JPS6322608Y2 - - Google Patents

Info

Publication number
JPS6322608Y2
JPS6322608Y2 JP9743480U JP9743480U JPS6322608Y2 JP S6322608 Y2 JPS6322608 Y2 JP S6322608Y2 JP 9743480 U JP9743480 U JP 9743480U JP 9743480 U JP9743480 U JP 9743480U JP S6322608 Y2 JPS6322608 Y2 JP S6322608Y2
Authority
JP
Japan
Prior art keywords
focusing
focusing coil
magnetic field
coil
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9743480U
Other languages
Japanese (ja)
Other versions
JPS5720761U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9743480U priority Critical patent/JPS6322608Y2/ja
Publication of JPS5720761U publication Critical patent/JPS5720761U/ja
Application granted granted Critical
Publication of JPS6322608Y2 publication Critical patent/JPS6322608Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【考案の詳細な説明】 本考案は電磁集束型の撮像管装置に関するもの
であり、集束コイルを改善するとにより集束磁界
分布の補正を行なつて撮像管特性の向上をはかる
ことを目的とするものである。
[Detailed description of the invention] The present invention relates to an electromagnetic focusing type image pickup tube device, and its purpose is to improve the characteristics of the image pickup tube by correcting the focusing magnetic field distribution by improving the focusing coil. It is.

テレビカメラに使用される撮像管装置の例とし
て電磁集束・静電偏向型撮像管とそのコイル部品
との装着状態を第1図に示す。電磁集束・静電偏
向型撮像管(通称M−S型撮像管)の構成は、電
子ビームの発生源となる三極電子銃部1、余弦分
布の蒸着電極で形成された偏向電極2、平行電界
及びコリメーシヨンレンズを形成させるメツシユ
電極3とフエースプレート4の内面に光情報を電
気信号に変換する光導電膜、そして光導電膜から
外部に信号を取出す信号電極5があり、これ等が
外囲器のガラスバルブ6で保持されている。一方
コイル部品はボビン8の集束コイル9が巻装され
外周を磁気シールド材10で覆われた構成であ
り、電気信号はボビン先端より舌片7を信号電極
5へ接触させて取出される。
As an example of an image pickup tube device used in a television camera, FIG. 1 shows the state in which an electromagnetic focusing/electrostatic deflection type image pickup tube and its coil components are installed. The configuration of an electromagnetic focusing/electrostatic deflection type image pickup tube (commonly known as an M-S type image pickup tube) includes a triode electron gun section 1 which serves as an electron beam generation source, a deflection electrode 2 formed of a vapor-deposited electrode with a cosine distribution, and a parallel There are a mesh electrode 3 that forms an electric field and a collimation lens, a photoconductive film that converts optical information into an electrical signal on the inner surface of the face plate 4, and a signal electrode 5 that extracts a signal from the photoconductive film to the outside. It is held by a glass bulb 6 in the envelope. On the other hand, the coil component has a structure in which a focusing coil 9 is wound around a bobbin 8 and the outer periphery is covered with a magnetic shielding material 10, and an electric signal is extracted from the tip of the bobbin by bringing the tongue piece 7 into contact with the signal electrode 5.

ところで集束コイルの磁界分布は撮像管の解像
度、シエーデイング、画面歪等の諸性能に大きく
影響し、特にメツシユ電極近傍の分布が重要とな
る。第2図、第3図にメツシユ電極近傍の電磁界
の様子を示す。集束コイル9の定電流駆動より集
束作用を受けている電子ビームは偏向電極2で偏
向作用を受け偏向されるが、メツシユ電極3と偏
向電極2の電位差により形成されたコリメーシヨ
ン電界で偏向ビームは光導電膜11に対して垂直
となるよう補正され、さらにメツシユ電極3と光
導電膜11間とで生じる平行電界中を減速しなが
らランデイングする。メツシユ電極近傍では集束
コイル9のコイル端が位置する。今、A−A′面
における集束磁界分布は第3図aのような管軸O
より径方向に離れるに従い磁界強さが減少する所
謂バレル磁界イとなり、これは集束コイル9が有
限長であり、しかもコイル端の近傍において特に
顕著に生じる為である。第3図aのロは補正後の
管径方向に対する集束磁界分布(均一磁界)であ
る。
Incidentally, the magnetic field distribution of the focusing coil greatly affects various performances such as resolution, shading, and screen distortion of the image pickup tube, and the distribution near the mesh electrode is particularly important. Figures 2 and 3 show the state of the electromagnetic field near the mesh electrode. The electron beam, which is focused by the constant current drive of the focusing coil 9, is deflected by the deflection electrode 2, but due to the collimation electric field formed by the potential difference between the mesh electrode 3 and the deflection electrode 2, the deflected beam becomes light. It is corrected to be perpendicular to the conductive film 11, and further lands while decelerating in a parallel electric field generated between the mesh electrode 3 and the photoconductive film 11. The coil end of the focusing coil 9 is located near the mesh electrode. Now, the focused magnetic field distribution on the A-A' plane is the tube axis O as shown in Figure 3a.
A so-called barrel magnetic field is formed in which the magnetic field strength decreases as the distance increases in the radial direction, and this is because the focusing coil 9 has a finite length and is particularly noticeable near the ends of the coil. 3A shows the focused magnetic field distribution (uniform magnetic field) in the tube diameter direction after correction.

