JPS63226200A - Measuring instrument for headphone characteristic - Google Patents

Measuring instrument for headphone characteristic

Info

Publication number
JPS63226200A
JPS63226200A JP5880787A JP5880787A JPS63226200A JP S63226200 A JPS63226200 A JP S63226200A JP 5880787 A JP5880787 A JP 5880787A JP 5880787 A JP5880787 A JP 5880787A JP S63226200 A JPS63226200 A JP S63226200A
Authority
JP
Japan
Prior art keywords
ear
acoustic
artificial
small
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5880787A
Other languages
Japanese (ja)
Inventor
Toru Mori
徹 森
Kenichi Tazawa
健一 田沢
Tanetoshi Miura
三浦 種敏
Kaoru Okabe
岡部 馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5880787A priority Critical patent/JPS63226200A/en
Publication of JPS63226200A publication Critical patent/JPS63226200A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a miniature headphone characteristic, in the same state as hearing of a human ear, by adding an acoustic leak impedance element to an artificial ear. CONSTITUTION:An acoustic impedance element 1 formed by an air gap or a thin-diameter opening tube for simulating an acoustic leak is added to an artificial ear 2 having an external auditory meatus part for simulating an external auditory meatus of a human ear, or a ear hole cavity (depression) 7 for simulating an ear hole cavity. That is, the air gap or the thin diameter open tube (thin hole) generates an acoustic leak through the external auditory meatus part of an artificial ear 2 and open air, at the time of attaching a miniature headphone to the artificial ear 2. In this case, by adjusting suitably the thickness, width and length of the air gap or the radius of the thin-diameter opening tube, the acoustic leak quantity to the open air from the external auditory meatus part can be controlled. In such a way, the miniature headphone characteristic can be measured in consideration of the accoustic leak in the human ear.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オーディオ再生機器に付随するヘッドホンの
測定法に係p1特に耳甲介腔に装着する小形ヘッドホン
の測定に好適なヘッドホン特性測定装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring headphones attached to audio playback equipment.In particular, a headphone characteristic measuring device suitable for measuring small headphones worn in the concha cavity of the ear. Regarding.

〔′従来の技術〕['Conventional technology]

従来、ヘッドホン特性測定用の人工耳については、アイ
・イー・シー、パブリケーシ璽ン318−1970(1
970年) (IBCPubl 1cation s 
51a−i q70)において制定されている。この人
工耳は、従来の大形の耳覆い形、耳白て型ヘッドホンお
よび電話機の受話器などを装着した時に、ヘッドホン、
受話器からみた音響負荷インピーダンスが人耳のものと
はy等しくなるように作られており、ヘッドホン、受話
器を人耳に装着した際と等価な特性を簡便に求めるため
に用いられている。
Conventionally, regarding artificial ears for measuring headphone characteristics, IEC Publication Code 318-1970 (1
970) (IBCPubl 1cations)
51a-i q70). This artificial ear can be used when wearing conventional large over-the-ear headphones, white-on-the-ear headphones, or a telephone receiver.
It is made so that the acoustic load impedance seen from the handset is equal to that of the human ear, and is used to easily obtain characteristics equivalent to those when headphones or a handset are worn on the human ear.

上記した従来技術の測定用人工耳51の構造を第のすシ
鉢状の主空洞52とこれに空隙および細管で結ばれた容
積18cc、 15ccの2つの副空洞55.54が用
いられている。
The structure of the measuring artificial ear 51 of the above-mentioned prior art includes a bowl-shaped main cavity 52 and two sub-cavities 55 and 54 with volumes of 18 cc and 15 cc connected to this by a cavity and a thin tube. .

一方、近年ポータプルのオーディオ書生憎器が発達し、
これに用いられる小形のヘッドホン(φ15〜17)6
2は、多くは第3図に示すような形状で第4図GU (
El) 0)に示すように人耳57の外耳道58人口部
の耳甲介腔(あるいは耳介腔−concha )59に
装着(挿入)して用いられる。
On the other hand, in recent years, portable audio books have developed,
Small headphones (φ15-17) used for this 6
2 is often shaped like the one shown in Figure 3, with the shape shown in Figure 4 GU (
As shown in El) 0), it is used by being attached (inserted) to the concha cavity (or concha cavity) 59 of the external auditory canal 58 of the human ear 57.

