that 13 is an insulating member between the iron cores 11 and 12.

上記構成の鉄心にコイルを巻装し、この巻回さ
れたコイルに、商用電源をサイリスタ素子を用い
て整流したリツプル分を含む直流を流すと、この
直流リアクトルのインダクタンスと直流電流の特
性は前記本考案の原理説明で述べた第4図の曲線
aと曲線bとを合成したものとなつて、第6図に
示される曲線cとなる。この曲線cは直流電流値
が小さいときにインダクタンスが甚だ大きく、定
格電流値に向つて直流電流値が増大するのに伴つ
てインダクタンスが減少することを示している。
また、この第6図の曲線cは第2図で説明した特
性曲線10に類似するので、第2図の曲線9(従
来方式の直流リアクトルの特性曲線)とを対比す
ることによつて、第1実施例の直流リアクトルは
鉄心形成に必要な積層鋼板の量を減少できる効果
がある。さらに、第1実施例装置は積層鉄心11
と積層鉄心12とを組合わせたものであるから、
第5図の曲線cの形を微調整したい場合には、た
とえば積層鉄心12だけを取り外してその空隙長
G2を加減すると、容易にこの特性曲線を調整で
きる効果をも有する。
When a coil is wound around the iron core configured as described above, and a DC current containing ripples obtained by rectifying the commercial power supply using a thyristor element is passed through the wound coil, the inductance of the DC reactor and the characteristics of the DC current are as described above. Curve c shown in FIG. 6 is obtained by combining curve a and curve b in FIG. 4, which were described in the explanation of the principle of the present invention. This curve c shows that the inductance is extremely large when the DC current value is small, and that the inductance decreases as the DC current value increases toward the rated current value.
Moreover, since the curve c in FIG. 6 is similar to the characteristic curve 10 explained in FIG. 2, by comparing it with the curve 9 in FIG. 2 (the characteristic curve of the conventional DC reactor), The DC reactor of the first embodiment has the effect of reducing the amount of laminated steel plates required for forming the iron core. Furthermore, the device of the first embodiment has a laminated core 11.
and the laminated iron core 12,
If you want to fine-tune the shape of curve c in FIG. 5, for example, remove only the laminated core 12 and
Adjusting G 2 also has the effect of easily adjusting this characteristic curve.

次に本考案に係る第2実施例を図面を参照して
説明する。第7図は本考案の第2実施例の鉄心構
造の斜視図である。同図において、直流リアクト
ルの鉄心20は積層の厚さS21を有する積層鉄心
21と、積層の厚さS22を有する積層鉄心22、
積層の厚さS23を有する積層鉄心23に分割され
ると共に、積層鉄心21は1個の空隙G21、積層
鉄心22は2個の空隙G22aとG22b、積層鉄心2
3は1個の空隙G23を有するように形成される。
なお、21a,22a,22b,22c,23a
は薄鋼板であり、24は鉄心21,22間の絶縁
部材、25は鉄心22,23間の絶縁部材であ
る。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a perspective view of the core structure of the second embodiment of the present invention. In the figure, the core 20 of the DC reactor includes a laminated core 21 having a lamination thickness S 21 and a laminated core 22 having a lamination thickness S 22 .
The laminated core 23 is divided into laminated cores 23 having a lamination thickness S 23 , and the laminated core 21 has one gap G 21 , the laminated core 22 has two gaps G 22 a and G 22 b, and the laminated core 2 has one gap G 21 .
3 is formed to have one void G23 .
In addition, 21a, 22a, 22b, 22c, 23a
is a thin steel plate, 24 is an insulating member between the iron cores 21 and 22, and 25 is an insulating member between the iron cores 22 and 23.

