JPS63226087A - Pulsed laser device - Google Patents

Pulsed laser device

Info

Publication number
JPS63226087A
JPS63226087A JP5959887A JP5959887A JPS63226087A JP S63226087 A JPS63226087 A JP S63226087A JP 5959887 A JP5959887 A JP 5959887A JP 5959887 A JP5959887 A JP 5959887A JP S63226087 A JPS63226087 A JP S63226087A
Authority
JP
Japan
Prior art keywords
circuit
voltage
capacitor
output
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5959887A
Other languages
Japanese (ja)
Inventor
Keiichi Yoshida
佳一 吉田
Tomohito Akita
智史 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5959887A priority Critical patent/JPS63226087A/en
Publication of JPS63226087A publication Critical patent/JPS63226087A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To facilitate high speed charging of a laser primary capacitor and reduce the repetition period of laser oscillation by a method wherein the output of an AC source circuit which stops driving when a voltage between both the terminals of the primary capacitor reaches a predetermined voltage is inputted to a Schenkel circuit and the continuity operation of a switching element for charge transfer is performed synchronizing with the stop of driving. CONSTITUTION:An AC source circuit (composed of, for instance, an inverter 2, a transformer 3 and so forth) which starts driving in accordance with a starting instruction and a voltage doubler rectifier circuit 1 are connected in series in a manner of plural stages as a charging circuit for a primary capacitor C8. A comparing circuit 5 generates an output when a predetermined voltage and the voltage of the smoothing capacitor C8 of the final stage of a Schenkel circuit 4 to which the output of the AC source circuit is inputted are compared and coincide with each other. The smoothing capacitor C8 also serves as the laser primary capacitor and stops driving of the AC source circuit in accordance with the output of the comparing circuit 5 and, synchronizing with the stop of driving, performes the continuity operation of a switching element S for charge transfer.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明はエキシマレーザや窒素レーザ等をパルス放電励
起させる、パルスレーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a pulse laser device that excites an excimer laser, a nitrogen laser, or the like by pulse discharge.

〈従来の技術〉 パルスレーザ装置においては、レーザ媒体ガス中に配置
された主放電電極対間にパルス放電を生じさせるべく、
例えば第3図に示すような容量移行型回路が用いられる
。この回路においては、サイラトロン等のスイッチング
素子Sを遮断状態に保持して抵抗RおよびリアクタLを
介して1次コンデンサCを充電し、この1次コンデンサ
が所定の充電電圧に達した状態で、スイッチング素子S
を導通動作させて1次コンデンサCの電荷を2次コンデ
ンサ(ピーキングコンデンサ)CPに移送し、この2次
コンデンサCpの充電電圧が高圧に達したときに主放電
電極対Ed間にパルス放電が生じる。
<Prior art> In a pulsed laser device, in order to generate a pulsed discharge between a pair of main discharge electrodes arranged in a laser medium gas,
For example, a capacitance transfer type circuit as shown in FIG. 3 is used. In this circuit, a switching element S such as a thyratron is held in a cut-off state, a primary capacitor C is charged via a resistor R and a reactor L, and when the primary capacitor reaches a predetermined charging voltage, switching is performed. Motoko S
conducts to transfer the charge of the primary capacitor C to the secondary capacitor (peaking capacitor) CP, and when the charging voltage of this secondary capacitor CP reaches a high voltage, a pulse discharge occurs between the main discharge electrode pair Ed. .

1次コンデンサCの充電用電源としては、従来、第3図
に示すように直流安定化電源Pが使用されている。
As a power source for charging the primary capacitor C, a DC stabilized power source P is conventionally used as shown in FIG.

