JPS63226567A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS63226567A
JPS63226567A JP62059899A JP5989987A JPS63226567A JP S63226567 A JPS63226567 A JP S63226567A JP 62059899 A JP62059899 A JP 62059899A JP 5989987 A JP5989987 A JP 5989987A JP S63226567 A JPS63226567 A JP S63226567A
Authority
JP
Japan
Prior art keywords
refrigerant
branch
pipes
pipe
outdoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62059899A
Other languages
Japanese (ja)
Other versions
JP2745504B2 (en
Inventor
法文 丸山
隆 松崎
幸雄 重永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP62059899A priority Critical patent/JP2745504B2/en
Publication of JPS63226567A publication Critical patent/JPS63226567A/en
Application granted granted Critical
Publication of JP2745504B2 publication Critical patent/JP2745504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1台の室外ユニットに対して複数台の室内ユ
ニット備えた。いわゆるマルチ型式の空気調和装置に関
し、特に、複数台の室内ユニットへの冷媒分岐管の改良
、及び冷媒配管長の短縮化対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention includes one outdoor unit and a plurality of indoor units. The present invention relates to so-called multi-type air conditioners, and particularly relates to improvements in refrigerant branch pipes for multiple indoor units and measures to shorten refrigerant pipe lengths.

〈従来の技術) 従来より、この種のマルチ型式の空気調和機として、例
えば実開昭50−91165号公報に開示されるように
、1台の室外ユニット内に冷媒分岐管を配置し、該冷媒
分岐管に主流通口と複数個の分岐流通口とを形成してヘ
ッダとし、該主流通口を上記室外ユニット内の冷媒配管
に連通接続すると共に、複数個の分岐流通口を各々上記
室内ユニットの台数に相当する複数本の冷媒配管を介し
て複数台の室内ユニットに連通接続して、各室内ユニツ
1へを互いに並列に、且つ上記室外ユニットに対して冷
媒の流通可能に設けることにより、1台の室外ユニット
を共用しつつ、各室外ユニットで対応する複数室内を良
好に空調するようにしたものが知られている。
<Prior Art> Conventionally, as this type of multi-model air conditioner, for example, as disclosed in Japanese Utility Model Application Publication No. 50-91165, refrigerant branch pipes are arranged in one outdoor unit, and the A main flow port and a plurality of branch flow ports are formed in the refrigerant branch pipe to form a header, and the main flow port is connected to the refrigerant piping in the outdoor unit, and the plurality of branch flow ports are connected to the refrigerant pipes in the indoor unit. By connecting a plurality of indoor units through a plurality of refrigerant pipes corresponding to the number of units, and providing the indoor units 1 in parallel with each other and allowing the refrigerant to flow to the outdoor unit. It is known that a single outdoor unit is shared and each outdoor unit is used to effectively air-condition a plurality of corresponding rooms.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは、冷媒は室外ユニッ
ト内で分流し、この分流した冷媒の各々が対応する室内
ユニットに流通する関係上、各室内ユニットへの冷媒配
管が併行して且つ長く走り、その分、その配管長に無駄
が生じる欠点がある。
(Problem to be Solved by the Invention) However, in the above conventional system, the refrigerant is divided within the outdoor unit, and each of the divided refrigerants is distributed to the corresponding indoor unit. The disadvantage is that the pipes run parallel to each other and for a long time, and the length of the pipes is wasted accordingly.

特に、高層ビル等にマルチ型式の空気調和機を設ける場
合、室外ユニットを屋上や地下のは器室内に配置すると
きには、分岐後の冷媒配管長が極めて長くなる。
In particular, when a multi-type air conditioner is installed in a high-rise building or the like, and the outdoor unit is placed in a rooftop or underground chamber, the length of the refrigerant piping after branching becomes extremely long.

そこで、従来、例えば第6図に示す如く、室外ユニット
(a)と複数台の室内ユニット(b)〜(g)とを、複
数個(図では5個)の二股分岐管(h)・・・を使用し
て接続して、冷媒配管を可能な限り共用することが行わ
れるが、この場合には、二股分岐管(h)の点数が多く
なる。しかも、分岐箇所での冷媒配管のロウ付は箇所数
は1個の二股分岐管(h)当り3箇所であるから、二股
分岐管(h)の点数増大に伴いロウ付は箇所数が多くな
って工数が増え、施工費用が増大すると共に、冷媒洩れ
に対する信頼性が低下する欠点が生じる。また、分岐箇
所の増大に伴い冷媒が偏流し易くなる欠点も生じる。
Therefore, conventionally, as shown in FIG. 6, for example, an outdoor unit (a) and a plurality of indoor units (b) to (g) are connected to a plurality of (five in the figure) bifurcated branch pipes (h)... The refrigerant pipes are shared as much as possible by connecting the refrigerant pipes, but in this case, the number of bifurcated branch pipes (h) increases. Moreover, the number of brazing points for refrigerant piping at branch points is three per bifurcated branch pipe (h), so as the number of bifurcated branch pipes (h) increases, the number of brazing points increases. The disadvantages are that the number of man-hours increases, the construction cost increases, and the reliability against refrigerant leaks decreases. Furthermore, as the number of branch points increases, the refrigerant tends to drift more easily.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、二股分岐管を使用せず、上記従来公報の如きヘッ
ダとしての冷媒分岐管を使用しつつ、各室内ユニットへ
の冷媒配管を可能な限り共用することにより、1個の冷
媒分岐管でもって施工性、冷媒洩れに対する信頼性、及
び冷媒の分流性を良好に確保しつつ、仝休としての冷媒
配管長を可及的に短縮することにある。
The present invention has been made in view of the above, and its purpose is to connect refrigerant piping to each indoor unit while using a refrigerant branch pipe as a header as in the above-mentioned conventional publication without using a bifurcated branch pipe. By sharing as many refrigerant pipes as possible, one refrigerant branch pipe can ensure good workability, reliability against refrigerant leaks, and refrigerant separation performance, while minimizing the length of refrigerant pipes for rest periods. It's about shortening it.