同様に電子銃付近からメツシユ電極付近までの
集束磁界は第3図bに示すように集束コイル端に
近づく程、管軸上集束磁界で管径方向に対する集
束磁界との差は大きくなる。この管軸上集束磁界
(第3図bのイ)との管径方向に対する集束磁界
(第3図bのロ)の差による電子ビームの集束へ
の影響は電子銃側よりも偏向側の方が大きくなる
ことは言うまでもない。つまりメツシユ電極近傍
での管径方向に対する集束磁界分布の不均一が偏
向時の光導電膜11への電子ビームの垂直ランデ
イング状態を乱しより一層シエーデイングや解像
度の均一性を妨げたり、スパイラル歪の増加とい
つた原因になつていた。
Similarly, as shown in FIG. 3b, the focusing magnetic field from the vicinity of the electron gun to the vicinity of the mesh electrode becomes closer to the end of the focusing coil, the difference between the focusing magnetic field on the tube axis and the focusing magnetic field in the tube radial direction increases. The difference between the focusing magnetic field on the tube axis (a in Figure 3b) and the focusing magnetic field in the tube radial direction (b in Figure 3b) affects the focusing of the electron beam more on the deflection side than on the electron gun side. Needless to say, it will become larger. In other words, the non-uniformity of the focused magnetic field distribution in the tube diameter direction near the mesh electrode disturbs the vertical landing state of the electron beam on the photoconductive film 11 during deflection, further impeding shading and uniformity of resolution, and causing spiral distortion. This was the cause of the increase.

本考案は集束コイルの構成を改善することによ
り管径方向に対する集束磁界の均一性補正を行う
ことにより撮像管特性の向上をはかるものであ
り、以下本考案の一実施例について図面を参照し
て説明する。
The present invention aims to improve the characteristics of the image pickup tube by correcting the uniformity of the focusing magnetic field in the tube radial direction by improving the configuration of the focusing coil. explain.