しかし、これらの小形ヘッドホン62の外径寸法ψが小
さすさ′て主空洞52内に洛ちてしまい、さらに、小形
ヘッドホン62において低音を増強するための音@’f
i63、電気信号入力のリードll1164が人工耳5
1のすシ鉢伏の主空洞52の斜面に当シ、取付位置か安
定しなく、かつ小形ヘッドホン61の外周から多量の音
響リーク(#i洩)61が生じ、正しい棚足が行いにく
い欠点があった。
However, the outer diameter dimension ψ of these small headphones 62 is so small that they fall into the main cavity 52.
i63, electrical signal input lead ll1164 is artificial ear 5
The problem is that the mounting position is unstable on the slope of the main cavity 52 of No. 1, and a large amount of acoustic leakage (#i leakage) 61 occurs from the outer periphery of the small headphone 61, making it difficult to properly set the shelf. there were.

これらの小形ヘッドホン62を人耳57の耳甲介腔59
に挿入した場合、第4図(Oに示すように小形ヘッドホ
ン62の形状(挿入部は円形で外径寸法ψ15〜16.
7)と耳甲介腔59のマツチングが悪く、矢印のように
音響リーク61を生じる。この音響リーク−561は人
によって様々である。人耳57の鼓膜60近傍に縮小形
マイクロホンを挿入し、さらに、前述の小形ヘッドホン
62を耳甲介腔59に挿入し、小形ヘッドホン62に電
気信号を印加した場合、マイクロホンに発生する鼓g7
&60上に加わる等価な音圧の周波数特性は、第5図に
示すようになる。第5図中aは小形ヘッドホン62を普
通に挿入した場合で、音響リーク61を生じている特徴
を示している。
These small headphones 62 are inserted into the concha cavity 59 of the human ear 57.
When inserted into the small headphone 62 as shown in FIG.
7) and the concha cavity 59 are poorly matched, resulting in acoustic leak 61 as shown by the arrow. This acoustic leak-561 varies from person to person. When a miniature microphone is inserted into the vicinity of the eardrum 60 of the human ear 57, the aforementioned small headphone 62 is further inserted into the concha cavity 59, and an electrical signal is applied to the small headphone 62, a tympan g7 occurs in the microphone.
The frequency characteristics of the equivalent sound pressure applied to &60 are as shown in FIG. In FIG. 5, a shows a case where a small headphone 62 is normally inserted, and shows characteristics that cause an acoustic leak 61.

また、bは粘土を用い(又は強く挿入)音響リーク61
を発生しないように密閉状態にした場合で、aに比べ1
000Hz以下の音圧レベルが増大している。人工耳に
小形ヘッドホン62を取付けた場合密閉状態にすること
は容易であるが、第5図のaに示したように人耳57に
おいて1000Hz以下の特性が人耳57での音響リー
ク61によって変化するので、小形ヘッドホン62を適
切に測定するには、人工耳に、人耳への装着時に生じる
音響リーク61を模擬スる音響インピーダンス素子部を
付加する必要がある。
In addition, b uses clay (or strongly inserts) acoustic leak 61
1 compared to a when sealed to prevent the occurrence of
The sound pressure level below 000Hz is increasing. When a small headphone 62 is attached to an artificial ear, it is easy to create a sealed state, but as shown in FIG. Therefore, in order to appropriately measure the small headphones 62, it is necessary to add an acoustic impedance element section to the artificial ear that simulates the acoustic leak 61 that occurs when the artificial ear is worn on the human ear.