(問題点を解決するための手段) 上記の目的を達成するため、本発明では、第1図ないし
第5図に示すように、1台の室外ユニット(A)と、複
数台の室内ユニット印)〜(F)とを備え、該各窄内ユ
ニット(I3)〜(F)を冷媒配管(42)〜(45)
で並列に且つ上記室外ユニット(A)に対して冷媒の循
環可能に接続したマルチ型式の空気調和装置を前提とす
る。そして、上記室外ユニット(A)から複数台の室内
ユニット(B)〜(F)の近1カまで延びる一対の主冷
媒配管(42)、 (43)と、複数台の室内ユニット
(B)〜(F)の近傍に配置され、上記主冷媒配管(4
2)、 (43)に接続される主流通口(40b)、 
(4th)を有すると共に、室内ユニット(B)〜(「
)の台数以上の数の分岐流通口(40i)〜(40n)
 、(41i)〜(41n)を有する一対の冷媒分岐管
(40)、(41)と、該各冷媒分岐管(40)、 (
41)の分岐流通口(40i) 〜(40n) 、(4
1i) 〜(41n)と対応する各室内ユニット(B)
〜([)とを接続する分岐冷媒配管(44)・・・、 
(45)・・・とを備える構成としたものでおる。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes one outdoor unit (A) and a plurality of indoor unit marks, as shown in FIGS. 1 to 5. ) to (F), and each inner unit (I3) to (F) is connected to refrigerant piping (42) to (45).
The present invention assumes a multi-type air conditioner connected in parallel to the outdoor unit (A) so that refrigerant can be circulated. A pair of main refrigerant pipes (42) and (43) extending from the outdoor unit (A) to one of the plurality of indoor units (B) to (F), and a plurality of indoor units (B) to (F), and is located near the main refrigerant pipe (4).
2), a main flow port (40b) connected to (43),
(4th), and indoor units (B) to (“
) Branch distribution ports (40i) to (40n) that are greater than the number of units
, (41i) to (41n), a pair of refrigerant branch pipes (40), (41), and each refrigerant branch pipe (40), (
41) branch flow ports (40i) to (40n), (4
1i) - (41n) and corresponding indoor units (B)
Branch refrigerant pipe (44) connecting ~([)...
(45)...

(作用) 以上の構成により、本発明では、冷媒分岐管(40)、
(41)は、主流通口(40b) 、 (41h)と複
数個の分岐流通口(401〜40n)、(41i〜41
n)とを有してへラダとしては能するので、冷媒は該冷
媒分岐管(40)、 (41)のみで分岐、集合して、
冷媒の分岐箇所を最小限の1箇所に抑えることができる
。その結果、冷媒配管のロウ付は箇所数が減って、冷媒
洩れに対する信頼性が高くなると共に、施工費用も低減
される。しかも、冷媒の分岐箇所は冷媒分岐管(40)
、 (41)で一箇所であるので、複数台の室内ユニッ
ト(B)〜(F)へはほぼその能力に応じた量の冷媒が
供給されて、冷媒の(偏流が可及的に防止される。
(Function) With the above configuration, in the present invention, the refrigerant branch pipe (40),
(41) consists of main flow ports (40b), (41h) and multiple branch flow ports (401 to 40n), (41i to 41
n), so that the refrigerant is branched and collected only in the refrigerant branch pipes (40) and (41),
The number of refrigerant branch points can be kept to a minimum of one point. As a result, the number of brazed locations on the refrigerant piping is reduced, reliability against refrigerant leakage is increased, and construction costs are also reduced. Moreover, the refrigerant branch point is the refrigerant branch pipe (40)
, (41) is in one place, so the refrigerant is supplied to the multiple indoor units (B) to (F) in an amount that corresponds to their capacity, and the uneven flow of the refrigerant is prevented as much as possible. Ru.

しかも、上記冷媒分岐管(40)、 (41)は、複数
台の室内ユニット(B)〜(「)の近傍に配置されてい
て、複数台の室内ユニット(B)〜(F)への冷媒は一
本の主冷媒配管(42)、 (43)内で集合してその
近傍まで流通した後、冷媒分岐管(40)、 (41)
から分流して分岐冷媒配管(44)・・・、 (45)
・・・介して各室内ユニット(B)〜(F)に流通する
ので、該冷媒分岐管(40)、 (47)から各室内ユ
ニット(B)〜(F)への冷媒配管長が各々可及的に短
く短縮される。
Moreover, the refrigerant branch pipes (40) and (41) are arranged near the plurality of indoor units (B) to ('), and are arranged in the vicinity of the plurality of indoor units (B) to (F), so that the refrigerant branch pipes (40) and (41) are arranged near the plurality of indoor units (B) to (F). After collecting in one main refrigerant pipe (42), (43) and circulating to the vicinity thereof, refrigerant branch pipes (40), (41)
Branch refrigerant piping (44)..., (45)
Since the refrigerant flows through the indoor units (B) to (F) through the refrigerant branch pipes (40) and (47), the refrigerant piping lengths from the refrigerant branch pipes (40) and (47) to the indoor units (B) to (F) are adjustable. be shortened accordingly.