上記のように構成した鉄心20の脚部にコイル
を巻装し、この巻回されたコイルに商用電源をサ
イリスタ素子を用いて整流したリツプル分を含む
直流を流す。この場合、前記空隙G21,G22a,
G22b,G23の寸法を下記〜のように選択する
と、第8図に示されるようなインダクタンスと直
流電流の特性が得られる。なお、空隙G21
G22a,G22b,G23の方法は下記の条件を有すれば
必らずしもすべての空隙長は異なる必要がない。
A coil is wound around the leg portion of the iron core 20 configured as described above, and a direct current containing a ripple component obtained by rectifying a commercial power source using a thyristor element is passed through the wound coil. In this case, the voids G 21 , G 22 a,
If the dimensions of G 22 b and G 23 are selected as shown below, the inductance and DC current characteristics shown in FIG. 8 can be obtained. In addition, the void G 21 ,
In the methods of G 22 a, G 22 b, and G 23, all void lengths do not necessarily have to be different as long as the following conditions are met.

空隙G22a,G22bを設定寸法より大きい値と
し、空隙G21,G23を前記設定寸法よりも小さ
い値とすると、第8図の曲線dとなる。
If the gaps G 22 a and G 22 b are set to values larger than the set dimensions, and the gaps G 21 and G 23 are set to values smaller than the set dimensions, a curve d in FIG. 8 is obtained.

空隙G22a,G22bを設定寸法よりも小さい値
とし、空隙G21,G23を前記設定寸法より大き
くすると、第8図の曲線eとなる。
When the gaps G 22 a and G 22 b are made smaller than the set dimensions, and the gaps G 21 and G 23 are made larger than the set dimensions, a curve e in FIG. 8 is obtained.

空隙G22a,G22bを設定寸法よりも大きくし、
空隙G21,G23も設定寸法よりも大くすると、
第8図の曲線fとなる。
Make the gaps G 22 a and G 22 b larger than the set dimensions,
If the gaps G 21 and G 23 are also made larger than the set dimensions,
This becomes the curve f in FIG.

上記特性曲線d,e,fは鉄心20を3分割し
た各鉄心21,22,23の積層の厚さS21
S22,S23が一定である場合の特性を示すものであ
るが、上記特性と組合わせて積層鉄心の積層方向
の比率を変えると、さらに多くの特性曲線が得ら
れる。すなわち、第2実施例から、従来方式では
得られなかつた各種型式のインダクタンスと直流
電流の特性を求めることができる。このために、
事前に試作した直流リアクトルについて、鉄心の
空隙長、空隙数、積層の厚さを変えた夫々の場合
におけるインダクタンスと直流電流の特性を求め
ておくことによつて、要求される特性曲線を有す
る直流リアクトルを容易に製作することができ
る。
The above characteristic curves d, e, and f are obtained by dividing the iron core 20 into three parts, each with the laminated thickness S 21 of each core 21, 22, and 23,
Although the characteristics are shown when S 22 and S 23 are constant, more characteristic curves can be obtained by changing the ratio of the lamination direction of the laminated core in combination with the above characteristics. That is, from the second embodiment, it is possible to obtain various types of inductance and DC current characteristics that could not be obtained using the conventional method. For this,
By determining the inductance and DC current characteristics of the DC reactor prototyped in advance by changing the core gap length, the number of gaps, and the lamination thickness, it is possible to obtain a DC reactor that has the required characteristic curve. A reactor can be easily manufactured.

なお、鉄心22には空隙G22aとG22bの2個の
空隙を設け、空隙G22aとG22bとの和の寸法を有
する1個の空隙を設けなかつたのは、後者の場合
は鉄心22の透磁率が鉄心として不適当な程度に
急激に低下してしまうからである。
Note that the reason for providing two gaps, G 22 a and G 22 b, in the iron core 22 and not providing one gap whose size is the sum of the gaps G 22 a and G 22 b is because of the latter. This is because, in this case, the magnetic permeability of the iron core 22 will drop rapidly to an extent that is inappropriate for the iron core.

また、特性曲線dは直流電流が小さい場合にイ
ンダクタンスが甚だ大きい値となる外に、特性曲
線d,fは直流電流の増加に従つてインダクタン
スが減少するので、第1実施例と同様に、従来方
式に比べて使用鉄心量を節約できることになる。
また、特性曲線を微調整したい場合には、たとえ
ば鉄心22だけを取り外して空隙G22a,G22bの
寸法を調節すると、特性曲線d,e,fの形を微
調整できる。
Further, in the characteristic curve d, the inductance becomes extremely large when the DC current is small, and in the characteristic curves d and f, the inductance decreases as the DC current increases. This means that the amount of iron core used can be saved compared to the conventional method.
Further, when it is desired to finely adjust the characteristic curves, for example, by removing only the iron core 22 and adjusting the dimensions of the gaps G 22 a and G 22 b, the shapes of the characteristic curves d, e, and f can be finely adjusted.