第2図に既に示した従来技術の人工耳51において、副
空洞54から外気へ通じる細管(φ0.3、長さ9■、
音響抵抗値5000 CO2ohm ) 55が設けら
れている。これは、ヘッドホン装着時の主空洞52内の
圧力変化によって測定用マイクロホン56の破損を防ぐ
ためのもので、空洞52.53.54の音響インピーダ
ンスを変化させないように通常は前述のように高い音響
抵抗値をもつように作られ、ヘッドホン測定時には、さ
らに細線を挿入するので、前述した音響リーク61を模
擬することはできない。
In the conventional artificial ear 51 already shown in FIG. 2, a thin tube (φ0.3, length 9 mm,
An acoustic resistance value of 5000 CO2ohm) 55 is provided. This is to prevent the measurement microphone 56 from being damaged due to pressure changes in the main cavity 52 when the headphones are worn, and to avoid changing the acoustic impedance of the cavities 52, 53, 54. Since it is made to have a resistance value and a thin wire is further inserted during headphone measurement, it is not possible to simulate the acoustic leak 61 described above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術の人工耳51は、寸法・形状、音響リーク
の点において、小形ヘッドホン62の測定について考J
されておらず、前述のように測定が不適切であるという
問題があった。
The artificial ear 51 of the above-mentioned prior art has been designed with consideration given to the measurement of the small headphones 62 in terms of size, shape, and acoustic leakage.
However, as mentioned above, there was a problem that the measurements were inappropriate.

本発明の目的は、小形ヘッドホン62の測定のため、人
耳への装着時に発生する音響り−クを模擬する音響イン
ピーダンス素子を人工耳に付加し、実際に、人耳で受聴
している特性に一致する特性4 。
An object of the present invention is to add an acoustic impedance element to the artificial ear that simulates the acoustic leak that occurs when it is worn on the human ear, in order to measure the small headphones 62. Characteristic 4 that matches.

を測定可能なヘッドホン特性測定装置を構成することに
ある。
The purpose of this invention is to construct a headphone characteristic measuring device that can measure the characteristics of headphones.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、音響リークを模擬するための空隙もしくは
細径開管で形成した音響インピーダンス素子を、人耳の
外耳道を模擬する外耳道部あるいは耳甲介腔を模擬する
耳甲介腔部(凹み)を有する人工耳に付加することによ
シ、達成される。
The above purpose is to install an acoustic impedance element formed of a void or a small diameter open tube to simulate acoustic leak into the external auditory canal to simulate the external auditory canal of the human ear or the concha cavity (indentation) to simulate the concha cavity. This can be achieved by adding it to an artificial ear that has.

〔作用〕[Effect]

上記音響インピーダンス素子に設けられた空隙もしくは
細径開管(細孔)は、小形ヘッドホンの人工耳への取付
時に人工耳の外耳道部と外気とを通じ、音響リークを生
じることになる。このとき、空隙の厚さ、幅、長さある
いは細径開管の半径、長さを適宜調整することによって
、外耳道部から外気への音響リーク量を制御することが
できる。
The void or narrow open tube (pore) provided in the acoustic impedance element causes acoustic leakage through the external auditory canal of the artificial ear and the outside air when the small headphone is attached to the artificial ear. At this time, the amount of acoustic leakage from the external auditory canal to the outside air can be controlled by appropriately adjusting the thickness, width, and length of the gap or the radius and length of the small-diameter open tube.

そこで、人耳への小形ヘッドホンの装着時の耳甲介腔に
おける音響リークの音響インピーダンスと等価になるよ
うに、間隙もしくは細径開管の各寸法を調整すれば、人
耳における音響リークを考慮した小形ヘッドホン特性の
測定が可能となる。
Therefore, by adjusting the dimensions of the gap or the small diameter open tube so that the acoustic impedance of the acoustic leak in the concha cavity is equivalent to the acoustic impedance of the acoustic leak in the concha cavity when a small headphone is attached to the human ear, acoustic leak in the human ear can be taken into account. This makes it possible to measure the characteristics of small headphones.

さらに、こうしたfq#インピーダンス素子を人工耳に
設けることにょ9、小形ヘッドホンの測定時に當に一定
に音響リークが保たれるため、安定した副定かでき、再
現性のある特性が祷られる。
Furthermore, by providing such an fq# impedance element in the artificial ear, the acoustic leakage can be kept constant when measuring small headphones, so stable sub-determination and reproducible characteristics can be expected.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図にょ9説明する。第1
図において、被測定の小形ヘッドホンθは、音響リーク
インピーダンス素子1を介して、人工耳2に取付けられ
ている。人工耳2は、音響V(例えはφZ5、長さ22
m)からなる外耳道3と外耳道5の終端に外耳道5より
細い音響管(例えばφ4、長さ4 m )からなる終端
インピーダンス4および、外耳道5の終端近傍に設けた
マイクロホン5からなっている。
An embodiment of the present invention will be described below with reference to FIG. 1st
In the figure, a small headphone θ to be measured is attached to an artificial ear 2 via an acoustic leak impedance element 1. The artificial ear 2 has an acoustic V (for example, φZ5, length 22
The external auditory canal 3 consists of a terminal impedance 4 consisting of an acoustic tube (for example, φ4, length 4 m) narrower than the external auditory canal 5, and a microphone 5 provided near the terminal end of the external auditory canal 5.