(実施例) 以下、本発明の実施例を図面に塁いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係るマルチ型式の空気調和はの冷媒配
管系統を示し、(A)は例えば高層ビルの屋上に配置さ
れた1台の空鉢ユニツi〜、(B)〜(「)は各々高層
ビルの各室内に配置される同一内部(b成の複数台(5
台)の室内ユニットである。上記室外ユニット(A)の
内部には、互いに並列に接続された第1圧縮機(1)及
び第2圧縮1ffl(2)と、四路切換弁(3)と、市
外送風ファン(4a)を有する室外熱交換器(4)と、
膨張弁(5)とがIfiえられ、該各機器(1)〜(5
)は各々冷媒配管(6)・・・で冷媒の流通可能に接続
されている。また、上記各室内ユニット(B)〜(F)
は、各々、室内逆風ファン(1Oa)を有する室内熱交
換器(10)と、空調能力調整用の室内電動膨張弁(1
1)とを備え、該各は器(10)、 (11)は冷媒配
管(12)・・・で冷媒の流通可能に接続されている。
FIG. 1 shows the refrigerant piping system of a multi-type air conditioner according to the present invention, in which (A) shows one empty bowl unit i~ placed on the roof of a high-rise building, (B) ~('') are installed in the same interior (b configuration) in each room of a high-rise building.
This is an indoor unit. Inside the outdoor unit (A), there are a first compressor (1) and a second compressor 1ffl (2) connected in parallel with each other, a four-way switching valve (3), and an outdoor ventilation fan (4a). an outdoor heat exchanger (4) having
An expansion valve (5) is provided, and each of the devices (1) to (5)
) are connected to each other through refrigerant pipes (6) so that refrigerant can flow therethrough. In addition, each of the above indoor units (B) to (F)
are each equipped with an indoor heat exchanger (10) having an indoor backflow fan (1Oa) and an indoor electric expansion valve (10) for adjusting air conditioning capacity.
1), each of which is connected to a refrigerant pipe (12) so that refrigerant can flow therethrough.

そして、上記5台の室内ユニット(B)〜(F)の近傍
には、ガス側の冷媒分岐管(40)と、液側の冷媒分岐
管(41)とが配置され、該各冷媒分岐管(40)、(
41)は、各々配管長の長い主冷媒配管(42)、 (
43)を介して上記市外ユニット(A)に接続されてい
ると共に、各々室内ユニット(B)〜(F)の台数に対
応した5本の分岐冷媒配管(44)・・・、 (45)
・・・を介して各々上記5台の室内ユニット(B)〜(
「)に接続されている。よって、該各冷媒分岐管(40
)、 (41)により、各室内ユニット(B)、 (r
)を分岐冷媒配管(44)−・・、 (45)・・・で
互いに並列に接続し、且つ主冷媒配管(42)、 (4
3)でもって室外ユニット(八)に対して冷媒の循環可
能に接続されて冷媒循環系統(14)が形成されている
。而して、冷房運転時には、四路切換弁(3)を図中破
線の如く切換えて冷媒を図中破線矢印の如く循環させる
ことにより、各室内熱交換器(10)・・・で室内から
吸熱した熱量を市外熱交換器(4)で外気に放熱するこ
とを繰返して各室内を冷房する一方、暖房運転時には、
四路切換弁(3)を図中実線の如く切換えて冷媒を図中
実線矢印の如く循環させることにより、熱量の授受を上
記とは逆にして、室内を暖房するようにしている。
A refrigerant branch pipe (40) on the gas side and a refrigerant branch pipe (41) on the liquid side are arranged near the five indoor units (B) to (F), and each refrigerant branch pipe (40), (
41) are the main refrigerant pipes (42), each having a long pipe length, (
43), and five branch refrigerant pipes (44)..., (45) each corresponding to the number of indoor units (B) to (F).
Each of the above five indoor units (B) to (
Therefore, each refrigerant branch pipe (40
), (41), each indoor unit (B), (r
) are connected in parallel to each other by branch refrigerant pipes (44)--, (45)--, and the main refrigerant pipes (42), (4
3) A refrigerant circulation system (14) is formed by being connected to the outdoor unit (8) so that refrigerant can be circulated therein. During cooling operation, the four-way switching valve (3) is switched as shown by the broken line in the figure to circulate the refrigerant as shown by the broken line arrow in the figure, so that each indoor heat exchanger (10)... The absorbed heat is repeatedly radiated to the outside air by the outdoor heat exchanger (4) to cool each room, while during heating operation,
By switching the four-way switching valve (3) as shown by the solid line in the figure to circulate the refrigerant as shown by the solid line arrows in the figure, the exchange of heat is reversed to heat the room.