以上要するに、本考案は直流リアクトルの鉄心
を所定積層寸法を夫々有する多くとも3つの積層
鉄心に絶縁物を介して仕切り、この仕切られた各
鉄心に所定の空隙長またはおよび空隙数を設けた
ので、絶縁物によつて仕切られた鉄心相互の磁気
的干渉がなくなつて、従来方式のように空隙の再
調整が不要となり、この仕切られた1つの鉄心の
空隙長を調整するだけで、直流電流の小さい範囲
において特に大きいインダクタンスを有すること
が可能となつた外に、上記特性の微調整が積層鉄
心の1つだけでよいので、従来方式に比べて作業
が楽であり、特に空隙の調整作業態様が、緊締さ
れた3つ以下の積層鉄心を緩めて1つだけを取り
出した状態であるので、積層鉄心が多くて3つで
ある本願の場合は、4つ以上もある場合に比べて
作業が容易である。さらに直流電流に対するイン
ダクタンスの割合を大きく変化でき、しかもこの
変化の割合を任意に選定でき、さらに、直流電流
に比例してインダクタンスを減少させたので、直
流電流に比例してインダクタンスが減少しなかつ
た従来方式に比べて所要鉄心量を節約して製品の
コストダウンを図り得るとともに、製品の小型化
を達成できるという実用上重要な効果を奏する。
In summary, the present invention divides the core of a DC reactor into at most three laminated cores, each having a predetermined laminated size, through an insulator, and provides each of the divided cores with a predetermined gap length or number of gaps. , there is no magnetic interference between the cores separated by insulators, and there is no need to readjust the air gap as in the conventional method. In addition to making it possible to have a particularly large inductance in a small current range, the above characteristics only need to be fine-tuned in one laminated core, making the work easier compared to the conventional method. Since the work mode is to loosen three or less tightened laminated cores and take out only one, in the case of the present application where there are at most three laminated cores, compared to the case where there are four or more laminated cores. Easy to work with. Furthermore, the ratio of inductance to DC current can be changed significantly, and the ratio of this change can be arbitrarily selected.Furthermore, since inductance is reduced in proportion to DC current, inductance does not decrease in proportion to DC current. Compared to the conventional method, it is possible to save the required amount of iron cores and reduce the cost of the product, and it also has the practically important effect of making the product smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流リアクトルの概略的構成を
示す斜視図、第2図は従来方式の直流リアクトル
のインダクタンスと直流電流の特性曲線図、第3
図および第4図は本考案の原理を説明するための
鉄心構成の概略的斜視図およびインダクタンスと
直流電流との特性曲線図、第5図および第6図は
本考案に係る第1実施例の鉄心構造の斜視図、お
よびインダクタンスと直流電流との特性曲線図、
第7図および第8図は本考案に係る第2実施例の
概略的鉄心構成の斜視図およびインダクタンスと
直流電流との特性曲線図である。 11,12……鉄心、13……絶縁部材、2
0,21,22,23……鉄心、24,25……
絶縁部材、G1,G2,G21,G22a,G22b,G23……
空隙長、S1,S2,S21,S22,S23……積層の厚さ、
a,b,c,d,e,f……インダクタンスと直
流電流との特性曲線。
Fig. 1 is a perspective view showing the schematic configuration of a conventional DC reactor, Fig. 2 is a characteristic curve diagram of inductance and DC current of a conventional DC reactor, and Fig. 3
4 and 4 are schematic perspective views of the core configuration and characteristic curves of inductance and DC current for explaining the principle of the present invention, and FIGS. 5 and 6 are of the first embodiment according to the present invention. A perspective view of the iron core structure and a characteristic curve diagram of inductance and DC current,
FIG. 7 and FIG. 8 are a perspective view of a schematic core configuration of a second embodiment of the present invention and a characteristic curve diagram of inductance and direct current. 11, 12... Iron core, 13... Insulating member, 2
0, 21, 22, 23... iron core, 24, 25...
Insulating members, G 1 , G 2 , G 21 , G 22 a, G 22 b, G 23 ...
Gap length, S 1 , S 2 , S 21 , S 22 , S 23 ...Lamination thickness,
a, b, c, d, e, f...Characteristic curves of inductance and direct current.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 積層鉄心が空隙を設けた脚にコイルを巻装され
ると共にその両側端面を締金具によつて緊締され
てなるものにおいて、前記積層鉄心は、積層方向
に所定の比率を有する多くとも3つの積層鉄心に
絶縁物を介して仕切られる外に、その1つの積層
鉄心の前記空隙の長さを調整すべく前記緊締の緩
めを可能とし、かつ前記各積層鉄心は透磁率が急
減しない程度の空隙長または、および空隙個数に
おいて所定のインダクタンス対直流電流の特性を
生じる空隙を有してなることを特徴とする直流リ
アクトル。
In a laminated core in which a coil is wound around a leg with a gap and its both end faces are tightened with fasteners, the laminated core has at least three laminated layers having a predetermined ratio in the lamination direction. In addition to partitioning the core with an insulator, the length of the gap in one laminated core can be loosened to adjust the length of the gap, and each of the laminated cores has a gap length that does not cause a sudden decrease in magnetic permeability. Alternatively, a DC reactor characterized in that it has air gaps that produce a predetermined inductance vs. DC current characteristic depending on the number of air gaps.
JP10904082U 1982-07-19 1982-07-19 DC reactor Granted JPS5914326U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10904082U JPS5914326U (en) 1982-07-19 1982-07-19 DC reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10904082U JPS5914326U (en) 1982-07-19 1982-07-19 DC reactor

