JPS63225790A - Heat-insulating structure - Google Patents

Heat-insulating structure

Info

Publication number
JPS63225790A
JPS63225790A JP62057479A JP5747987A JPS63225790A JP S63225790 A JPS63225790 A JP S63225790A JP 62057479 A JP62057479 A JP 62057479A JP 5747987 A JP5747987 A JP 5747987A JP S63225790 A JPS63225790 A JP S63225790A
Authority
JP
Japan
Prior art keywords
fibers
heat
knitted
fabric
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62057479A
Other languages
Japanese (ja)
Inventor
茂樹 小林
重孝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP62057479A priority Critical patent/JPS63225790A/en
Publication of JPS63225790A publication Critical patent/JPS63225790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Thermal Insulation (AREA)
  • Woven Fabrics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は耐熱繊維で形成された肉厚3次元の断熱構造体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thick three-dimensional heat insulating structure made of heat-resistant fibers.

[従来の技術] ボイラー等の断熱材として、アスベスト板とかセラミッ
クII製のフェルトが知られている。
[Prior Art] Asbestos plates and ceramic II felt are known as heat insulating materials for boilers and the like.

[発明によって解決される問題点] アスベスト板は各1!帷間の結合力が弱いために表面よ
り繊維が剥離したり、あるいはtimn間の間隙を多く
とることができないために断熱効果が不十分であるとい
った問題点がある。また、セラミック繊維のフェルトも
繊維間の結合が弱く機械的強度が弱い。
[Problems solved by the invention] One asbestos board each! There are problems such as the fibers peeling off from the surface due to the weak binding force between the sheets, and the insulation effect is insufficient because it is not possible to have a large gap between the sheets. Furthermore, ceramic fiber felt also has weak bonding between fibers and low mechanical strength.

本発明は上記した問題点のない新規な断熱構造体を提供
することを目的とする。
An object of the present invention is to provide a novel heat insulating structure that does not have the above-mentioned problems.

[問題点を解決するための手段] 本発明の断熱構造体は耐熱性111fflよりなる厚さ
が少なくとも0.2mm以上の肉厚をもつ編織成体から
なる。
[Means for Solving the Problems] The heat insulating structure of the present invention is made of a woven fabric having a heat resistance of 111ffl and having a wall thickness of at least 0.2 mm.

本発明の断熱構造体を構成する耐熱繊維としては、使用
環境に耐える耐熱性をもつ繊維であり、シリカ繊維、ア
ルミナ繊維、ジルコニア繊維、炭化珪素繊維、炭素繊維
、ホウ素繊維、ガラス繊維等のセラミック繊維、ポリイ
ミド繊維等の耐熱高分子繊維が一使用できる。また、必
要に応じてこれらを組合わせて使用することもできる。
The heat-resistant fibers constituting the heat-insulating structure of the present invention are fibers that have heat resistance that can withstand the environment in which they are used, and include ceramics such as silica fibers, alumina fibers, zirconia fibers, silicon carbide fibers, carbon fibers, boron fibers, and glass fibers. Heat-resistant polymer fibers such as fibers and polyimide fibers can be used. Moreover, these can also be used in combination as necessary.

耐酸化性向上、反応防止等の目的で繊維表面あるいは編
織成体をコーティング処理したり、珪素存在下で処理し
てカーボンを炭化珪素に添加させたりすることも有用で
ある。
For the purpose of improving oxidation resistance, preventing reactions, etc., it is also useful to coat the fiber surface or knitted or woven body, or to add carbon to silicon carbide by treating it in the presence of silicon.

本発明の編織成体はX、Y、Zの三方向に耐熱繊維の糸
あるいはロービングを立体的に編んだりまたは織ったり
して3次元組織としたものである。
The knitted or woven article of the present invention has a three-dimensional structure by three-dimensionally knitting or weaving heat-resistant fiber threads or rovings in three directions (X, Y, and Z).