音響リークインピーダンス素子1は、第6図に示すよう
に空l!Ji6を用いて実現した。このとき、この空1
!J(Sの音響インピーダンスZ8は(1)式で与え7
゜ こ\で、μ:全空気粘度(dyne−8101)1:空
隙の長さく cm ) t:空隙の厚さく副) W:空隙の@ (m) ρ:空気の密度(f/m) j:f〒 ω:角周波数(rad/s) である。第7図に示すCは、小形ヘッドホンを人耳57
に装着したときに生じる音響リークインピーダンスの測
定平均値であり、dは(1)式を用い、第6図に示した
音響リークインピーダンス素子1の窒原6のW = 0
.5crns  ノ= 0.08cm、  t =α1
mとして計算した音響インピーダンス値であ)、両者は
よく一致している。たソし、これと異なるW、1゜1の
組合せでも類似した音響インピーダンス値を実現できる
ことはT1)式から明らかである。
The acoustic leak impedance element 1 is empty as shown in FIG. This was realized using Ji6. At this time, this sky 1
! The acoustic impedance Z8 of J(S is given by equation (1)7
゜ko\, μ: total air viscosity (dyne-8101) 1: void length cm) t: void thickness sub) W: void @ (m) ρ: density of air (f/m) j : f〒 ω: Angular frequency (rad/s). C shown in FIG.
d is the measured average value of the acoustic leak impedance that occurs when the device is attached to
.. 5crns = 0.08cm, t = α1
(acoustic impedance value calculated as m), and the two agree well. However, it is clear from equation T1) that a similar acoustic impedance value can be achieved with a different combination of W and 1°1.

また、細径開官を用いた場合、その音響インピーダンス
2゜は(2)式で与えられる。
Further, when a small-diameter opening is used, its acoustic impedance 2° is given by equation (2).

8 。8.

こ\で、μ:全空気粘度(dyne/cd)1:開管の
長さく cm ) r:開管の半径(cm) ρ:空気の密度(t/cm) ω:角周波数 (rad/s ) π:円周率 t、−r=〒 である。その半径rと長さ1を適宜調整することにより
同様の音響インピーダンス値を実現できる。
Here, μ: Total air viscosity (dyne/cd) 1: Open tube length (cm) r: Open tube radius (cm) ρ: Air density (t/cm) ω: Angular frequency (rad/s ) π: Pi ratio t, -r=〒. A similar acoustic impedance value can be achieved by appropriately adjusting the radius r and length 1.

第8図に小形ヘッドホンの測定結果を示している。eは
人耳で測定した平均特性、fは前述した寸法を有する空
隙による音響リークインピーダンス素子1と人工耳2を
用いて測定した特性で、人耳における測定結果eと良く
一致している。
Figure 8 shows the measurement results for small headphones. e is an average characteristic measured with a human ear, and f is a characteristic measured using an acoustic leak impedance element 1 with a gap having the above-mentioned dimensions and an artificial ear 2, which agrees well with the measurement result e in a human ear.

上記したように、本実施例によれば、音響リークインピ
ーダンス素子を・用いることにより、人工耳を用いて小
形ヘッドホンの測定の特性は、人耳での受聴特性に一致
する特性が得られる効果がある。
As described above, according to this example, by using the acoustic leak impedance element, the measurement characteristics of small headphones using an artificial ear have the effect of obtaining characteristics that match the hearing characteristics of the human ear. be.