Publications (2)

Publication Number Publication Date
JPS5914326U JPS5914326U (en) 1984-01-28
JPS6322660Y2 true JPS6322660Y2 (en) 1988-06-22

Family

ID=30254160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10904082U Granted JPS5914326U (en) 1982-07-19 1982-07-19 DC reactor

Country Status (1)

Country Link
JP (1) JPS5914326U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004266A1 (en) * 2005-06-30 2007-01-11 Mitsubishi Denki Kabushiki Kaisha Signal coupler
JP5020837B2 (en) * 2008-01-25 2012-09-05 西日本旅客鉄道株式会社 DC reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139959A (en) * 1974-04-30 1975-11-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139959A (en) * 1974-04-30 1975-11-10

Also Published As

Publication number Publication date
JPS5914326U (en) 1984-01-28

Similar Documents

Publication Publication Date Title
JPS59117451A (en) Synchronous electric rotary machine
SU919016A1 (en) Dc electrical machine stator
US4234862A (en) Robust polyphase transformer
JP2001052935A (en) Step-up transformer for high-frequency heating equipment
JPS6322660Y2 (en)
JP2754641B2 (en) Converter transformer
JPH07283037A (en) Transformer
JP3357705B2 (en) Iron core type reactor with gap
JPH05226168A (en) Constant voltage transformer
JP2562853B2 (en) Rectifier
JPS6133618Y2 (en)
JPH0423297Y2 (en)
JP2006013294A (en) Reactor
JP2939361B2 (en) Iron core with gap for transformer
JPH02179233A (en) Electromagnetic core
JPS6144416Y2 (en)
JPS63193512A (en) Transformer
JP3164043B2 (en) Trance
JPH07230926A (en) Iron core-type reactor with magnetic gap
US2929038A (en) Laminated magnetic core
JPH041710Y2 (en)
JPH03135007A (en) Iron core of direct-current reactor
JP2001155941A (en) Choke coil for power rectifying circuit and method of adjusting the same
JPS63148867A (en) Transformer devise for pulse width modulation power converter
JPS5916317A (en) Control method for auxiliary machine of electromagnetic induction apparatus