〈発明が解決しようとする問題点〉 第3図に示す回路において、1次コンデンサCはレーザ
放電の度に電圧零まで放電され、その状態から直流安定
化電源Pにより充電されることになる。そのため、1次
コンデンサCの充電の初期には大電流が流れ、これに直
流安定化電源Pが耐えることができない。これを解決す
るために、第3図に示すように抵抗Rを電流制限用とし
て挿入している。これによって直流安定化電源Pの使用
範囲内に電流が制限されるわけであるが、ピーク電流を
抑制したことにより、取り出し可能な平均電流も減少し
てしまい、その結果、1次コンデンサCを所定電圧にま
で充電するのに要する時間が長くなり、レーザ発振の繰
り返し周期が制約を受けるという問題があった。
<Problems to be Solved by the Invention> In the circuit shown in FIG. 3, the primary capacitor C is discharged to zero voltage every time the laser discharges, and from that state is charged by the DC stabilized power supply P. Therefore, a large current flows in the initial stage of charging the primary capacitor C, and the DC stabilized power supply P cannot withstand this current. To solve this problem, a resistor R is inserted for current limiting as shown in FIG. This limits the current within the usage range of the DC stabilized power supply P, but by suppressing the peak current, the average current that can be taken out also decreases, and as a result, the primary capacitor C cannot be adjusted to a specified value. There was a problem in that the time required to charge up to the voltage was long, and the repetition period of laser oscillation was restricted.

〈問題点を解決するための手段〉 本発明は、上述の1次コンデンサCを高速に充電するこ
とができ、もってレーザ発振の繰り返し周期を短かくす
ることのできるパルスレーザ装置を提供すべくなされた
もので、その構成を実施例に対応する第1図を参照しつ
つ説明すると、本発明の特徴とするところは、1次コン
デンサ(0日)の充電用回路として、起動指令により駆
動を開始する交流電源回路(例えばインバータ2.トラ
ンス3等)と、倍電圧整流回路を複数段直列に接続して
なり、上記の交流電源回路の出力を入力とするシェンケ
ル回路4と、設定電圧とシェンケル回路4の最終段の平
滑用コンデンサC8の電圧を比較して一致したときに出
力を発生する比較回路5を有し、コンデンサCI+をレ
ーザ1次コンデンサと兼用するとともに、比較回路5の
出力により交流電源回路の駆動を停止し、かつ、これに
同期して電荷移行用のスイッチング素子Sの導通動作を
行うよう構成したことにある。
<Means for Solving the Problems> The present invention has been made to provide a pulse laser device that can charge the above-mentioned primary capacitor C at high speed, thereby shortening the repetition period of laser oscillation. The structure of the circuit will be explained with reference to FIG. 1 corresponding to the embodiment.The feature of the present invention is that the circuit starts driving in response to a start command as a charging circuit for a primary capacitor (day 0). A Schenkel circuit 4 is formed by connecting an AC power circuit (for example, an inverter 2, a transformer 3, etc.) and a voltage doubler rectifier circuit in series, and receives the output of the above AC power circuit as an input, and a Schenkel circuit 4 that uses the output of the above AC power circuit as an input. It has a comparator circuit 5 that compares the voltages of the smoothing capacitor C8 at the final stage of 4 and generates an output when they match.The capacitor CI+ is also used as the laser primary capacitor, and the output of the comparator circuit 5 is used to supply an AC power supply. The structure is such that the driving of the circuit is stopped and, in synchronization with this, the switching element S for charge transfer is made conductive.

〈作用〉 シェンケル回路4を例えば4段の倍電圧整流回路で構成
すれば、その最終段の平滑用コンデンサC8の電圧は、
交流電源回路の起動後、その出力電圧の8倍電圧へ向っ
て時間とともに漸近してゆくことになる。このコンデン
サC8の電圧が目的電圧に達したことを比較回路5で検
知して交流電源回路を停止すれば、1次コンデンサを兼
ねるコンデンサC1lの両端に任意の電圧が得られる。
<Operation> If the Schenkel circuit 4 is configured with, for example, a four-stage voltage doubler rectifier circuit, the voltage of the smoothing capacitor C8 in the final stage is as follows.
After the AC power supply circuit is started, the voltage asymptotically approaches to a voltage eight times its output voltage over time. If the comparator circuit 5 detects that the voltage of the capacitor C8 has reached the target voltage and stops the AC power supply circuit, an arbitrary voltage can be obtained across the capacitor C1l, which also serves as a primary capacitor.