〔実施例2〕 この実施例は、前述した実施例1において、音響リーク
インピーダンス素子1、小形ヘッドボン62の人工耳2
への装着状態の安定性を改善したもので、人耳57の耳
甲介腔59を模擬した第9図に示すような凹み7を持っ
たアダプタ8を人工耳2に嵌合し、小形ヘッドホン62
の位置出しを再現できるようにした例である。
[Example 2] This example is based on the acoustic leak impedance element 1 and the artificial ear 2 of the small headbond 62 in the above-mentioned Example 1.
The adapter 8, which has a recess 7 as shown in FIG. 9 that simulates the concha cavity 59 of a human ear 57, is fitted to the artificial ear 2, and the small headphone 62
This is an example of how to reproduce the positioning of

このとき、音響リークインピーダンス素子1′の形状は
、小形ヘッドホン62の外径寸法・形状およ′び人工耳
2のアダプタ8の凹み7の形状に合せ、第10図(A)
 CB (Q (I)などに示すような形状とすれば良
−1゜ 空隙60寸法は、実施例1と同様に(1)式または(2
)式で求めれば良い。
At this time, the shape of the acoustic leak impedance element 1' is adjusted to the outer diameter and shape of the small headphone 62 and the shape of the recess 7 of the adapter 8 of the artificial ear 2, as shown in FIG. 10(A).
CB (Q (I) etc.) The dimension of the -1° gap 60 can be determined by formula (1) or (2) as in Example 1.
) can be calculated using the formula.

また、小形ヘッドホン62の外径寸法φが、凹67の内
径寸法φiより大幅に小さいとき、音響リークインピー
ダンス素子11は、第10図(至)の形状を例にとれば
、第11図(A■に示すように、切欠9、細径開管(細
孔) 1oにすれば良い。
Further, when the outer diameter dimension φ of the small headphone 62 is significantly smaller than the inner diameter dimension φi of the recess 67, the acoustic leak impedance element 11 has the shape shown in FIG. As shown in (2), the notch 9 and the small diameter open tube (pore) 1o may be used.

また、前述した空隙6、切欠9、開管10は耳甲介腔5
9を模擬した凹み7に直接設けても同様である。
In addition, the above-mentioned void 6, notch 9, and open canal 10 are the concha cavity 5.
The same effect can be obtained even if the groove 9 is directly provided in the recess 7 simulating the groove 9 .

上記したように、本実施例によれば、耳甲介腔を模擬し
た凹みを人工耳に付加し、さらに音響リークインピーダ
ンスを付加することによって、人工耳を用いて小形ヘッ
ドホンの測定の特性は、人耳での受聴特性に一致し、か
つ再現性のある特性が得られる効果かある。
As described above, according to this example, by adding a concavity simulating the concha cavity to the artificial ear and further adding acoustic leak impedance, the characteristics of small headphones measured using the artificial ear are This has the effect of providing reproducible characteristics that match the hearing characteristics of the human ear.

〔実施例3〕 この実施例を第12図を用いて説明する。第12図にお
いて、11は擬似頭であシ、その外周部に人工耳介12
が取付けられている。擬似頭11の内部には人工耳介1
2を介して、外耳道に相当する音響管13を設け、その
終端に音響管16の径よシ細い音響管14を接続し、さ
らに音響管13の終端近傍の側面にマイクロホン14を
取付けられた人工耳16が設けられている。この人工耳
16は、本発明と同一出願人により特願昭57−814
01号として特許出願申請されているものである。
[Example 3] This example will be explained using FIG. 12. In Fig. 12, 11 is a pseudo head, and an artificial auricle 12 is attached to the outer periphery of the artificial head.
is installed. There is an artificial auricle 1 inside the pseudo head 11.
2, an acoustic tube 13 corresponding to the external auditory canal is provided, an acoustic tube 14 having a diameter smaller than that of the acoustic tube 16 is connected to the terminal end of the acoustic tube 13, and a microphone 14 is attached to the side surface near the terminal end of the acoustic tube 13. Ears 16 are provided. This artificial ear 16 was filed in Japanese Patent Application No. 57-814 by the same applicant as the present invention.
A patent application has been filed as No. 01.