集束コイルの管径方向に対する集束磁界分布を
第2図A,A′で示すような均一磁界を可能なら
しめる手段としては、第4図aのように、第1に
集束コイルロのそのものの電流を偏向量に対応さ
せて変調させる手段、第2に補正集束コイル13
を主集束コイル14に重ね、補正集束磁界を発生
させる手段、第3に集束コイル15のコイル端部
に補正集束コイル16を配置し補正集束磁界を発
生させる手段等がある。但し、補正集束磁界の周
波数としては少くとも水平走査周波数以上は必要
である。上記第1の場合、一般に集束コイル12
のイイダクタンスが大きいので、これに直接補正
磁界用の制御電流を流しても周波数応答が悪く補
正は困難である。上記第2の場合、補正集束コイ
ル13単体としては独立しているので巻数も少な
く構成できインダクタンスは十分に小さくなる。
従つて周波数応答は問題なく、補正コイル電源で
の管径方向に対する集束磁界分布の均一性は可能
である。しかしながら補正集束コイルは管軸方向
に主集束コイルと対向しているので両者は結合度
も高く相互インダクタンスによる周波数応答の劣
化と補正集束コイル電力の増加問題があり、この
上偏向領域内での集束磁界の補正となる為、走査
画面振巾及び走査画面回転角の変化が起つてしま
う。一方、上記第3の場合は補正集束コイル16
が主集束コイル15のコイル端に配置されるので
両者の結合度も低く周波数応答も良く、かつ小さ
な補正集束電力で駆動できる。さらに、補正集束
コイルはフエースプレートからメツシユ電極の近
傍に位置させることで補正集束磁界との重畳がさ
けられるので上記第2の時のような補正集束磁界
による走査画面振巾及び走査画面回転角の変化と
いつた問題は生じない。
As a means of achieving a uniform magnetic field distribution in the radial direction of the focusing coil as shown in Fig. 2A and A', first, as shown in Fig. 4a, the current of the focusing coil itself is changed. Means for modulating in accordance with the amount of deflection, secondly a correction focusing coil 13
There are means for generating a correction focusing magnetic field by overlapping the main focusing coil 14, and thirdly, means for arranging a correction focusing coil 16 at the end of the focusing coil 15 to generate a correction focusing magnetic field. However, the frequency of the correction focusing magnetic field must be at least equal to or higher than the horizontal scanning frequency. In the first case, generally the focusing coil 12
Since the inductance is large, even if a control current for the correction magnetic field is directly passed through it, the frequency response is poor and correction is difficult. In the second case, since the correction focusing coil 13 is independent, the number of turns can be reduced and the inductance can be sufficiently small.
Therefore, there is no problem with the frequency response, and it is possible to achieve uniformity of the focused magnetic field distribution in the tube radial direction in the correction coil power source. However, since the correction focusing coil faces the main focusing coil in the direction of the tube axis, the degree of coupling between the two is high, resulting in deterioration of the frequency response due to mutual inductance and an increase in the power of the correction focusing coil. Since the magnetic field is corrected, the scanning screen width and scanning screen rotation angle change. On the other hand, in the third case, the correction focusing coil 16
is placed at the coil end of the main focusing coil 15, the degree of coupling between the two is low, the frequency response is good, and it can be driven with a small corrected focusing power. Furthermore, by positioning the correction focusing coil close to the mesh electrode from the face plate, superimposition with the correction focusing magnetic field can be avoided, so that the scanning screen width and scanning screen rotation angle can be changed by the correction focusing magnetic field as in the second case. There are no problems associated with change.

以上のことから集束コイルの構成を改善するこ
とにより管径方向に対する集束磁界分布の不均一
性を補正する最良の手段はメツシユ電極近傍に主
集束コイルのコイル端部と対向させて補正集束コ
イルを取付ける手段といえる。
From the above, the best way to correct the non-uniformity of the focusing magnetic field distribution in the tube radial direction by improving the configuration of the focusing coil is to install a correction focusing coil near the mesh electrode, facing the coil end of the main focusing coil. It can be said to be a means of attachment.

第5図に本考案の一実施例における集束コイル
部品を示す。第5図において第1図と同一物は同
一番号を付しておく。集束コイル部品はボビン8
に主集束コイル11aと補正集束コイル11bか
ら成る集束コイルを巻装し、磁気シールド材10
にて周囲を覆つた構成になつている。そして前記
したように補正集束コイル11bはフエースプレ
ート4の近傍上に集束コイル11aよりフエース
プレート寄りに設定される。本考案による集束磁
界分布は第6図に示すようになる。
FIG. 5 shows a focusing coil component in an embodiment of the present invention. In FIG. 5, the same parts as in FIG. 1 are given the same numbers. The focusing coil part is bobbin 8
A focusing coil consisting of a main focusing coil 11a and a correction focusing coil 11b is wound around the magnetic shielding material 10.
It has a structure that covers the surrounding area. As described above, the correction focusing coil 11b is set near the face plate 4 and closer to the face plate than the focusing coil 11a. The focused magnetic field distribution according to the present invention is shown in FIG.