次に、上記一対の冷媒分岐管(40)、(41)の具体
的構成を詳述する前に、上記室外ユニット(A)の残部
について説明すると、第1圧縮は(1)にはインバータ
(15)が接続されていて、圧縮機(1)の運転周波数
の高低調整によりその古註が複数段階に増減調整される
と共に、第2圧縮機(2)はアンロードFjl構(2a
)を有し、該アンロード機栴(2a)は、そのパイロッ
ト圧導入通路(16)のパイロット電磁弁(17)の閉
時に高圧が作用して第2圧縮ハ(2)の客間をフルロー
ドにする一方、パイロット電磁弁(17)の開時には低
圧が作用して第2圧縮)幾(2)の容口を50%にアン
ロードするもので必る。
Next, before detailing the specific configuration of the pair of refrigerant branch pipes (40) and (41), the remainder of the outdoor unit (A) will be explained. The second compressor (2) is connected to an unload Fjl structure (2a
), and when the pilot solenoid valve (17) of the pilot pressure introduction passage (16) is closed, high pressure is applied to the unloading machine (2a), and the second compression chamber (2) is fully loaded. On the other hand, when the pilot solenoid valve (17) is opened, low pressure is applied to unload the volume of the second compression (2) to 50%.

また、室外ユニット(八)において、(20)は四路切
換弁(3)前後の冷媒配管(6)、 (6) (吐出管
と吸入管)とを接続する均圧ホットガスバイパス回路で
あって、該バイパス回路(20)には、冷房運転状態で
の低負荷時及び室外熱交換器(4)の除霜運転時等に開
作動するホットガス電磁弁(21)が介設されている。
In addition, in the outdoor unit (8), (20) is a pressure equalizing hot gas bypass circuit that connects the refrigerant pipes (6), (6) (discharge pipe and suction pipe) before and after the four-way switching valve (3). The bypass circuit (20) is provided with a hot gas solenoid valve (21) that opens during low load during cooling operation and during defrosting operation of the outdoor heat exchanger (4). .

さらに、(22)は暖房運転時に吐出管となる冷媒配管
(6)に接続された暖房過負荷時バイパス回路であって
、該バイパス回路(22)には、補助コンデンサ(23
)及び、冷媒の高圧時に開く高圧制御弁(24)が介設
されており、暖房過負荷時に圧縮機(1)。
Furthermore, (22) is a heating overload bypass circuit connected to the refrigerant pipe (6) which becomes a discharge pipe during heating operation, and the bypass circuit (22) includes an auxiliary capacitor (23).
) and a high-pressure control valve (24) that opens when the refrigerant pressure is high.

(2)からの冷媒を該バイパス回路(22)を介して各
室内熱交換器(10)・・・をバイパスして、各室内熱
交換器(10)・・・下流側の冷媒配管(6)にバイパ
スするようにしている。
(2) through the bypass circuit (22) and bypasses each indoor heat exchanger (10)...downstream refrigerant piping (6). ).

加えて、(25)は上記暖房過負荷時バイパス回路(2
2)の補助コンデンサ(23)下流側を、四路切換弁(
3)下流側の冷媒配管(6)(吸入管)に接続するリキ
ッドインジェクションバイパス回路であって、該リキッ
ドインジェクションバイパス回路(25)には圧縮ff
!(1) 、 (2)の作動に連動して開閉するインジ
ェクション用電磁弁(26)と、膨張弁(27)とが介
設されている。
In addition, (25) is the heating overload bypass circuit (2
The downstream side of the auxiliary condenser (23) of 2) is connected to the four-way selector valve (
3) A liquid injection bypass circuit connected to the downstream refrigerant pipe (6) (suction pipe), the liquid injection bypass circuit (25) having a compression ff
! An injection solenoid valve (26) that opens and closes in conjunction with the operations of (1) and (2) and an expansion valve (27) are interposed.

また、(30)はレシーバ、(31)はアキュムレータ
、(32)は過冷却コイル、(33)は油分離器であっ
て、該油分離器(33)で分離された潤滑油は油通路(
34)を介して両圧縮は(1) 、 (2)に戻される
Further, (30) is a receiver, (31) is an accumulator, (32) is a subcooling coil, and (33) is an oil separator, and the lubricating oil separated by the oil separator (33) is passed through the oil passage (
Both compressions are returned to (1) and (2) via (34).

次に、上記ガス側の冷媒分岐管(40)の具体的構成を
第2図に示す。同図において、ガス側の冷媒分岐管(4
0)は、一端が閉じた大径の主流通路(40a)を右し
、該主流通路(40a)の他端には、上記室外ユニット
(A)に連通ずる主冷媒配管(42)に接続される主流
通口(40b)が形成されている。また、上記主流通路
(40a)の側部には、図中左側から順に第1ないし第
6の比較的小径の分岐流通路(40C)〜(40h)が
該主流通路(40a)と直行して接続され、該各分岐流
通路(40c)〜(40h)の端部には、各々分岐流通
口(40、)〜(40n)が形成され、そのうち5個の
分岐流通口(40i)〜(40m)は、上記各室内ユニ
ット(B)〜(「)への各冷媒配管(44)・・・に接
続されている。
Next, FIG. 2 shows a specific configuration of the refrigerant branch pipe (40) on the gas side. In the same figure, the gas side refrigerant branch pipe (4
0) faces a large-diameter mainstream passage (40a) with one end closed, and the other end of the mainstream passage (40a) is connected to a main refrigerant pipe (42) communicating with the outdoor unit (A). A main flow port (40b) is formed. In addition, on the side of the main flow passage (40a), first to sixth branch flow passages (40C) to (40h) having relatively small diameters run perpendicularly to the main flow passage (40a) in order from the left side in the figure. Branch flow ports (40,) to (40n) are formed at the ends of the branch flow passages (40c) to (40h), of which five branch flow ports (40i) to (40m) are connected. ) is connected to each refrigerant pipe (44) to each of the above-mentioned indoor units (B) to ('').