該人工耳16の人工耳介12に、耳甲介腔59を模擬し
た凹み17を設け、この凹み17に音響リークインピー
ダンス素子1を挿入し、小形ヘッドホン62を装着する
。音響リークインピーダンス素子1の形状については、
前述した実施例1および実施例2と同様形状を用い、ア
ダプタ状にして着脱可能の構造としておけば、従来の耳
憶い形、耳白て形のヘッドホンの測定も同一の測定装置
で行える。
A recess 17 simulating the concha cavity 59 is provided in the artificial auricle 12 of the artificial ear 16, the acoustic leak impedance element 1 is inserted into the recess 17, and a small headphone 62 is worn. Regarding the shape of the acoustic leak impedance element 1,
By using the same shape as in the first and second embodiments described above and making it into an adapter-like structure that can be attached and detached, measurements of conventional ear-memory type and ear-white type headphones can be performed using the same measuring device.

また、特定の寸法の小形ヘッドホン62専用とする場合
、人工耳介12の耳甲介腔に相当する凹み17に音響リ
ークインピーダンス素子1に相当する切欠、開管を設け
ても同様である。
Further, when the small headphone 62 of a specific size is used exclusively, a cutout or an open tube corresponding to the acoustic leak impedance element 1 may be provided in the recess 17 of the artificial auricle 12 corresponding to the concha cavity.

さらに、人工耳介12を着脱可能の構造として、実施例
2で述べた耳甲介腔59を模擬した凹み7を設けたアダ
プタ8を用いても同様である。
Furthermore, the same effect can be obtained by using an adapter 8 provided with a recess 7 simulating the concha cavity 59 described in the second embodiment as a structure in which the artificial auricle 12 can be attached and detached.

擬似頭11を用いることで、小形ヘッドホン62から放
射された音が人頭によって受ける影響も含めて測定する
ことができ、真の人耳への装着状態にごく近い状況での
特性を把握できる効果がある。
By using the pseudo-head 11, it is possible to measure the sound emitted from the small headphones 62, including the influence of the human head, and it is possible to grasp the characteristics in a situation very close to the state in which the headphones are actually worn on the human ear. There is.

さらに、擬似顧は擬似胴体に設けるとよい。Furthermore, it is preferable to provide the simulated guide on the simulated torso.

、11 。, 11.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、音響リークインピーダンス素子を人工
耳に付加することによって、従来測定が不適切であった
、小形ヘッドホン特性の測定が、小形ヘッドホンの人耳
への装着時に生じる音響リークを考慮し人耳の受聴と同
じ状態で行える。人耳での受聴の場合に生じる音響リー
クは、受聴者の耳介の形状か様々で、小形ヘッドホンの
形状とのミスマツチング、小形ヘッドホンの装着状態に
よって大きく変化する難点を有しているが、平均的な人
耳の音響リークを模擬した音響リークインピーダンス素
子を具備した人工耳を用いれば、常に音響リークが一定
しているので、安定しかつ再現性のある小形ヘッドホン
の特性測定ができる効果がある。
According to the present invention, by adding an acoustic leak impedance element to the artificial ear, the measurement of the characteristics of small headphones, for which measurement was inappropriate in the past, takes into account the acoustic leakage that occurs when the small headphones are attached to the human ear. This can be done under the same conditions as the human ear. Acoustic leakage that occurs when listening with human ears varies depending on the shape of the listener's pinna, and has the disadvantage of mismatching with the shape of small headphones and greatly varying depending on how the small headphones are worn, but the average By using an artificial ear equipped with an acoustic leak impedance element that simulates the acoustic leak of the human ear, the acoustic leak remains constant, making it possible to measure the characteristics of small headphones stably and reproducibly. .

また、人耳における音響リークの個人差を細塵し、音響
リークインピーダンス値の異なる素子を数種用意してお
けば1.音響リーク量による小形ヘッドホン特性の変化
を評価できる効果がある。
In addition, if we eliminate individual differences in acoustic leakage in the human ear and prepare several types of elements with different acoustic leakage impedance values, 1. This has the effect of being able to evaluate changes in the characteristics of small headphones due to the amount of acoustic leakage.