編織成体は繊維の配列方法の数によって次のように分類
できる。−軸方向に配列された多数の糸を互いに編んで
立体的構造にした三次元−軸織物(従来の4紐がこれに
相当する)、縦糸、横糸の2成分の系から構成され、縦
糸が何層もの横糸を斜めに編んでいく三次元二軸織物(
ベルト、ホースなどに用いられる多重組織の織物)、縦
糸、横糸および垂直系を立体的に組織させた三次元三軸
織物等である。なおこのような構成様式だけでなく織り
方によっても分類することができる。例えば第1図に三
次元三軸織物で例を示すが縦糸、横糸、垂直系が各々交
点で蛇行せず直交した状態で組まれた直交組織、第2図
に示す縦糸、横糸が1本毎の垂直系に対し転位して交差
し、絡みをもたせた平織状の組織のもの等である。本発
明の三次元編織成体は必要に応じてこれらの多種の三次
元織物の織り方から選択すればよく特定の組織の織物に
限定するものではない。また、フェルト、織布等の断熱
材を織物中に織り込むことも可能である。
Woven fabrics can be classified as follows depending on the number of fiber arrangement methods. - A three-dimensional structure made by knitting together a large number of yarns arranged in the axial direction - A three-dimensional woven fabric (corresponding to the conventional 4-string fabric), consisting of a two-component system of warp and weft, with the warp being the Three-dimensional biaxial fabric made by diagonally knitting many layers of weft threads (
These include multi-structured fabrics used for belts, hoses, etc., and three-dimensional triaxial fabrics in which warp, weft, and vertical threads are organized three-dimensionally. Furthermore, it can be classified not only by the construction style, but also by the weaving method. For example, Fig. 1 shows an example of a three-dimensional triaxial fabric, and there is an orthogonal weave in which the warp, weft, and perpendicular threads intersect perpendicularly at the intersection points without meandering, and as shown in Fig. 2, the warp, weft, and perpendicular threads It is a plain weave structure that is dislocated and intersected with respect to the perpendicular system of the structure. The three-dimensional knitted fabric of the present invention may be selected from among these various three-dimensional fabric weaving methods as necessary, and is not limited to a fabric with a specific structure. It is also possible to incorporate a heat insulating material such as felt or woven fabric into the fabric.

編織成体の厚さは少なくとも0.2mm以上より好まし
くは1mm以上の厚さをもつものがよい。
The thickness of the knitted fabric is preferably at least 0.2 mm, more preferably 1 mm or more.

編織成体中のm椎体積率(m雑の占める体積、残りは空
間の占める体積となる。)は数%〜70%程度の範囲で
可能である。密度も均一な織物を使用してもよいが表面
から織物中への排気ガス等の高温ガスの流入を防ぐため
表面部分は密で中間部分を普通、他面側を粗とする多層
構造体とするのが好ましい。このような多層構造体とす
るために内壁側で織られる41雑の数を増やしたり、あ
るいは密に織り込む等の操作を行なってもよい。
The m-vertebral volume ratio (the volume occupied by the m-vertebral bodies, and the rest is the volume occupied by the spaces) in the knitted or woven body can be in the range of several percent to about 70%. A woven fabric with uniform density may be used, but in order to prevent high-temperature gases such as exhaust gas from flowing into the woven fabric from the surface, it is preferable to use a multilayer structure in which the surface is dense, the middle part is normal, and the other side is rough. It is preferable to do so. In order to obtain such a multilayered structure, operations such as increasing the number of 41 miscellaneous weaves on the inner wall side or weaving them densely may be performed.

編織成体は所定形状をもつ成形体としてもよい。The knitted or woven body may be a molded body having a predetermined shape.

具体的な成形体の形状としてはエキゾーストパイプ等の
管状、肉厚のシート状等である。なお肉厚のmtIa成
体を所定形状に裁断し、耐熱繊維でもって縫い合わせて
目的形状としてもよい。
Specific shapes of the molded body include a tubular shape such as an exhaust pipe, a thick sheet shape, and the like. Note that a thick mtIa body may be cut into a predetermined shape and sewn together with heat-resistant fibers to obtain the desired shape.

本発明の編織成体はエキゾーストバイブの内面に内張す
して使用したり、編織成体の一面に鋳物を鋳口るんで使
用することもできる。
The woven fabric of the present invention can be used by lining the inner surface of an exhaust vibe, or can be used by placing a cast metal on one side of the woven fabric.