これと同期してスイッチング素子Sを導通動作させるこ
とにより、コンデンサC3の電荷は従来装置と同様2次
コンデンサC2に移行し、主放電電極対Ed間にパルス
放電を生じる。ここで、コンデンサC,への充電動作に
おいては、従来のようにピーク電流を抑制する必要がな
く、可及的高速度の充電が可能となり、レーザ発振周期
を短縮化することができる。
By activating the switching element S in synchronization with this, the charge in the capacitor C3 is transferred to the secondary capacitor C2 as in the conventional device, and a pulse discharge is generated between the main discharge electrode pair Ed. Here, in the charging operation of the capacitor C, there is no need to suppress the peak current as in the conventional case, and charging can be performed at the highest possible speed, and the laser oscillation cycle can be shortened.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の回路構成図である。FIG. 1 is a circuit diagram of an embodiment of the present invention.

整流回路1は商用3相AC200Vを入力信号とし、D
C280Vを出力してインバータ2に供給する。インバ
ータ2はそのDC280Vを例えばスイッチング周波数
25kHzで280v矩形波に変換する。この280v
矩形波は次段のトランス3で昇圧され、5kV矩形波に
変換される。以上の整流回路1.インバータ2およびト
ランス3が、交流電源回路を形成し、その5kV矩形波
出力がシェンケル回路4の入力に供されている。
Rectifier circuit 1 uses commercial 3-phase AC 200V as an input signal, and
It outputs C280V and supplies it to the inverter 2. The inverter 2 converts the DC 280V into a 280V rectangular wave with a switching frequency of 25kHz, for example. This 280v
The rectangular wave is boosted by the next stage transformer 3 and converted into a 5kV rectangular wave. The above rectifier circuit 1. The inverter 2 and the transformer 3 form an AC power supply circuit, the 5 kV rectangular wave output of which is provided to the input of the Schenkel circuit 4.

シェンケル回路4は、2個のコンデンサ、例えばC3と
C2+および2個のダイオード例えばD+とD2によっ
て形成された倍電圧整流回路を多段直列に接続した回路
で、1段で入力の2倍の直流電圧が得られる。この実施
例では4段の倍電圧整流回路でシェンケル回路を構成し
ており、従って、最終段のコンデンサC8の両端には最
大40kVの直流電圧が得られる。この最終段のコンデ
ンサC6が、レーザ放電用の容量移行型回路の1次コン
デンサを兼用している。
The Schenkel circuit 4 is a circuit in which a voltage doubler rectifier circuit formed by two capacitors, e.g., C3 and C2+, and two diodes, e.g., D+ and D2, are connected in series in multiple stages. is obtained. In this embodiment, a four-stage voltage doubler rectifier circuit constitutes a Schenkel circuit, and therefore a maximum DC voltage of 40 kV can be obtained across the final stage capacitor C8. This final stage capacitor C6 also serves as the primary capacitor of the capacitance transfer type circuit for laser discharge.

すなわち、コンデンサC6にはリアクタLが直列接続さ
れ、このリアクタLと並列に2次コンデンサ(ピーキン
グコンデンサ)CPおよびレーザ媒体ガス中の主放電電
極対Edが接続され、更に、コンデンサC6に対して並
列にサイロトロン等のスイッチング素子Sが挿入されて
いる。
That is, a reactor L is connected in series to the capacitor C6, a secondary capacitor (peaking capacitor) CP and a pair of main discharge electrodes Ed in the laser medium gas are connected in parallel to the reactor L, and further in parallel to the capacitor C6. A switching element S such as a cyrotron is inserted in the .