12゜12°

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の音響リークインピーダンス
素子および人工耳の断面図、第2図は従来技術の人工耳
の構造断面図、第3図は人耳の正面図、断面図および人
耳へ小形ヘッドホンを装着した場合の正面図、第4図は
小形ヘッドホンの正面図および側面図、第5図は小形ヘ
ッドホンを人耳へ装着した場合の特性図、第6図は本発
明の主要部である音響リークインピーダンス素子の特徴
を示す平面図および断面図、第7図は人耳で生じる音響
リークの音響インピーダンスおよび第6図に示した音響
リークインピーダンス素子による音響インピーダンスの
比較同、第8図は人耳および本発明のヘッドホン特性測
定装置で測定した特性の比較固、第9図は本発明の他の
実施例の人工耳の構造断面図、第10図および第11図
は、第9図に示した人工耳に付〃口する音響リークイン
ピーダンス素子の構造図、第12図は本発明の他の実施
例の人工耳の構造図である。 111’、1#・・・音響リークインピーダンス素子、
2・−・人工耳、6・・・間隙、ω・・・間隙の幅、!
・・・間隙の長さ、t・・・間隙の厚さ、7・・・耳甲
介腔を模擬した凹み、8・・・アダプタ、9・・・切欠
、10・・・開管、16・・・人工耳、12・・・人工
耳介、17・・・人工耳介に設けた凹み、51・・・従
来技術の人工耳、55・・・細管、61・・・f響す−
ク、62・・・小形ヘッドホン、57・・・人耳、59
・・・耳甲介腔、a、b・・・人耳での小形ヘッドホン
の特性、C・・・人耳での音響リークの音響インピーダ
ンス、d・・・音響リークインピーダンス素子の音響イ
ンピーダンス、e・・・人耳での小形ヘッドホンの特性
、f・・・本発明のヘッドホン特性測足装置によシ測定
した特性。 15゜ 拓l目 第5閃 第5 邑 用液 数 CHz) 第4 凹 (A )t 5> (Cン 晃乙国 周彼辰(にqZ) 島δ口 周5皮耽(Hz) め′?閃 第1θ凹 (、Q )            (5)(C1(D
) 第11目 (A) J7・2
Fig. 1 is a sectional view of an acoustic leak impedance element and an artificial ear according to an embodiment of the present invention, Fig. 2 is a structural sectional view of a conventional artificial ear, and Fig. 3 is a front view, a sectional view of a human ear, and a sectional view of a human ear. 4 is a front view and a side view of the small headphone, FIG. 5 is a characteristic diagram when the small headphone is worn on the human ear, and FIG. 6 is the main feature of the present invention. Figure 7 shows a comparison of the acoustic impedance of the acoustic leak occurring in the human ear and the acoustic impedance of the acoustic leak impedance element shown in Figure 6. The figure shows a comparison of the characteristics measured by the human ear and the headphone characteristic measuring device of the present invention. FIG. 12 is a structural diagram of an acoustic leak impedance element attached to the artificial ear shown in the figure, and FIG. 12 is a structural diagram of an artificial ear according to another embodiment of the present invention. 111', 1#...acoustic leak impedance element,
2...Artificial ear, 6...gap, ω...width of gap,!
... Length of gap, t... Thickness of gap, 7... Concave simulating concha cavity, 8... Adapter, 9... Notch, 10... Open tube, 16 ... Artificial ear, 12 ... Artificial auricle, 17 ... Recess provided in artificial auricle, 51 ... Artificial ear of conventional technology, 55 ... Thin tube, 61 ... f-resonating -
ku, 62...small headphones, 57...human ears, 59
... Concha cavity, a, b... Characteristics of small headphones in the human ear, C... Acoustic impedance of acoustic leak in the human ear, d... Acoustic impedance of the acoustic leak impedance element, e ...Characteristics of a small headphone measured by the human ear, f...Characteristics measured by the headphone characteristic measuring device of the present invention. 15゜Takul eyes 5th flash 5th liquid number CHz) 4th concave (A) t 5> ?Flash 1st θ concave (,Q) (5)(C1(D
) 11th (A) J7・2

Claims (1)