また、上記偶数番目の分岐流通路(40d)、 (40
f)。
In addition, the even-numbered branch flow passage (40d), (40
f).

(40h)の端部近傍には、端部よりも若干内側にその
径よりも若干大径の異径部(40p)、 (40q)、
 (40r)が各々形成されていると共に、上記主流通
口(/fob)の端部にも、その径よりも若干大径の異
径部(40s)が形成されている。すなわち、この各異
径部の形成は、室外ユニット(A)の能力(圧縮機(1
)及び(2)の@吊)の種類と、室内ユニット(B)〜
([)の能力の種類との相違に対応するものであり、能
力が大きくなると各冷媒配管(42)〜(45)の径も
大きくなる関係上、大能力の室外ユニット(A)が使用
された場合には、第4図(イ)に示す如く、大径の主冷
媒配管(42)を異径部(408)に挿入接続する一方
、小能力の室外ユニット(A)が使用された場合には、
同図(ロ)に示す如く、異径部(40S)を切断した後
に小径の主冷媒配管(42)をこの切断部に挿入接続す
る。同様に、小能力の室内ユニッlへ(B等)が使用さ
れた場合には、第5図(イ)に示す如く、小径の分岐冷
媒配管(44)を分岐流通路(/IOd等)の端部に挿
入し、異径部(40P等)の前端部に形成した位置決め
用の突起部(40t)で位置決め支持して接続する一方
、大能力の室内ユニツ1へ(B等)が使用された場合に
は、同図(ロ)に示づ−如く、異径部(40[))をそ
の中央部位で切断した後に該異径部(40p)に大径の
分岐冷媒配管(44)を挿入接続する。以上の構成によ
り、室外、室内の各ユニットの能力の大小に応じて別部
材の異径ソケット等を用いて冷媒配管を接続する場合に
比べて、部品点数が少なくなって低価格化が可能である
とともに、ロウ付は箇所数が低減されて、施工費の低減
及び冷媒洩れに対する信頼性の向上を図ることができる
Near the end of (40h), there is a different diameter part (40p) with a slightly larger diameter slightly inside the end, (40q),
(40r) are formed respectively, and a different diameter portion (40s) having a slightly larger diameter than the main flow port (/fob) is also formed at the end of the main flow port (/fob). In other words, the formation of each different diameter portion depends on the capacity of the outdoor unit (A) (the compressor (1
) and (2) @hanging) types and indoor units (B) ~
This corresponds to the difference in capacity type ([), and as the capacity increases, the diameter of each refrigerant pipe (42) to (45) also increases, so a large capacity outdoor unit (A) is used. In this case, as shown in Figure 4 (a), the large diameter main refrigerant pipe (42) is inserted and connected to the different diameter section (408), while the small capacity outdoor unit (A) is used. for,
As shown in FIG. 4B, after cutting the different diameter section (40S), the small diameter main refrigerant pipe (42) is inserted and connected to this cut section. Similarly, when a small-capacity indoor unit (such as B) is used, the small-diameter branch refrigerant pipe (44) is connected to the branch flow path (/IOd, etc.) as shown in Figure 5 (a). It is inserted into the end and connected by positioning and supporting with the positioning protrusion (40t) formed on the front end of the different diameter part (40P etc.). In this case, as shown in the same figure (b), after cutting the different diameter part (40[)) at its center, connect a large diameter branch refrigerant pipe (44) to the different diameter part (40p). Insert and connect. With the above configuration, the number of parts is reduced and costs can be reduced compared to the case where refrigerant piping is connected using different diameter sockets made of separate materials depending on the capacity of each indoor and outdoor unit. At the same time, the number of brazing parts is reduced, which makes it possible to reduce construction costs and improve reliability against refrigerant leakage.

また、上記液側の冷媒分岐管(41)は、第3図(イ)
に示す如く、ガス側の冷媒分岐管(40)と同様に、一
端が閉じた大径の主流通路(41a)と、該主流通路(
41a)の側部にて該主流通路(41a)と直行する比
較的小径の6つの分岐流通路(41b)〜(41g)と
を有する。そして、上記主流通路(41a)の端部には
、上記室外ユニット(八)に主冷媒配管(43)を介し
て連通ずる主流通口(41h)が形成されていると共に
、上記各分岐流通路(41b)〜(旧g)の端部には、
各々分岐流通口(41i )〜(41n)が形成され、
そのうち5個の分岐流通口(41i)〜[41m)は、
各室内ユニット(B)〜(「)に各分岐冷媒配管(45
)・・・を介して連通されている。尚、上記各分岐流通
路(41b)〜(41g)は、同図(ロ)に示す如く、
冷媒分岐管(41)の載置時にこれが倒れないよう、く
字状に形成されている。
In addition, the refrigerant branch pipe (41) on the liquid side is shown in Fig. 3 (A).
As shown in FIG.
It has six relatively small-diameter branch flow passages (41b) to (41g) that run perpendicular to the main flow passage (41a) on the side of the main flow passage (41a). A main flow port (41h) communicating with the outdoor unit (8) via a main refrigerant pipe (43) is formed at the end of the main flow path (41a), and each of the branch flow paths At the ends of (41b) to (old g),
Branch flow ports (41i) to (41n) are formed respectively,
Of these, five branch distribution ports (41i) to [41m] are
Each branch refrigerant pipe (45
)... are communicated via. In addition, each of the above-mentioned branch flow passages (41b) to (41g), as shown in the same figure (b),
It is formed in a dogleg shape so that the refrigerant branch pipe (41) does not fall down when it is placed.