[作用効果] 本発明の編織成体は三次元的に糸の絡みがあり従来の二
次元的な断熱材に比べ強度は高(高温での繊維劣化後の
保形性が向上している。又、レンガ等で問題となる耐ス
ポーリング性も織成または編成された構造組織となって
いるためはるかに勝れている。一般に断熱材のカサ密度
が低くなるほどく気孔が多くなるほど)固体を通る熱伝
導は小さくなるが密度が低くなりすぎると対流あるいは
輻射による伝導が大きくなり、断熱材全体の熱伝導は急
激に大きくなる。特にこの効果は高温はど著しい。本発
明の三次元のFIA織成体はその表面層をガス流入を防
ぐためある程度カサ密度を高くし、それ以外の部分を低
い密度とすることが可能であり、熱伝導率を容易にコン
トロールできる。また、本発明の編織成体はその表面が
凹凸に富むため断熱を必要とする壁面への接着固定が容
易である。
[Operations and Effects] The knitted fabric of the present invention has threads intertwined three-dimensionally, and has higher strength than conventional two-dimensional insulation materials (improved shape retention after fiber deterioration at high temperatures). The spalling resistance, which is a problem with bricks, etc., is much better because it has a woven or knitted structural structure.In general, the lower the bulk density of the insulation material, the more pores it has) Heat conduction decreases, but if the density becomes too low, conduction by convection or radiation increases, and heat conduction throughout the insulation material increases rapidly. This effect is especially noticeable at high temperatures. In the three-dimensional FIA woven body of the present invention, the surface layer can be made to have a certain degree of bulk density to prevent gas inflow, and the other parts can be made to have a low density, and the thermal conductivity can be easily controlled. Further, since the surface of the knitted fabric of the present invention is rich in irregularities, it is easy to adhesively fix it to a wall surface that requires heat insulation.

この編織成体の一面に金属溶湯を注入し金属を鋳くるむ
場合にも編織成体の表面部分が金属中に鋳くるまれた状
態となり固着性が非常に向上する。
Even when molten metal is injected into one side of the knitted fabric and the metal is cast, the surface portion of the knitted fabric becomes encapsulated in the metal, and its adhesion is greatly improved.

[実施例1〕 直径約20ミクロンのアルミナ繊維を約1000本より
合わせて作った直径約0.6mmのアルミナ糸を使用し
、第2図に示す糸構造をもつ厚さ200mm、縦、横い
ずれも50cmで繊維体積率約18%の本発明の第1実
施例の編織成体を作った。
[Example 1] An alumina thread with a diameter of about 0.6 mm made by twisting about 1000 alumina fibers with a diameter of about 20 microns was used, and the thread structure shown in Figure 2 was 200 mm thick, both vertically and horizontally. A knitted fabric of the first example of the present invention was made with a length of 50 cm and a fiber volume percentage of about 18%.

[実施例2] 直径約20ミクロンのアルミナ繊維を約1000本より
合わせて作った直径約0.6mmのアルミナ糸を使用し
、第1層が厚さ10mmで繊維体積率48%、第2層が
厚さ190mm繊維体積率約10%粗密2層の糸構造を
もつ厚さ200mm、縦、横いずれも50cmの本発明
の第2実施例の編織成体を作った。
[Example 2] Alumina thread with a diameter of about 0.6 mm made by twisting about 1000 alumina fibers with a diameter of about 20 microns was used, the first layer was 10 mm thick and the fiber volume percentage was 48%, and the second layer was A knitted fabric according to the second embodiment of the present invention was prepared, having a thickness of 190 mm, a fiber volume fraction of about 10%, a coarse and dense two-layer yarn structure, a thickness of 200 mm, and a length and width of 50 cm.

[実施例3] 直径約10ミクロンのガラス繊維を約1000本より合
わせて作った直径約(3,3mmのガラス糸を使用し、
実施例3の編織成体と同じ粗密2層の糸構造をもつ厚さ
200mm、縦、横いずれも5層cmの本発明の第3実
施例の!織成体を作った。
[Example 3] Using glass threads with a diameter of about 3.3 mm, which were made by twisting about 1000 glass fibers with a diameter of about 10 microns,
The third example of the present invention has the same coarse and fine two-layer yarn structure as the knitted fabric of Example 3, has a thickness of 200 mm, and has 5 layers in both length and width! I made a woven body.