まず主集束コイル11aには直流定電流を流し
電子ビームの集束を行う。この時管軸上の集束磁
界分布はBZOとなる。しかし管径方向に対する集
束磁界分布はBZDとなりコイル開口部付近では
BZOに比べて減衰した磁界となつてしまい、径方
向に対しては所謂バレル磁界となる。補正集束コ
イル11bに主集束コイル11aと同様な直流定
電流を流しただけでは単に一定の補正集束磁界分
布BZCが重畳するのみで管径方向に対するバレル
磁界傾向は何ら変らない。この状態では、電子ビ
ームが周辺に偏向される程、電子ビームが受ける
集束磁界の強さは弱くなり、光導電膜11に対す
る電子ビームのランデイング角度は大きくなつて
しまう。その結果、走査画面の周辺部の撮像管特
性が劣化してしまう。これを解決する為に電子ビ
ームの偏向に合わせて各偏向位置での集束磁界の
強さが管軸上集束磁界分布BZO(偏向されていな
い時に電子ビームが受ける集束磁界の強さ)とほ
ぼ同じ値となるように補正集束磁界分布BZC
BZC1からBZC2に変化させ電子ビームが周辺に偏向
される程、補正集束磁界を強くするように電子ビ
ームの偏向に同期した制御電流を補正集束コイル
11bに流すことによつてメツシユ電極近傍の管
径方向に対する集束磁界はすべての偏向位置にお
いて実質的に均一となる。
First, a constant DC current is passed through the main focusing coil 11a to focus the electron beam. At this time, the focused magnetic field distribution on the tube axis becomes B ZO . However, the focused magnetic field distribution in the tube radial direction becomes B ZD , and near the coil opening,
This results in a magnetic field that is attenuated compared to B ZO , resulting in a so-called barrel magnetic field in the radial direction. If a constant DC current similar to that of the main focusing coil 11a is simply passed through the correction focusing coil 11b, a fixed correction focusing magnetic field distribution B ZC is simply superimposed, and the tendency of the barrel magnetic field in the tube radial direction does not change at all. In this state, as the electron beam is deflected toward the periphery, the intensity of the focusing magnetic field that the electron beam receives becomes weaker, and the landing angle of the electron beam with respect to the photoconductive film 11 becomes larger. As a result, the characteristics of the image pickup tube at the periphery of the scanning screen deteriorate. To solve this problem, the intensity of the focusing magnetic field at each deflection position is approximately equal to the focusing magnetic field distribution on the tube axis B ZO (the intensity of the focusing magnetic field that the electron beam receives when it is not deflected). Correct the focused magnetic field distribution B ZC so that it has the same value.
A control current synchronized with the deflection of the electron beam is passed through the correction focusing coil 11b so that the more the electron beam is deflected to the periphery , the stronger the correction focusing magnetic field becomes. The focusing magnetic field in the tube radial direction is substantially uniform at all deflection positions.

故に光導電膜11への電子ビームのランデイン
は全ての走査面で垂直ランデイングが可能とな
り、シエーデイング・解像度特性の均一性が飛躍
的に向上させることができると共に管径方向の集
束磁界分布の不均一で電子ビームの回転角差によ
つて走査画面がS字状に歪む所謂スパイラル歪も
なくすることができる。
Therefore, the landing of the electron beam on the photoconductive film 11 can be carried out vertically on all scanning planes, and the uniformity of the shedding and resolution characteristics can be dramatically improved, as well as the non-uniformity of the focused magnetic field distribution in the tube radial direction. This also eliminates so-called spiral distortion in which the scanning screen is distorted into an S-shape due to the difference in rotation angle of the electron beam.

さらに、補正集束磁界領域が撮像管の偏向電界
領域と分離独立している為、互いの干渉がなくな
り補正集束磁界による走査画面振巾の変動、走査
画面の回転といつた問題もない。
Furthermore, since the correction focusing magnetic field area is separate and independent from the deflection electric field area of the image pickup tube, there is no mutual interference, and there are no problems such as variations in the scanning screen width or rotation of the scanning screen due to the correction focusing magnetic field.

尚、本考案では撮像管として電磁集束・静電偏
向型撮像管を例にとつて述べたが、電磁集束・電
磁偏向型撮像管の場合における集束コイルの集束
磁界分布の改善に関しても有効であることはいう
までもない。
Although the present invention has been described using an electromagnetic focusing/electrostatic deflection type image pickup tube as an example, it is also effective for improving the focusing magnetic field distribution of the focusing coil in the case of an electromagnetic focusing/electromagnetic deflection type image pickup tube. Needless to say.

以上のように本考案によれば電磁集束型撮像管
の集束コイルにおいて撮像管のフエースプレート
近傍上に補正集束コイルを巻装させ、これに電子
ビーム偏向に同期させた制御電流を流すことによ
り、集束コイルのコイル端付近の管径方向に対す
る集束磁界分布を変調させ、この結果電子ビーム
の光導電膜への垂直ランデイング及び集束角度の
一定により撮像管の解像度、シエーデイング特性
の均一性向上そしてスパイラル歪のない画面が提
供できるものである。
As described above, according to the present invention, in the focusing coil of an electromagnetic focusing type image pickup tube, a correction focusing coil is wound around the face plate of the image pickup tube, and a control current synchronized with the electron beam deflection is passed through this coil. The focusing magnetic field distribution in the tube diameter direction near the coil end of the focusing coil is modulated, and as a result, the vertical landing of the electron beam on the photoconductive film and the constant focusing angle improve the resolution of the image pickup tube, the uniformity of the shedding characteristics, and the spiral distortion. It is possible to provide a screen without