したがって、上記実施例においては、例えば暖房運転時
、冷媒循環系統(14)の冷媒は、ガス側の冷媒分岐管
(40)のみで分岐して各室内ユニット(B)〜げ)に
流通して各室内熱交換器(″f1縮Z)(10)で凝縮
すると共に、散開の冷媒分岐管(41)のみで集合して
室外ユニット(八)に戻って室外熱交換器(蒸発器)(
4)で蒸発することを繰返し、室内は良好に暖房空調さ
れる。
Therefore, in the embodiment described above, during heating operation, for example, the refrigerant in the refrigerant circulation system (14) is branched only through the refrigerant branch pipe (40) on the gas side and distributed to each indoor unit (B). It condenses in each indoor heat exchanger ("f1 condensation Z) (10), gathers only through the spread refrigerant branch pipe (41), returns to the outdoor unit (8), and returns to the outdoor heat exchanger (evaporator) (
The evaporation process in step 4) is repeated, and the room is properly heated and air-conditioned.

その際、ガス側及び散開の冷媒分岐管(40)、 (旧
)は、各々主流通口(40b)、 (4111)を有す
る主流通路(40a)、 (41a)に対して6個の分
岐流通口(40i)〜(/Ion) 、(41i) 〜
(41n)を備えテヘッタトシテ機能するので、空気調
和機の施工の際には、5台の室内ユニット(13)〜(
「)の接続に対して二股分岐管を複数個用いる場合に比
べて、分岐管点数を減少させて、施工費用及び施工工数
の低減を図ることができる。しかも、それに伴い冷媒配
管のロウ付は箇所数が減り、冷媒洩れに対する信頼性が
向」ニブる。また、分岐箇所数の低減に伴い冷媒の偏流
が有効に抑制されて、各室内ユニット(B)〜(F)へ
の冷媒量がほぼその能力に応じた冷媒量になる。
At that time, the gas side and diverging refrigerant branch pipes (40), (old) have six branch distribution channels for the main flow passages (40a), (41a), which have main flow ports (40b), (4111), respectively. Mouth (40i) ~ (/Ion) , (41i) ~
(41n) and functions perfectly, so when installing an air conditioner, five indoor units (13) to (
Compared to the case where multiple bifurcated branch pipes are used to connect the The number of locations is reduced, improving reliability against refrigerant leaks. Moreover, with the reduction in the number of branch points, the drift of the refrigerant is effectively suppressed, and the amount of refrigerant to each indoor unit (B) to (F) becomes approximately the amount of refrigerant corresponding to its capacity.

さらに、室外ユニット(八)と各室内ユニット(B)〜
([)との間の距離は長いものの、両冷媒分岐管(40
)、(41)が、室内ユニット(B)〜([)の近傍に
配置されているので、室外ユニット(A)から各冷媒分
岐管(40)、 (41)までの主冷媒配管(42)、
 (/13)を長く共用して、該各冷媒分岐管(40)
、 (41)から5台の室内ユニット(B)〜(「)へ
の分岐冷媒配管(44)・・・、 (45)・・・の長
さを可及的に短縮できる。
Furthermore, the outdoor unit (8) and each indoor unit (B) ~
Although the distance between the two refrigerant branch pipes ([) is long,
), (41) are placed near the indoor units (B) to ([), so the main refrigerant pipes (42) from the outdoor unit (A) to each refrigerant branch pipe (40), (41) ,
(/13) is shared for a long time, and each refrigerant branch pipe (40)
, (41) to the five indoor units (B) to (''), the length of the branch refrigerant pipes (44)..., (45)... can be shortened as much as possible.

よって、ヘッダとしての冷媒分岐管を使用して施工性、
冷媒洩れに対する信頼性、及び冷媒の分配性の向上を図
りつつ、冷媒分岐管(40)、 (41)から各室内ユ
ニット(B)〜(F)への冷媒配管長を可及的に短縮で
きる効果を発揮できる。
Therefore, using refrigerant branch pipes as headers improves workability and
The refrigerant piping length from the refrigerant branch pipes (40) and (41) to each indoor unit (B) to (F) can be shortened as much as possible while improving reliability against refrigerant leaks and refrigerant distribution. It can be effective.

尚、上記実施例では、5台の室内ユニット(13)〜(
[)を設けたが、台数は5台に限定されず、複数台でお
ればよいのは勿論である。
In the above embodiment, five indoor units (13) to (
[), but the number is not limited to five, and of course it is sufficient to use a plurality of devices.

(発明の効果) 以上説明したように、本発明のマルチ型式の空気調和装
置によれば、複数台の室内ユニットへの冷媒分流機能を
有する冷媒分岐管を、1つの主流通口と複数の分岐流通
口とを有するヘッダで構成し、該冷媒分岐管を上記複数
台の室内ユニット近傍に配置したので、分岐管点数を低
減して、施工性、冷媒洩れにλ]する信頼性、及び冷媒
の分配性の向上を図りつつ、冷媒分岐管から各室内ユニ
ットへの冷媒配管長を可及的に短く短縮できる。
(Effects of the Invention) As explained above, according to the multi-type air conditioner of the present invention, a refrigerant branch pipe having a refrigerant branching function to a plurality of indoor units is connected to one main flow port and a plurality of branch pipes. Since the refrigerant branch pipes are arranged near the plurality of indoor units, the number of branch pipes can be reduced to improve workability, reliability against refrigerant leakage, and refrigerant The length of the refrigerant piping from the refrigerant branch pipe to each indoor unit can be shortened as much as possible while improving distribution performance.