コンデンサC8の両端の電圧は、分圧抵抗RI +R2
を介して測定され、その測定値は比較回路5に導入され
ている。比較回路5は、その電圧測定値とあらかじめ設
定された設定電圧とを比較し、コンデンサC8の両端電
圧が設定電圧と一致したときに、インバータ2に停止指
令を供給するよう構成されている。また、これと同期し
て、スイッチング素子Sのトリガ回路(図示せず)が作
動して導通動作が行われるよう構成されている。
The voltage across the capacitor C8 is the voltage dividing resistor RI + R2
The measured value is introduced into the comparator circuit 5. Comparison circuit 5 is configured to compare the voltage measurement value with a preset set voltage, and to supply a stop command to inverter 2 when the voltage across capacitor C8 matches the set voltage. Further, in synchronization with this, a trigger circuit (not shown) of the switching element S is activated to perform a conduction operation.

次に作用を述べる。第2図はコンデンサC1lの両端電
圧と装置の動作タイミングを示す図である。
Next, we will discuss the effect. FIG. 2 is a diagram showing the voltage across the capacitor C1l and the operation timing of the device.

シェンケル回路4の各コンデンサの電荷が零の状態でイ
ンバータ2に起動指令を与えると、コンデンサCz、C
a、Ch、Csの電圧はそれぞれ入力電圧5kVの2.
4.6.8倍電圧へと向って時間とともに漸近してゆく
が、コンデンサC1では前述したように40kVに向っ
て充電されてゆく。このコンデンサC8の電圧が所望の
設定電圧に達すると比較回路5からの信号によりインバ
ータ2が停止され、これと同期して、例えば同時にスイ
ッチング素子Sの導通動作が与えられると、設定電圧に
到達したコンデンサCIの電荷が2次コンデンサC2に
移行し、瞬時に主放電電極対Edにレーザ放電が生じる
。これによってコンデンサC8の電圧は零になる。次に
適当な時間、この時間の最小値はレーザ装置の他の構成
要素の繰り返し可能周期によって決定されるが、その時
間の経過後に再びインバータ2に起動指令が発せられ、
以上の動作を繰り返す。このように、レーザ放電が必要
なときのみレーザ1次コンデンサ、つまりコンデンサC
1への充電が行われ、その充電電圧が設定電圧に達する
と直ちにレーザ放電が生じることになる。
When a start command is given to the inverter 2 when the electric charge of each capacitor in the Schenkel circuit 4 is zero, the capacitors Cz and C
The voltages of a, Ch, and Cs are 2.
The voltage asymptotically approaches 4.6.8 times the voltage over time, but the capacitor C1 is charged toward 40 kV as described above. When the voltage of this capacitor C8 reaches the desired set voltage, the inverter 2 is stopped by a signal from the comparator circuit 5, and in synchronization with this, for example, when the switching element S is made conductive at the same time, the set voltage is reached. The charge in the capacitor CI is transferred to the secondary capacitor C2, and a laser discharge is instantaneously generated in the main discharge electrode pair Ed. This causes the voltage of capacitor C8 to become zero. Next, after an appropriate period of time, the minimum value of which is determined by the repeatable cycles of other components of the laser device, a start command is issued to the inverter 2 again.
Repeat the above operations. In this way, the laser primary capacitor, that is, capacitor C, is used only when laser discharge is required.
1, and as soon as the charging voltage reaches the set voltage, laser discharge will occur.

なお、以上の実施例においては、シェンケル回路4の入
力として、整流回路1.インバータ2およびトランス3
からなる交流電源回路の矩形波出力を用いたが、本発明
はこれに限定されることなく、正弦波等の任意波形の交
流信号をシェンケル回路4の入力とし得ることは勿論で
、また、シェンケル回路4は任意の複数段の倍電圧整流
回路の直列接続によって構成し得ることは云うまでもな
い。
In the above embodiment, the rectifier circuit 1. Inverter 2 and transformer 3
Although the rectangular wave output of an AC power supply circuit consisting of It goes without saying that the circuit 4 can be constructed by connecting any plurality of stages of voltage doubler rectifier circuits in series.