[試験例1] 上記第1実施例、第2実施例および第3実施例の3種類
の編織成体および比較例1として厚さ3QQmmの耐火
レンガおよび比較例2としてフェルト状のアルミナ系繊
維よりなるIIM体積率1%で厚さ200mmのセラミ
ックフェルトを使用し、炉内温度約900℃の炉壁に張
り付は各断熱体の外表面の温度を測定し断熱性を調べた
。第1〜第3実施例の各lIA織成体の外表面の温度は
それぞれ80℃、72℃および70℃であった。これに
対して、比較例1および比較例2の断熱材の外表面の温
度は82℃、および76℃であった。本実施例の各編織
成体の断熱特性は従来の断熱材とほぼ同じであった。し
かし、比較例1の耐火レンガは炉壁への張り付けにセメ
ントを必要としたり、隙間を塞ぐ必要があった。また比
較例2のフェルトは繊維同志の結合が弱いために繊維が
表面より脱落するといった問題があった。これに対して
各実施例のfIl!成体は機械的強度も充分で張り付は
作業も容易であった。
[Test Example 1] Three types of knitted and woven structures of the above-mentioned first, second, and third examples, a firebrick with a thickness of 3QQmm as comparative example 1, and a felt-like alumina fiber as comparative example 2 Ceramic felt with an IIM volume fraction of 1% and a thickness of 200 mm was used, and the temperature of the outer surface of each heat insulating body was measured to examine the heat insulation properties of each heat insulator attached to the furnace wall where the temperature inside the furnace was approximately 900°C. The temperature of the outer surface of each IIA fabric in Examples 1 to 3 was 80°C, 72°C, and 70°C, respectively. On the other hand, the outer surface temperatures of the heat insulating materials of Comparative Examples 1 and 2 were 82°C and 76°C. The heat insulating properties of each knitted fabric of this example were almost the same as those of conventional heat insulating materials. However, the refractory brick of Comparative Example 1 required cement to be attached to the furnace wall, and it was necessary to close gaps. Furthermore, the felt of Comparative Example 2 had a problem in that the fibers fell off from the surface because the bond between the fibers was weak. On the other hand, fl! of each example! The adult plant had sufficient mechanical strength and was easy to attach.

[実施例4] 実施例1の編織成体と同じ材質、繊維体積率、構造をも
ち厚さが5mmの実施例4の編織成体をつくった。
[Example 4] A knitted and woven body of Example 4 having the same material, fiber volume ratio, and structure as the knitted and woven body of Example 1 and having a thickness of 5 mm was produced.

この編織成体を熱機関の排気管(外径45++++n。This knitted body is used as an exhaust pipe of a heat engine (outer diameter 45+++n).

肉厚5+u)を鋳造する鋳型面にとりつけ約700℃ア
ルミ溶湯を鋳ぐるんだ。この場合鋳造時の欠陥発生は認
められなかった。この編織成体の断熱効果でこの排気管
の排気温は約60℃上昇した。
It was attached to the surface of the mold to be cast with a wall thickness of 5+u, and molten aluminum was poured into it at approximately 700℃. In this case, no defects were observed during casting. Due to the heat insulating effect of this knitted fabric, the exhaust temperature of this exhaust pipe rose by about 60°C.

また、1000時間運転後もma成体にも排気管本体に
も回答損傷は認められなかった。
Furthermore, no damage was observed on the adult mama or the exhaust pipe body even after 1000 hours of operation.

[実施例5] 直径約10ミクロンのアルミナ繊維を約500本より合
わせて作った直径約Q、 2mmのアルミナ糸を使用し
、第1層が厚さi Qmmで繊維体積率約48%、第2
層が厚さ50mm繊維体積率約18%粗宮2層の糸構造
をもつ外径180mm、内径120mm、厚さ60mm
の本発明の第5実施例の管状編織成体を作った。
[Example 5] Alumina yarn with a diameter of about Q and 2 mm made by twisting about 500 alumina fibers with a diameter of about 10 microns was used, and the first layer had a thickness of iQmm, a fiber volume percentage of about 48%, and a fiber volume ratio of about 48%. 2
Layers are 50mm thick, fiber volume percentage is approx. 18%, and has a two-layer yarn structure with an outer diameter of 180mm, an inner diameter of 120mm, and a thickness of 60mm.
A tubular knitted fabric body according to the fifth example of the present invention was made.