特に、冷媒分岐管の主流通口や分岐流通口に異径部を設
Cフれば、設置される室外ユニットや室内ユニットの能
力の大小に応じて穴径ソケット等を用いて接続する必要
が無く、低価、箔化を図ることができると共に、ロウ(
=Jけ箇所数を低減して施工費の削減や冷媒洩れに対す
る信頼性の向上を図ることができる。
In particular, if a different diameter section is installed at the main flow port or branch flow port of the refrigerant branch pipe, it will be necessary to connect it using a hole diameter socket, etc. depending on the capacity of the outdoor unit or indoor unit to be installed. There is no need for wax (
= It is possible to reduce the number of joints, thereby reducing construction costs and improving reliability against refrigerant leaks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の実施例を示し、第1図は
冷媒配管系統図、第2図はガス側の冷媒分岐管の正面図
、第3図(イ)及び(ロ)は各々散開の冷媒分岐管の正
面図及び側面図、第4図(イ)及び(ロ)は配管径の安
なる冷媒配管と冷媒分岐管の主流通路との接続の様子を
示す説明図、第5図(イ)及び(ロ)は配管径の異なる
冷媒配管と冷媒分岐管の分岐流通路との接続の様子を示
す説明図である。第6図は従来例を示す冷媒配管の接続
状態を示す図である。 (A)・・・室外ユニット、(B)〜(F)・・・室内
ユニット、(40)・・・ガス側の冷媒分岐管、(41
)・・・散開の冷媒分岐管、(40a) 、 (/l1
a) ・・・主流通路、(40b)〜(41h)−・・
主流通口、(40c) 〜(40r) 、 (41b)
 〜(/11g)−・・分岐流通路、(40i) 〜(
40n) 、 (41i) 〜(4In)〜分岐流通口
、(40p) 、 (40q) 、 (40r) 、 
(40S)・・・異径部、(42)、 (43)・・・
主冷媒配管、(/14)、 (45)・・・分岐冷媒配
管。 特ル!F出願人 ダイキン工業 株式会社12、−−[
Figures 1 to 5 show embodiments of the present invention. Figure 1 is a refrigerant piping system diagram, Figure 2 is a front view of a refrigerant branch pipe on the gas side, and Figures 3 (a) and (b) are 4(a) and 4(b) are explanatory diagrams showing the state of connection between the refrigerant pipe with a small diameter pipe and the main flow passage of the refrigerant branch pipe, respectively. Figures (a) and (b) are explanatory diagrams showing how refrigerant pipes having different pipe diameters and branch flow passages of refrigerant branch pipes are connected. FIG. 6 is a diagram showing the connection state of refrigerant piping in a conventional example. (A)...Outdoor unit, (B)-(F)...Indoor unit, (40)...Gas side refrigerant branch pipe, (41
)...Spread refrigerant branch pipe, (40a), (/l1
a) Mainstream passage, (40b) to (41h)...
Main flow outlet, (40c) ~ (40r), (41b)
~(/11g)--Branch flow path, (40i) ~(
40n), (41i) ~(4In)~branch flow port, (40p), (40q), (40r),
(40S)...Different diameter part, (42), (43)...
Main refrigerant piping, (/14), (45)...branch refrigerant piping. Special! F Applicant Daikin Industries, Ltd. 12, -- [
1

Claims (3)