〈発明の効果〉 以上説明したように、本発明によれば、パルスレーザ装
置の1次コンデンサをシェンケル回路の最終段の平滑用
コンデンサで兼用し、起動指令により駆動開始するとと
もに上述の1次コンデンサの両端電圧が設定電圧に達し
たときに駆動停止する交流電源回路の出力をシェンケル
回路の入力とし、かつ、その駆動停止と同期してレーザ
1次コンデンサの電荷を2次コンデンサに移行させるべ
くスイッチング素子の導通動作を行うよう構成したから
、レーザ1次コンデンサの充電を、従来のようにピーク
電流を抑制することなく、高速に行うことができ、レー
ザ発振の繰り返し周期を短縮化することができる。例え
ば第1図に示す実施例において、コンデンサ01〜C1
の容量を2nl;’。
<Effects of the Invention> As explained above, according to the present invention, the smoothing capacitor at the final stage of the Schenkel circuit also serves as the primary capacitor of the pulse laser device, and when the driving is started in response to a startup command, the primary capacitor described above is The output of the AC power supply circuit, which stops driving when the voltage across both ends reaches the set voltage, is input to the Schenkel circuit, and switching is performed to transfer the charge of the laser primary capacitor to the secondary capacitor in synchronization with the driving stop. Since the element is configured to conduct a conductive operation, the laser primary capacitor can be charged at high speed without suppressing the peak current as in the conventional case, and the repetition period of laser oscillation can be shortened. . For example, in the embodiment shown in FIG.
The capacity is 2nl;'.

C8を30nFとしたとき、コンデンサC3の両端電圧
が20kVに達するまでに要する時間は数m secで
あり、これにより、レーザ発振周波数を従来の50Hz
程度から100Hz程度にまで向上させることができる
When C8 is 30 nF, the time required for the voltage across capacitor C3 to reach 20 kV is several msec, which allows the laser oscillation frequency to be reduced from the conventional 50 Hz.
It is possible to improve the frequency from about 100 Hz to about 100 Hz.

また、レーザ放電が必要なときにのみレーザ1次コンデ
ンサへの充電が行われるから、電源の効率が向上すると
ともに、セラミックコンデンサを使用する場合にはその
寿命が伸びるという効果もある。
Furthermore, since the laser primary capacitor is charged only when laser discharge is necessary, the efficiency of the power supply is improved and, if a ceramic capacitor is used, its lifespan is extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の回路構成図、 第2図はそのコンデンサC6の電圧と装置の動作タイミ
ングの説明図、 第3図は従来のパルスレーザ装置の回路構成例を示す図
である。 1・・・整流回路 2・・・インバータ 3・・・トランス 4・・・シェンケル回路 5・・・比較回路 C1〜Ca、Cp・・・コンデンサ D、〜D8・・・ダイオード Ed・・・主放電電極対 し・・・リアクタ R,、R2・・・分圧抵抗 S・・・スイッチング素子
FIG. 1 is a circuit configuration diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the voltage of the capacitor C6 and the operation timing of the device, and FIG. 3 is a diagram showing an example of the circuit configuration of a conventional pulse laser device. 1... Rectifier circuit 2... Inverter 3... Transformer 4... Schenkel circuit 5... Comparison circuit C1~Ca, Cp... Capacitor D, ~D8... Diode Ed... Main For discharge electrode...Reactor R,, R2...Voltage dividing resistor S...Switching element

Claims (1)