この編織成体を外径120mmの熱風管の外周面に巻き
付けた。なお、従来はアルミナキャスタブルを塗付Gノ
で断熱材としていた。本実施例の編織成体を使用するこ
とにより施工が容易となりかつ断熱効率が約25%向上
した。
This knitted fabric was wound around the outer circumferential surface of a hot air tube having an outer diameter of 120 mm. In addition, conventionally, alumina castable was used as a heat insulating material by coating G. By using the knitted fabric of this example, construction was facilitated and the heat insulation efficiency was improved by about 25%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の編織成体の糸構造を示す部分斜視図、
第2図は本発明の編織成体の糸構造を示す他の部分斜視
図である。
FIG. 1 is a partial perspective view showing the yarn structure of the knitted fabric of the present invention;
FIG. 2 is another partial perspective view showing the thread structure of the knitted fabric of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)耐熱性繊維よりなる厚さが少なくとも0.2mm
以上の肉厚をもつ編織成体からなる断熱構造体。
(1) Made of heat-resistant fibers with a thickness of at least 0.2 mm
A heat insulating structure made of a knitted material with a wall thickness of
(2)編織成体は繊維間の間隙が小さい内層部と繊維間
の間隙が大きい外層部とからなる特許請求の範囲第1項
記載の断熱構造体。
(2) The heat insulating structure according to claim 1, wherein the knitted or woven body comprises an inner layer portion with small gaps between fibers and an outer layer portion with large gaps between fibers.
(3)編織成体の外周面には鋳包みで形成された金属製
補強部を有する特許請求の範囲第1項記載の断熱構造体
(3) The heat insulating structure according to claim 1, which has a metal reinforcing portion formed by casting on the outer peripheral surface of the knitted or woven body.
JP62057479A 1987-03-12 1987-03-12 Heat-insulating structure Pending JPS63225790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057479A JPS63225790A (en) 1987-03-12 1987-03-12 Heat-insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057479A JPS63225790A (en) 1987-03-12 1987-03-12 Heat-insulating structure

Publications (1)

Publication Number Publication Date
JPS63225790A true JPS63225790A (en) 1988-09-20

Family

ID=13056846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057479A Pending JPS63225790A (en) 1987-03-12 1987-03-12 Heat-insulating structure

Country Status (1)

Country Link
JP (1) JPS63225790A (en)

Similar Documents

Publication Publication Date Title
US5075160A (en) Ceramic fiber reinforced filter
KR100590445B1 (en) A corrugated radiant burner grid and a reverberatory screen for a radiant burner
US5939216A (en) Fiber reinforced ceramic matrix composite and method of manufacturing the same
US5372868A (en) Fiber reinforced glass matrix and glass-ceramic matrix composite articles
JPH0244270B2 (en)
JPH02148719A (en) Component and device for diffusion furnace
CA1325100C (en) Ceramic thermal barriers
Zhang et al. Evolution from microfibers to nanofibers toward next-generation ceramic matrix composites: A review
US4663205A (en) Thermocouple protective tube
US4943465A (en) Thermal insulating, high temperature resistant composite
JPH11174186A (en) Reactor control rod element
JPS63165562A (en) Heat resistant inorganic fiber molded body and its production
JPS63225790A (en) Heat-insulating structure
US4189301A (en) Reinforced insulating members
JP6105478B2 (en) Inorganic fiber
JPH0925178A (en) Ceramic-base fiber composite material and its production
JP4575623B2 (en) Furnace lining
Halbig The oxidation kinetics of continuous carbon fibers in a cracked ceramic martrix composite
JPS6082344A (en) Inorganic composite material
EP0586587B1 (en) Ceramic-ceramic composite filter
KR900002763B1 (en) Refractory fiber special structure and manufacturing method thereof
Kajii et al. A new type of fiber-bonded-ceramic material synthesized from pre-oxidized Si-Ti-CO fiber
JPH06143469A (en) Carbon composite heat inulating material and production thereof
Marzullo Boron, high silica, quartz and ceramic fibers
GB1576312A (en) Kilns prepared for firing of ceramic articles