【特許請求の範囲】[Claims] (1)1台の室外ユニット(A)と、複数台の室内ユニ
ット(B)〜(F)とを備え、該各室内ユニット(B)
〜(F)を冷媒配管(42)〜(45)で並列に且つ上
記室外ユニット(A)に対して冷媒の循環可能に接続し
たマルチ型式の空気調和装置であって、上記室外ユニッ
ト(A)から複数台の室内ユニット(B)〜(F)の近
傍まで延びる一対の主冷媒配管(42)、(43)と、
複数台の室内ユニット(B)〜(F)の近傍に配置され
、上記主冷媒配管(42)、(43)に接続される主流
通口(40b)、(41h)を有すると共に、室内ユニ
ット(B)〜(F)の台数以上の数の分岐流通口(40
i)〜(40n)、(41i)〜(41n)を有する一
対の冷媒分岐管(40)、(41)と、該各冷媒分岐管
(40)、(41)の分岐流通口(40i)〜(40n
)、(41i)〜(41n)と対応する各室内ユニット
(B)〜(F)とを接続する分岐冷媒配管(44)・・
・、(45)・・・とを備えたことを特徴とする空気調
和装置。
(1) Comprising one outdoor unit (A) and a plurality of indoor units (B) to (F), each indoor unit (B)
- (F) are connected in parallel to the outdoor unit (A) through refrigerant pipes (42) to (45) so that the refrigerant can be circulated, the outdoor unit (A) a pair of main refrigerant pipes (42) and (43) extending from the main refrigerant pipes to the vicinity of the plurality of indoor units (B) to (F);
The indoor unit ( The number of branch distribution ports (40
i) A pair of refrigerant branch pipes (40), (41) having ~(40n), (41i)~(41n), and branch flow ports (40i)~ of the refrigerant branch pipes (40), (41). (40n
), branch refrigerant pipes (44) that connect (41i) to (41n) and the corresponding indoor units (B) to (F).
An air conditioner comprising: (45)...
(2)冷媒分岐管(40)は、所定の分岐流通口(40
j)、(40l)、(40n)を形成する分岐流通路(
40d)、(40f)、(40h)の端部近傍において
、大径の異径部(40p)、(40q)、(40r)が
形成されていて、小能力の室内ユニット(B)・・・の
使用時には、小径の冷媒配管(44)・・・を上記分岐
流通路(40d)、(40f)、(40h)の端部に接
続する一方、大能力の室内ユニット(B)・・・の使用
時には、上記異径部(40p)、(40q)、(40r
)をその途中で切断した後に該異径部(40p)、(4
0q)、(40r)に大径の冷媒配管(44)・・・を
接続して使用されるものである特許請求の範囲第(1)
項記載の空気調和装置。
(2) The refrigerant branch pipe (40) has a predetermined branch distribution port (40
j), (40l), (40n) forming branch flow passages (
In the vicinity of the ends of 40d), (40f), and (40h), large diameter portions (40p), (40q), and (40r) are formed, and a small capacity indoor unit (B)... When using the small-diameter refrigerant pipes (44)... to the ends of the branch flow passages (40d), (40f), (40h), while connecting the large-capacity indoor unit (B)... When in use, the different diameter parts (40p), (40q), (40r)
) is cut in the middle, and then the different diameter parts (40p) and (4
Claim (1), which is used by connecting a large diameter refrigerant pipe (44) to (0q), (40r).
Air conditioner as described in section.
(3)冷媒分岐管(40)は、主流通口(40b)の端
部に大径の異径部(40s)が形成されていて、大能力
の室外ユニット(A)の使用時には、大径の冷媒配管(
42)を上記異径部(40s)に接続する一方、小能力
の室外ユニット(A)の使用時には、上記異径部(40
s)を切断した後に小径の冷媒配管(42)をこの切断
部に接続して使用されるものである特許請求の範囲第(
1)項又は第(2)項記載の空気調和装置。
(3) The refrigerant branch pipe (40) has a large diameter portion (40s) formed at the end of the main flow port (40b), and when a large capacity outdoor unit (A) is used, a large diameter portion (40s) is formed at the end of the main flow port (40b). refrigerant piping (
42) to the different diameter part (40s), while when using a small capacity outdoor unit (A), the different diameter part (40s) is connected to the different diameter part (40s).
Claim No. s) is used by connecting a small-diameter refrigerant pipe (42) to the cut portion after cutting the cut portion (s).
The air conditioner according to item 1) or item (2).
JP62059899A 1987-03-14 1987-03-14 Air conditioner Expired - Lifetime JP2745504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62059899A JP2745504B2 (en) 1987-03-14 1987-03-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059899A JP2745504B2 (en) 1987-03-14 1987-03-14 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7052860A Division JP2682500B2 (en) 1995-03-13 1995-03-13 Air conditioner

Publications (2)

Publication Number Publication Date
JPS63226567A true JPS63226567A (en) 1988-09-21
JP2745504B2 JP2745504B2 (en) 1998-04-28

Family

ID=13126428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059899A Expired - Lifetime JP2745504B2 (en) 1987-03-14 1987-03-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP2745504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085648A (en) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd Air conditioner
WO2019142575A1 (en) 2018-01-22 2019-07-25 ダイキン工業株式会社 Branch unit, refrigeration device, and method for installing refrigeration device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070744U (en) * 1973-10-13 1975-06-23
JPS5091165U (en) * 1973-12-19 1975-08-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070744U (en) * 1973-10-13 1975-06-23
JPS5091165U (en) * 1973-12-19 1975-08-01

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085648A (en) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd Air conditioner
JP4739883B2 (en) * 2005-09-22 2011-08-03 三洋電機株式会社 Air conditioner
WO2019142575A1 (en) 2018-01-22 2019-07-25 ダイキン工業株式会社 Branch unit, refrigeration device, and method for installing refrigeration device

Also Published As

Publication number Publication date
JP2745504B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US7204094B2 (en) Air conditioner
EP3650764B1 (en) Air conditioner
EP1666806A2 (en) Multi-air condition system and method for controlling the same
US20110048054A1 (en) Air conditioner
KR101706865B1 (en) Air conditioning system
US5417279A (en) Heat exchanger having in fins flow passageways constituted by heat exchange pipes and U-bend portions
EP3719414A1 (en) Outdoor heat exchanger and air-conditioner having the same
KR100539570B1 (en) multi airconditioner
JP2682500B2 (en) Air conditioner
CN111059732A (en) Air conditioner and control method thereof
JPH0426847Y2 (en)
CN216592350U (en) Refrigerant circulation equipment
JP2698118B2 (en) Air conditioner
JPS63226567A (en) Air conditioner
KR100225628B1 (en) Refrigerant distribution structure of multi type airconditioner
KR100677267B1 (en) Distribution unit for multi type air conditioner of which indoor units are driven as a cooler or as a heater respectively at a same time
KR100480702B1 (en) Multi-type air conditioner for cooling/heating the same time
JPH0218449Y2 (en)
JP2698117B2 (en) Air conditioner
KR101321535B1 (en) Pipe for dividing refrigerant in air-conditioner
WO2008114952A1 (en) Multi-unit air conditioning system and controlling method for the same
JPH0510189Y2 (en)
JP3005485B2 (en) Multi air conditioner
CN220506932U (en) Indoor unit of air conditioner
CN219243985U (en) Evaporator and air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term