【特許請求の範囲】[Claims] 所定の電圧に充電された1次コンデンサの電荷を、スイ
ッチング素子の導通動作により2次コンデンサに移送し
、この移送によって充電された上記2次コンデンサの充
電電圧を、レーザ媒体ガス中の電極対間に印加すること
によりパルス放電励起を行うレーザ装置において、起動
指令により駆動を開始する交流電源回路と、倍電圧整流
回路を複数段直列に接続してなり、上記交流電源回路の
出力を入力とするシェンケル回路と、設定電圧と上記シ
ェンケル回路の最終段の平滑用コンデンサの電圧を比較
して一致したときに出力を発生する比較回路を有し、上
記最終段の平滑用コンデンサを上記1次コンデンサと兼
用するとともに、上記比較回路の出力により上記交流電
源回路の駆動を停止し、かつ、これに同期して上記スイ
ッチング素子の導通動作を行うよう構成したことを特徴
とする、パルスレーザ装置。
The electric charge of the primary capacitor charged to a predetermined voltage is transferred to the secondary capacitor by the conduction operation of the switching element, and the charging voltage of the secondary capacitor charged by this transfer is transferred between the electrode pair in the laser medium gas. In a laser device that performs pulse discharge excitation by applying a voltage, an AC power supply circuit that starts driving in response to a start command and a voltage doubler rectifier circuit are connected in series in multiple stages, and the output of the AC power supply circuit is input. It has a Schenkel circuit and a comparison circuit that compares the set voltage with the voltage of the final stage smoothing capacitor of the Schenkel circuit and generates an output when they match, and the final stage smoothing capacitor is connected to the primary capacitor. A pulsed laser device, characterized in that the output of the comparison circuit is used to stop the drive of the AC power supply circuit, and in synchronization with this, the switching element is made conductive.
JP5959887A 1987-03-13 1987-03-13 Pulsed laser device Pending JPS63226087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5959887A JPS63226087A (en) 1987-03-13 1987-03-13 Pulsed laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5959887A JPS63226087A (en) 1987-03-13 1987-03-13 Pulsed laser device

Publications (1)

Publication Number Publication Date
JPS63226087A true JPS63226087A (en) 1988-09-20

Family

ID=13117842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5959887A Pending JPS63226087A (en) 1987-03-13 1987-03-13 Pulsed laser device

Country Status (1)

Country Link
JP (1) JPS63226087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445182A (en) * 1987-08-13 1989-02-17 Mitsubishi Electric Corp Pulse laser
JP2009095140A (en) * 2007-10-09 2009-04-30 Nhv Corporation Dc high voltage power supply unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445182A (en) * 1987-08-13 1989-02-17 Mitsubishi Electric Corp Pulse laser
JP2009095140A (en) * 2007-10-09 2009-04-30 Nhv Corporation Dc high voltage power supply unit

Similar Documents

Publication Publication Date Title
US4240009A (en) Electronic ballast
JP3764231B2 (en) Pulse voltage train generation circuit device
US3987356A (en) Controlled capacitive filter for active loads
CN102047762A (en) High voltage discharge lamp lighting device and light fixture
EP2222138B1 (en) Discharge lamp lighting device and illumination fixture
US6154473A (en) Power supply apparatus for laser
JPS63226087A (en) Pulsed laser device
US4961029A (en) Discharge lamp lighting device
JPH06847Y2 (en) Pulse laser device
JP2948600B2 (en) Inverter device
JP2948627B2 (en) Discharge lamp lighting device
JP2000277840A (en) Charging and discharging circuit for pulse laser
JPH0744076B2 (en) Discharge lamp lighting device
JP3279085B2 (en) Control method of power supply for electric precipitator
JPS5833583Y2 (en) Commutation capacitor testing equipment
SU1413705A1 (en) Device for charging storage capacitor
SU775844A1 (en) Dc voltage converter
JP2611996B2 (en) Pulse laser equipment
JPS623559B2 (en)
JPH0529087A (en) Discharge lamp lighting device
JP3961201B2 (en) Laser power supply
JP3035041B2 (en) Lighting device for high pressure discharge lamp
JPH06349586A (en) Discharge lamp lighting device
JPH0376176A (en) Capacitor charging circuit
JPH0689789A (en) Discharge lamp lighting device