【特許請求の範囲】 1、ヘッドホンの特性を測定する装置において、ヘッド
ホンを人耳に装着した際に生じる音響リークを模擬した
音響インピーダンス素子を付加した人工耳を備えたこと
を特徴とするヘッドホン特性測定装置。 2、特許請求の範囲第1項記載の音響インピーダンス素
子は、間隙、切欠、開管からなることを特徴とするヘッ
ドホン特性測定装置。 3、特許請求の範囲第1項記載の人工耳は、人耳の耳介
または耳甲介腔を模した人工耳介または凹みをもったこ
とを特徴とするヘッドホン特性測定装置。 4、特許請求の範囲第1項記載の人工耳は、人間の頭と
同等の擬似頭内に設けられたことを特徴とするヘッドホ
ン特性測定装置。
[Scope of Claims] 1. A device for measuring the characteristics of headphones, characterized by comprising an artificial ear equipped with an acoustic impedance element that simulates the acoustic leak that occurs when headphones are worn on human ears. measuring device. 2. A headphone characteristic measuring device, wherein the acoustic impedance element according to claim 1 comprises a gap, a notch, or an open tube. 3. A headphone characteristic measuring device characterized in that the artificial ear according to claim 1 has an artificial pinna or a concave that imitates the pinna or concha cavity of a human ear. 4. A headphone characteristic measuring device characterized in that the artificial ear according to claim 1 is installed in a pseudo-head equivalent to a human head.
JP5880787A 1987-03-16 1987-03-16 Measuring instrument for headphone characteristic Pending JPS63226200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5880787A JPS63226200A (en) 1987-03-16 1987-03-16 Measuring instrument for headphone characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5880787A JPS63226200A (en) 1987-03-16 1987-03-16 Measuring instrument for headphone characteristic

Publications (1)

Publication Number Publication Date
JPS63226200A true JPS63226200A (en) 1988-09-20

Family

ID=13094871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5880787A Pending JPS63226200A (en) 1987-03-16 1987-03-16 Measuring instrument for headphone characteristic

Country Status (1)

Country Link
JP (1) JPS63226200A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143612A (en) * 2012-01-10 2013-07-22 Foster Electric Co Ltd Measurement mounting member of insert type headphone
JP2013148374A (en) * 2012-01-17 2013-08-01 Foster Electric Co Ltd Apparatus and method of measuring mechanical noise of headphone
WO2022263021A1 (en) * 2021-06-14 2022-12-22 Ams-Osram Ag Earphone coupler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143612A (en) * 2012-01-10 2013-07-22 Foster Electric Co Ltd Measurement mounting member of insert type headphone
JP2013148374A (en) * 2012-01-17 2013-08-01 Foster Electric Co Ltd Apparatus and method of measuring mechanical noise of headphone
WO2022263021A1 (en) * 2021-06-14 2022-12-22 Ams-Osram Ag Earphone coupler

Similar Documents

Publication Publication Date Title
US4972492A (en) Earphone
CN106664333B (en) Frequency dependent sidetone calibration
WO2020140453A1 (en) Loudspeaker apparatus
US8027481B2 (en) Personal hearing control system and method
WO2021030116A1 (en) Managing characteristics of earpieces using controlled calibration
CN106465009B (en) Ear is inserted into equipment
CN106664498A (en) System and apparatus for generating head related audio transfer function
JP7176674B2 (en) Modular in-ear device
JP2002527968A (en) Electroacoustic communication device
CN104854881A (en) Ear model, artificial head part, and measurement device and method using said model and head
US4924502A (en) Means for stabilizing sound pressure produced at the eardrum under an earpad
EP3905721A1 (en) Method for calibrating an ear-level audio processing device
US20080137878A1 (en) Electronic method for reducing noise in the ear canal using feed forward techniques
Rudmose The case of the missing 6 dB
JPS62151100A (en) Hearing aid
US10984779B2 (en) Audio adjustment method and associated audio adjustment device for active noise cancellation
CN113225645A (en) Integrated acoustic coupler for in-ear monitor in professional sound industry
JPS63226200A (en) Measuring instrument for headphone characteristic
CN110915229B (en) Earplug type receiver
CN214756921U (en) Human head model ENC testing arrangement of sound path conduction of simulation intracranial mouth to ear
US20220141569A1 (en) Multi-mic earphone design and assembly
JP2010273136A (en) Earphone
CN111862924A (en) Audio adjusting method for active noise reduction and related audio adjusting device
CN214799845U (en) Active self-adaptation ANC earphone intelligence feedback falls into ear module of making an uproar
CN116744169B (en) Earphone device, sound signal processing method and wearing fit testing method