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の撮像管装置の断正面図、第2図
は同装置の電界分布を示す図、第3図a,bは同
装置を説明するための磁界分布を示す図、第4図
a,b,cは本考案の撮像管装置を説明するため
の集束コイルと回路の図、第5図は本考案の一実
施例における撮像管装置の断正面図、第6図は同
装置説明のための磁界分布を示す図である。 8……ボビン、11a……主集束コイル、11
b……補正集束コイル、3……メツシユ電極、6
……ガラスバルブ。
Figure 1 is a sectional front view of a conventional image pickup tube device, Figure 2 is a diagram showing the electric field distribution of the same device, Figures 3a and b are diagrams showing the magnetic field distribution for explaining the same device, and Figure 4 a, b, and c are diagrams of a focusing coil and a circuit for explaining the image pickup tube device of the present invention, FIG. 5 is a sectional front view of the image pickup tube device in an embodiment of the present invention, and FIG. 6 is an explanation of the device FIG. 8... Bobbin, 11a... Main focusing coil, 11
b...Correction focusing coil, 3...Mesh electrode, 6
...Glass bulb.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電磁集束型撮像管に取付けられる集束コイルを
上記撮像管の管軸方向に分割して主集束コイルと
補正集束コイルとに分割し、この補正集束コイル
を上記撮像管のメツシユ電極近傍に配置し、上記
主集束コイルを上記補正集束コイルより後方に配
置し、上記主集束コイルは定電流駆動とし、上記
補正コイルには定電流及び上記撮像管の電子ビー
ムの偏向に同期した制御電流を重畳させて流すよ
うにした撮像管装置。
A focusing coil attached to an electromagnetic focusing type image pickup tube is divided in the tube axis direction of the image pickup tube into a main focusing coil and a correction focusing coil, and the correction focusing coil is arranged near the mesh electrode of the image pickup tube, The main focusing coil is arranged behind the correction focusing coil, the main focusing coil is driven by a constant current, and the correction coil is superimposed with a constant current and a control current synchronized with the deflection of the electron beam of the image pickup tube. An image pickup tube device designed to flow.
JP9743480U 1980-07-09 1980-07-09 Expired JPS6322608Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9743480U JPS6322608Y2 (en) 1980-07-09 1980-07-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9743480U JPS6322608Y2 (en) 1980-07-09 1980-07-09

Publications (2)

Publication Number Publication Date
JPS5720761U JPS5720761U (en) 1982-02-03
JPS6322608Y2 true JPS6322608Y2 (en) 1988-06-21

Family

ID=29459215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9743480U Expired JPS6322608Y2 (en) 1980-07-09 1980-07-09

Country Status (1)

Country Link
JP (1) JPS6322608Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164955A (en) * 1984-09-07 1986-04-03 三菱油化バ−ディツシエ株式会社 Floor structure of concrete building

Also Published As

Publication number Publication date
JPS5720761U (en) 1982-02-03

Similar Documents

Publication Publication Date Title
FI69374C (en) FAERGTELEVISIONSPRESENTATIONSSYSTEM
JPS6322608Y2 (en)
US2729759A (en) Beam controlling apparatus
US2248558A (en) Television tube
US2467462A (en) Electrooptical projection apparatus
US2727182A (en) Image transformer with electronoptical image projection
US2467009A (en) Circuit arrangement embodying cathode-ray tubes
US3064154A (en) Cathode ray tube
US2707246A (en) Combination focusing-ion trap structures for cathode-ray tubes
US4471262A (en) Cathode ray tube with transparent metal oxide protective layer on phosphor screen
US4451756A (en) Flat cathode ray tube
US2264630A (en) Dissector tube
US2971116A (en) Television camera system
EP0084915B1 (en) Television camera tube
US4271373A (en) Cathode ray tube with inclined electrostatic field lens
JPH06168673A (en) Deflecting yoke for projection-type cathode-ray tube and fixation method of focusing magnet
US2242952A (en) Video-frequency signal-generating apparatus
US2174580A (en) Cathode-ray tube system
US5394054A (en) Electron gun with electrostatic shielding and method of assembly therefor
JPS6134317B2 (en)
US4290038A (en) Scanning-area rotation device for an image pickup tube
US4426599A (en) Television camera tube
JPH039242Y2 (en)
JPS5824372Y2 (en) Denshiji Yukoutai
JPS6316532A (en) Cathode-ray tube device